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Restricted maximum likelihood (REML) is widely Iegarded as the preferred procedure for estimating variance
components in animal breeding problems. The size of the coefficient matrix, however, often leads to computational
difficulties and many simplified algorithms, including diagonalization, have been proposed. Diagonalization of the
mixed model equations coefficient matrix, augmented by the numerator relationship matrix, in different steps using
Householder's transformations and the QL algorithm il: proposed. The transformations need only be performed once.
Very large data sets can be handled with ease and oncl: the transformations have been performed, there is no practical
limitations to the number of iterations that may be performed. A numerical example illustrating the procedure is
supplied and a FORTRAN program, based on this apprcach, is available.

Beperkte maksimum aanneemlikheid ('REML') word redelik algemeen beskou as die aangewese prosedure vir die
beraming van variansiekomponente in diereteeltproblerne. Die grootte van die koeffisientmatriks lei egter dikwels tot
probleme met berekenings en heelwat vereenvoudigde algoritmes, insluitende diagonalisasie, is reeds voorgestel.
Diagonalisasie van die gemengde-model vergelykingskoeffisientmatriks, aangevul met die verwantskapsmatriks, deur
verskillende stappe met behulp van Householder se trfiIlSformasiesen die QL-algoritme word voorgestel. Dit is slegs
nodig om die transformasies eenmalig uit te voer. Bale groot datastelle kan met gemak hanteer word en nadat die
transformasies uitgevoer is, is daar geen praktiese beperking op die aantal iterasies wat uitgevoer kan word nie. 'n
Numeriese voorbeeld wat die. prosedure illustreer word verskaf en 'n FORTRAN-program, gebaseer op hierdie
benadering, is beskikbaar.
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Introduction
Estimation of (co)variance components plays an important role
in animal breeding research since these components are ust:d
in the estimation of genetic parameters and the selection of a
design for an animal breeding progranune. In recent yems,
restricted maximum likelihood (REML) of Patterson &
Thompson (1971) has become the method of choice, the
reason being the desirable properties of REML estimators as
discussed by Harville (1977) and the fact that REML yields
estimates of variance components free of selection bias
(Henderson, 1986). Although many improved algorithms f'Jr
REML estimation of variance components have been pub-
lished (Harville & Callanan, 1990), it is still regardedls
computationally demanding especially for large data sets. To
simplify the computations, Patterson & Thompson (1971) have
suggested diagonalization of the coefficient matrix of the
mixed model equations (MME). Another approach used by
Smith & Graser (1986) was tridiagonalization of the MNlE
coefficient matrix, so that direct inversion is not necessmy.
Although Lin (1987; 1988) has presented further simplifica-
tions, this is still an area for further research. The purpose of
this study is to present computational algorithms for diagonal-
ization of the MME coefficient matrix augmented by t:Ie
numerator relationship matrix A, leading to an efficient
algorithm for REML variance components estimation.

Procedures
Consider a univariate mixed linear model with one random
factor. Let y, b, u and e denote the vectors of observations,

fixed effects (and possible covariates), random effects, and
residual error, respectively. X and Z are design matrices, for
fixed and random effects and X may also contain columns for
covariates. The general linear mixed model can be written as
follows:

with E(y) = Xb, E(u) = 0, Var(u) = G, Var(e) = R,
Var(y) = ZGZ' + R and Cov(u,e) = O. In most applications
G = A(J'~, where A describes the covariance structure among
the levels of the random factor, and R = I(J'~.

In animal breeding terms, assuming an additive genetic
model for the random factor (sires), A is the numerator
relationship matrix. The mixed model equations (MME) of
Henderson (1973) are then:

[

X'X

Z'X

with a = (J'; / (J'~, assuming that (J'; and (J' ~ are known para-
meter values. Since they are never known, estimates can be
obtained from the data available. Restricted maximum likeli-
hood (REML) accounts for the loss of degrees of freedom due
to fitting the fixed effects. Maximization of the part of the
likelihood of the data vector y, which is independent of the
fixed effects, is achieved by operating on a vector of 'error
contrasts', Sy, with SX = 0, and E(Sy) = O. A suitable
matrix arises when fixed effects (and possible covariates) are



absorbed into the random effect in (2) (Thompson. 1973;
Meyer, 1987). After absorption. the MME become

(Z'SZ + aA-1)u = Z'Sy (3)

with S = In - X(X' X) - X'. Then 0": and 0"~ can be estimated
by iteration on:

[y'Sy -u'Z'Sy] / [N-r(X)]

[~'A -I;; +;~ tr{A -I (Z'SZ +aA-1tl}] /q

where N = total number of observations. r(X) = rank of X.
tr = trace of a matrix. and q = number of levels for the
random factor (sires). Equivalent expressions of (4) and (5)
are given by Harville (1977). Searle (1979). Henderson (1984)
and Meyer (1987).

Only first derivatives of the likelihood function are utilized
by eqns. (4) and (5). which result in an expectation maximiza-
tion (EM) algorithm of Dempster et at. (1977; 1984). Apart
from the slow convergence of the EM algorithm. and the
problem of convergence to a global vs. local maximum. it is in
many practical situations difficult and sometimes impossible to
use formulae (4) and (5) because of the large coefficient
matrix in (3).

Lin (1988) has proposed four alternative algorithms in an
attempt to solve the problem. One of these algorithms uses an
orthogonal matrix U which simultaneously diagonalizes Z'SZ
and A -I in (3). This approach is very useful for small data sets
but. with large data sets. it becomes impractical because the
matrix U is too large to fit in the memory of most computers.
An alternative approach for diagonalization of the coefficient
matrix in (3) can be used following several computational
steps. The numerator relationship matrix A can be decomposed
by the method of Cholesky as LL'. Then Var(y) = ZLL'Z'O"~
+ 10":. Thus. if we define

ZI = ZL. an equivalent model to (1) is y = Xb + ZIUI + e.

where UI = L-1u, Var(uI) = IO"~ and Var(y) = ZIZ'IO"~ +
IO"~.

MME equations become

(L'Z'SZL +/0.)L-1u = L'Z'Sy

Because L'Z'SZL is symmetric. there exists an orthogonal
matrix K such that K'(L'Z'SZL)K = D = diag{AJ, A2•..• An}.
for i = 1. ..• n. Abeing the eigenvalues of L'Z'SZL
(Graybill, 1976; Searle. 1982; Golub & Van Loan, 1983).
There are different methods of obtaining K. but one of the
most efficient algorithms is a combination of Householder's
transformations and the QL algorithm (Wilkinson. 1978;
Wilkinson & Reinsch. 1971). Any real symmetric matrix may
be reduced to tridiagonal form using Householder's method
(Wilkinson & Reinsch. 1971). According to Martin et at.
(1971). L'Z'SZL can be reduced to a tridiagonal symmetric
matrix as follows:

(L'Z'SZL);+ I = P';(L'Z'SZL) jPj for i= 1.2, .., n-l (7)
where the Pi are Householder transformation matrices of the
form

Pj = 1- u u'j Hi with Hi = Y2U'jUi. for u'u = 1 (8)

The right-hand sides in (6) can be transformed using the
structure of the Pj matrices. e.g.

where f = u'i(L'Z'S) Yi. Note that f is a scalar, so the trans-
formation of the RHS in (6) can easily be accomplished during
the process of the formation of an element of Pi'

The next step is to find the eigenvalues of the coefficient
matrix in (6). One of the most elegant methods is the QL algo-
rithm described by Bowdler et at. (1971). When the matrix is
symmetric and tridiagonal as in (7). there exists a matrix Q
such that

[P' (L'Z' SZL)P] 1+1 = Q'I [P' (L'Z' SZL)P] IQI

and QI is obtained in the factorized form as

Q, = T(I)J, T(I)2, ••••T(I)n_ I (11)

with T(I)i determined in the order T(I)n _ It ...• T(I)I; T(I)i being
a rotation in the (i. i+l) plane, designed to anihilate the (i, i+l)
ele:nent If we write

the::! (10) can be rewritten as [P'(L'Z'SZL)P]1+1 = M1T'n_1
... T'2T'I' After post-multiplication of Mby T' n-I" T'I there
is only one super-diagonal line of non-zero elements. and
Bowdler et at. (1971) have shown that there is no need to
fonn M explicitly. As the T matrices have a simple structure,
the RHS in (9) can be easily transformed as has been sug-
gested by Wilkinson (1978). Let P'L'ZSy = z. Then calculate

(13)

(14)
ti = ZjC-SZi+1

tj~1 = ZjS+CZi+1
and overwrite ti and ti+1 on Zi and Zi+I'

From (6) we can obtain estimates for 0" ~ and 0" ~ as follows:

[y'Sy - u'IL'Z'Sy] /[N - r(X)]

[~'I;;I+;:tr(L'Z'SZL +/o.tl]/q

(15)

(16)

Proof of the equivalence between (4). (5) (15). and (16) can
be found in Lin (1988).

Proof that direct matrix inversion and the described diagon-
alintion approach are identical. is now supplied:
The matrix P arising from Householder's transformations is
orthogonal as well as the matrix Q from (10) (Wilk:inson.
19/8).

Let K = PQ. The matrix K is also orthogonal (Wilk:inson.
19/8; Searle. 1982). By definition.

K'(L'Z'SZL + 100)K = D + 10.
L' Z' SZL + 10. = K' -I (D + 10.)K-1

(L'Z'SZL +/o.rl = K'(D +/o.rlK

It is obvious from (17) that
tr :L'Z' SZL + Io.rl = tr(D + Io.tl.

Sin~e (D + 10.) is diagonal. the calculation of the trace of its
inv,~rseis trivial.
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Table 1 Data for numerical example

Herd-year-season

Sire 2 3 4 5 6 7 8 9 10

1 23 26 21 0 0 0 0 0 0 0
2 6 33 31 21 0 0 0 0 0 0
3 0 0 0 15 18 25 29 0 0 0
4 0 0 0 16 24 27 38 13 0 0
5 0 0 0 0 26 16 27 0 0 0
6 0 0 0 0 0 0 18 25 26 23
7 0 0 0 0 0 0 0 19 21 16
8 0 0 0 0 0 0 0 0 29 21
9 0 0 0 0 0 0 0 0 15 16

HYS totals

yi.. = 7680 15697 14685 13381 18260 13946 31134 14761 24684 17178
Di.. = 29 59 52 52 68 68 112 57 91 76

Sire totals

y.i. 24214 22706 31115 16524 23285 14635 12796 7292 4010
n· 70 91 87 118 69 92 56 50 31.L

Now the variance components can be estimated by iteration
on:

;~ = [y'Sy -u*'t] I [N-r(X)] (18)

;~ = [~*'~* +;~tr(D+latl]lq (19)

where u* = K'L -Iu is a solution vector to the diagonalized
system and t = K' L'Z' Sy is the vector of transformed RHS.
The proposed algorithm for REML estimation of variance
components can be summarized as follows:

(a) Absorb the fixed effects (and possible covariates) into the
random effect of the model. This can be done using
Gausian elimination or SWEEP techniques described by
Goodnight (1979).

(b) Calculate L, a lower triangular matrix of the numerator
relationship matrix by the indirect method proposed by
Henderson (1976). Premultiply both sides of (3) by L'
and postmultiply left-hand side by L to obtain (6). This
step can be skipped if the recursive algorithm of Quaas
(1989) is used which directly overwrites (3) by L to
obtain (6) without computing L explicitly.

(c) CalculateK'(L'Z'SZL) K = D and K'L'Z'Sy = t.
(d) Calculate u* = (D + lat1t.
(e) Calculate (J" ~ and (J" ~ according to (18) and (19). Steps (a)

to (d) are to be performed only once, before the iteration
process.

Repeat calculations for (J" ~ and (J" ~ until convergence of RE\1L
is achieved.

Numerical example
The sample data used are supplied in Table 1. The model used
for analysis contained ten herd-year-season fixed subclasses,
age of dam as independent variable and nine sires as the
random factor. The trait is average daily gain of Dormer
lambs.

The nine sires were assumed related but non-inbred and the
numerator relationship matrix (A) is given in Table 2.

Table 2 Numerator relationship matrix (A) for the nine
sires

o 0
1 0

1

0 0 0 0
.5 .5 0 0
0 0 .5 .5
0 0 0 0
0 0 0 0
1 .25 0 0

1 0 0
1 .25

1

The least squares equations after absorption of the fixed
effects into the sire effect, e.g. Z'SZu = Z'Sy are given in
(18).

30.0739 -30.0471 -.9341 -.5025 -.4214 1.65:.5 .1468 -.2069 .2398 UI -283.4559
42.5391 -5.1093 -5.9514 .4279 -1.6769 -.1491 .2101 -.2434 U2 -126.5897

60.7087 -31.0028 -19.9812 -3.71"4 .0785 -.1107 .1282 U3 725.6656
77.8834 -24.8114 -11.33:17 -4.2911 -.0595 .0690 U4 1032.9860

48.6835 -3.9407 .0354 -.0499 .0579 Us -1289.0072 (18)
62.19.3 -19.3143 -14.4453 -9.3546 U6 -270.3290

41.4398 -11.0960 -6.8501 U7 417.3740
symmetric 34.9311 -9.1729 Us 161.3625

25.1261 U9 -368.0036



When A -I, multiplied by the ratio a = (J"; / (J" ~ = 33
is added to Z'SZ and the direct inversion approach is applied,
the following results are obtained:

u'A -Iu = 376.4237
tr[A-1(Z'SZ + 33.6918A-1r1j = 0.1513
u'Z'Sy = 32139.4394

The lower triangular matrix (L) of numerator relationship
matrix (A) and L'Z'SZL and L'Z'Sy are given in (19) and
(20), respectively.

The tridiagonal matrix P' L'Z' SZLP and corresponding
RHS, P' L'Z' Sy after Householder's transformations are given

in (21).
Finally, the diagonal matrix and corresponding RHS after

QL transformation are given in (22).
The results are identical to those obtained by direct

inversion approach, e.g.

u*'u* = 376.4237

tr(D + [arl = 0.1513
u*'t = 32139.4394

When the data from the numerical example are used, after
95iterations,~; = 2592.9615and~~ = 115.0857.

ooסס.1 .0000 ooסס. ooסס. ooסס. .0000 ooסס. ooסס. ooסס.

ooסס. OOסס.1 .0000 ooסס. ooסס. ooסס. ooסס. .0000 ooסס.

ooסס. ooסס. 1.0000 ooסס. ooסס. ooסס. ooסס. .0000 ooסס.

.5000 .0000 ooסס. .8660 ooסס. ooסס. ooסס. ooסס. ooסס.

.5000 ooסס. ooסס. ooסס. .8660 ooסס. ooסס. ooסס. ooסס. (19)

ooסס. .5000 .0000 ooסס. ooסס. .8660 ooסס. ooסס. ooסס.

ooסס. .5000 ooסס. ooסס. ooסס. ooסס. .8660 ooסס. ooסס.

ooסס. ooסס. .5000 ooסס. ooסס. ooסס. ooסס. .8660 ooסס.

ooסס. ooסס. .5000 ooסס. ooסס. ooסס. ooסס. .0000 .8660

48.3860 -36.7922 -26.4053 22.5457 9.9720 -5.1838 -1.71S6 -.2266 .2626 Ul -411.4665

56.9637 -17.4119 -11.9198 -1.3205 17.1140 9.4515 -10.8778 -7.2276 U2 -53.0672
71.1541 -26.8451 -17.3008 -13.5770 -7.70;~9 11.0578 7.0190 U3 622.3451

58.4125 -18.6085 -8.5003 -3.211>3 -.0446 .0517 U4 894.5917
36.5126 -2.9555 .0265 -.0374 .0434 Us -1116.3125 (20)

46.6434 -14.48~;7 -10.8340 -7.0159 U6 -234.1117
31.0798 -8.3220 -5.1376 U7 361.4563

symmetric 26.1983 ~.8797 U8 139.7440

18.8446 U9 -318.7003

51.6307 7.3564 0 0 0 0 0 0 0 Ul 6.6169

7.3564 6.5524 12.2643 0 0 0 0 0 0 U2 -199.9907

0 12.2643 57.2303 15.0102 0 0 0 0 0 U3 -1475.8828

0 0 15.0102 71.4340 -48.1916 0 0 0 0 U4 143.1170

0 0 0 -48.1916 56.7078 -16.8282 0 0 0 Us -469.1006 (21)

0 0 0 0 -16.8282 19.3432 -8.8876 0 0 U6 9.4408

0 0 0 0 0 -8.8876 58.2629 -42.9978 0 U7 -546.3327

0 0 0 0 0 0 -42.9978 54.1890 14.9842 U8 231.2857

0 0 0 0 0 0 0 14.9842 18.8446 U9 -318.7003

116.3470 0 0 0 0 0 0 0 0 Ul 122.3505

0 101.0568 0 0 0 0 0 0 0 U2 -.0020

0 0 60.6445 0 0 0 0 0 0 U3 155.0476

0 0 0 52.4040 0 0 0 0 0 U4 465.8485

0 0 0 0 30.7694 0 0 0 0 Us 58.1022 (22)

0 0 0 0 0 23.8769 0 0 0 U6 1507.1661

0 0 0 0 0 0 6.43/9 0 0 U7 312.9784

0 0 0 0 0 0 0 2.6586 0 U8 513.9336

0 0 0 0 0 0 0 0 OOסס.0 U9 139.3058



Discussion
Both the theoretical development and the numerical example
have shown that direct inversion and a diagonalization
approach using Householder's transformations and the QL
algorithm yield identical results. Simplification of the
absorbed MME coefficient matrix by changing coordinates to
an eigenbasis has been noted by Patterson & Thompson
(1971) and Olsen et aI. (1976). However, rmding the
eigenvalues of a large matrix is not a trivial problem. It is
suggested that this should be done in two steps. Firstly. the
coefficient matrix is to be reduced to tridiagonal form through
the series of Householder's transformations. The reason for
having chosen this method is that it is more economical with
respect to the arithmetic involved (Golub & Van Loan, 1983),
and gives very stable reductions (Martin et al., 1971). The
procedure 'tred3' of Martin et al. (1971) was chosen after it
had been rewritten from ALGOL to FORTRAN. It has also
been modified to perform transformations on the RHS as
shown in (9). The second step used in the proposed diagonal-
ization approach was to find the eigenvalues of the tridiagonal
matrix obtained using Householder's transformations. The QL
algorithm proposed by Bowdler et ai. (1971) was suggested
because of its simplicity and well-known properties. Their
ALGOL procedure 'tql1' was rewritten in FORTRAN and
modified to transform the RHS as showed previously.

The proposed diagonalization approach is very efficient,
because both Householder's and QL transformations must be
performed only once. The rest of the computations at ,~ach
round of iteration of the EM procedure are reduced drarnati-
cally, because the coefficient matrix is diagonal. This leads to
an important advantage in that there is no practical limit to the
number of iterates that may be performed. A FORTRAN
program for REML estimation of variance components by this
diagonalization approach is available on request from the
authors.
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