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Oit word bew ys dat 'n singuliere tweede momentmatriks met rang een die eienskappe van 'n beheersisteem in 'n eerste orde outoregres-
siewe tydsreeks kan induseer. 'n Groeiwet "Old geas.sosleer met 'n nie-eenheids\\'ortel van die herhalingsisteem, sodat groei beskryf kan
word deur 'n enkel.dimensionele markovproses. Beheerwette word geassosieer met eenheidswortels van die herhalingsisteem en hulle
vektore, met spesiale vernysing na die verde ling van die energie van voedselinname na hitteproduksie en die neerlegging van vet en
protelen. Oit "ord be" ys dat die tydsreeks beskrywing getranskribeer kan word na 'n beheersisteem met optimale Iine6re beheer met
terugvoer en diskrete tydsintervalle.

It is show n that a slllgular second moment matrix" ith rank one may induce properties of a control system in a first order autoregressive
time series. A grow th law is assodatcd with the non.unity root of the recursive system, so that it can be described by a single dimensional
Markov process. Control laws arc furthermore associated with the unity roots of the recursive system and their vectors, with special
reference to the partitioning of feed intake energy into heat production and the deposition of fat and protein. It is shown that the time
series description can be transcribed to an optimal linear discrete time feedback control system.

The origin of the present approach lies in the discovery
(Roux, 1974) that In (body mass) and In (cumulative
feed intake) are linearly related and that cumulative
feed intake, like body mass, can be described over time
by a Gompertz equation.

In the description of animals as input - output systems
it is, however, also necessary to keep track of body
composition, since it is possible that animals with the
same mass may have bodies with different energy
contents. In a growing animal the major pathways of
utilisable energy output would be heat production and
the deposition of protein and fat. Hence the number of
dimensions in energy studies on growing animals is, at
least,4.

The allometric (i.e. log-linear) relationship of chemical
components (i.e. protein, fat) to body mass has been
known and hypothesized since Needham (1932). These
relationships together with the allometric relationship
between body mass and cumulative feed intake motivate
an investigation into the relatonship between multivariate
allometry and Gompertz relationships. To allow use of
the powerful mathematical theory of linear algebra this

problem is transformed to a set of interconnected first
order autoregressive time series on the logarithmic scale.

In a previous paper (Roux, 1976) a somewhat intuitive
connection was made between a vector stochastic
differential equation with a singular matrix with rank
one, and Hopkins' (1966) extension of the allometric
concept to the multivariate situation. Hopkins defined
the multivariate allometric situation as one in which the
log-transformed variables have a covariance matrix with
rank one, if the effects of individual variation or measure-
ment error are excluded.

The first purpose of this paper is, then, to derive the
relationship between multivariate allometry and dif-
ference equations in an explicit and rigorous manner.
Although growth may be a continuous process, it
is in practice measured at discrete time points. Dif-
ference equations or discrete time series are, there-
fore, preferred for the purpose of description and
estimation (see also Innis, 1974). To establish a cor-
respondence between the differential equations of
Roux (1976) and discrete time series, it is necessary
only to conceptualize small time units between measure.
ments.



From Section 6 it will be clear that good evidence exists
to justify the assumptions of a covariance matrix of rank
one of the relevant variables and of a first order auto-
regressive relationship in In (cumulativ~·feed intake).
Hence a second purpose of this paper is to attempt to
construct a nontrivial theory of animal growth based on
these assumptions, aria· ·to explore its possible conse-
quences.

1. THE PROPERTIES OF VECTOR AUTORE-
GRESSNE TIME SERIES INDUCED BY SECOND
MOMENT MATRICES OF RANK ONE

A vector first order autoregressive time series can be
written in the form

where A is a constant matrix and cc a constant vector.
The vector E: (t) represents chance fluctuations. The
differential equations postulated by Roux (1976) on
heuristic grounds, can be written in difference form

where I is the identity matrix, and where comparison of
(3) to (1) gives A = 1+ B. Follow Fuller (1976) in nota-
tion and write

* =E (dt) £'(t» = [ •• ~;j ••J

T
C =E L (x(t) -Ex(O»(x(t) ·Ex(O»"'/T (4)

t = 1

T
x(O) =L x(t)/T.

t = I

Note that (4) differs from a covariance matrix, since
E x (t) '4 E x (0) for nonstationary time series.

T
cII =E L (Xl (t) -E Xl (0»2 IT,

t = 1

For ease in presentation statements will be formalised in
theorem format, and will be given in 4 dimensions, since
this is the form in which the theory will be applied most
often. The extension to arbitrary dimensions will be
obvious. In the ensuing development the following
result is of great importance, and is, therefore, high-
lighted as lemma 1.

Lemma 1
With continuous variables a time averaged second
moment matrix (as defined in (4» of rank one implies a
perfect fit to a straight line in 4 dimensions.

Proof
A time averaged second moment matrix (defined in (4) )
of rank one must necessarily be of the general form ell F ,
where F is defined as (5).

F= b2 b3 b4

b2 b2 b2b3 b2b42

b3 b2b3 b2 b3b43

b4 b2b4 b3b4 b2 (5)4

It is also generally true that second moment correlation
and covariance type matrices must be of the same rank,
since the one is obtainable from the other by pre- and
post multiplication of diagonal matrices. Furthermore
a correlation matrix of rank one must necessarily be
equal to a matrix J with all elements equal to unity.
Assume also continuity of variables to enable inter-
change of integration and differentiation. Then a result
obtainable from Kendall & Stuart (1976, pp. 294, 295)
is applicable, Le.

Where S2 is the sum of squares. in standardised units of
distances. of sample points from a straight line in p
dimensions and A is a latent root of the relevant second
moment correlation type matrix, which is defined
analogously to (4). In the present situation p = 4 and
A = 4, since A is a latent root of J. As S2 is always non·
negative, E (S2) = 0 implies S2 :: 0, for all samples.



A second moment defmition, like (4), gives better
justification than one of conventional covariance for
the use of principal components, which is ordinarily
only applicable to sequentially independent data, in the
present context of nonstationary time series. Further-
more, the Yule-Walker equations of the ensuing develop-
ment is identical to the usual conditional likelihood
estimation procedures for the autoregressive situation
as e.g. derived by Fuller (1976), if the expectation
operators (E) are ignored. This will not be true for non-
stationary time series in a development based on cova-
riance matrices.

Assume a first order vector autoregressive time series
and a scalar first order time series for XI (t), the first
member of the vector time series, i.e.

Then, if the time averaged second moment matrix C is
singular with rank one, the time averaged Yule-Walker
equation for a first order process will have a general
solution

A = I + B with B = cF + G (y F - I),

where c is a constant, y is the nonzero characteristic
root of cF, 1 is the identity matrix and G is an arbitrary
matrix.

T T
x(O)=l: x(t)/Tandx(-I)=l: x(t-l)/T.

t=l t=1

Then, on taking expectations after post multiplication of
(I) with x ~(t • I), and use of the identity

the time averaged multivariate Yule-Walker equation
follows:

T
E l: (x(t).E x(O»(x(t -I) -E x(.I)~

t = I

T
=AEL: (x(t-I)-Ex(-I))(x(t.I)-Ex(-I))~. (6)

t = I

t - 2
x(t-I)=cx: + At-l(x(O).cx:)+ l: Aj£(t-I.jj,

j =0

which explains why no term involVing £(t) results on tht:
right hand side of (6), under the assumption of the
independence between vectors £ (t) associated with
different values of t.

and where the parameters ai are arbitrary intercepts
allowed for by correction for the mean in C. Hence

T
E l: (XI (t) -E XI (0» (XI (t -1) -E XI (-I»

t=1

T
= pEL: (x I (t . I) - E x I (-I) )2.

t = I

Substitution of the previous three equations in (6) then
results in

Remember that the time units are conceptualized to be
small enough so that p = exp (- y) == (I - y); vide also
Bellman (1960, p 263). Hence it follows by the use of
general solutions to linear equations (vide Searle, 1966)
that

A = I - cF + G (f. F - I )
Y

B = cF + G (~F - I),

for y = c (I + b~ + bj + b~) is a general solution

to (6). G is an arbitrary matrix, because the singularity
of C induces an infinite number of solutions. Direct



substitution of (7) in P F = AF provides a check, if it is

noted that F2 = ~ F, where y is the nonzero character-

istic root of cF .

Assume a first order vector autoregressive time series and
likewise a scalar first order time series for the first
member of the vector time series. Then if the time
averaged second moment matrix C is singular with rank

one, the covariance matrix t = E E (t) E"(t) will be

equal to a1tF,where all = E EI2(t)withEI (t)being

the fust component of £(t).

The method of proof is very similar to that of Theorem I.
Hence it will be given in outline only. From the general
solution to (1), it follows on post multiplication of (1)
with x' (t) and use of the identity

T
~ = Erl L: (x (t) - EX (0) ) (x (t) - Ex (0) )'.

t = I

T
EArl L: (x(t-l»-Ex(-I»(x(t)-Ex(O»"

t = I

T - ..
L: (xI (t) . EXI (0) )-F -

t = I

T
EArl L: (xI(t-I)-Exl(-I»)(xI(t)-ExI(O»F,

t = I

T
t =Erl L: (xI (t). EXI (0»2 F .

t = I

T
EpT-I «L: XI t-I) -ExI (-I»(xl (t)-ExI (0» F.

t = I

The scalar time averaged Yule-Walker equation which
follows by assumption of a first order process is ana-
logous to the multivariate situation:

T
all = Erl L: (XI (t) - EXI (0) )2 -

t = I

T
EpT-I L: (x(t.l) .EX(-I»(x(t)-EX(O».

t = I

It follows immediately from (8) that a C of rank unity
implies that Ei(t) = bi £I(t),i = 2,3,4.

Since a C of rank one implies f:, Xi (t) = bi Xl (t), it
follows from (2) and corollary I, for the rows of G in
(7), that

where gl' .. , g4 represent the rows of the matrix G of
Theorem I.

A second moment matrix C of rank one implies a matrix
B in (2) and (3) equivalent to -cF, i.e. equivalent to a
singular symmetric matrix with rank one, with a non-
zero root equal to that of -cF .

The proof follows immediately from (7) by the use of
a set of 4 orthogonal vectors with the latent vector of
F, (I, b2, b3, b4)", a member of the set, and from
Corollary 2 of Theorem 2.



I/O . ~h(O,a,b,c)(u (0) ·CX:u)+(I,O,O,O) cx:u

Different matrices G wiII merely result in equivalent
parametrizations of (I) or (3). Hence, the convenient
assumption G = 0 can be made without any loss of
generality.

A second moment matrix C of rank one implies the
presentation of (3) as:

Theorem 2 implies that A = I + B must be equivalent
to, say,

By the corollary to Theorem 3, cx: i can be assumed to be

a point on the line Xi (t) = ai + bjXI (t), so that the

identity (Xi (t) . ex i) =bi (XI (t) • cx: I) follows. Substitu-

tion of this iderttity in (3) and writing p = I - y, as in
proof of Theorem I, completes the proof.

with solution E (u (t) - ex u) =

pn a<I - ~) b (I -~) cO - ~)
(~p~ ~ ~

0 I 0 0

0 0 0

0 0 0

.., AN EXPLICIT SOLUTION TO THE FOUR DI·
MENSIONAL AUTOREGRESSNE TIME SERIES

Let XI = In y I ; y I = cumulative feed intake,

x2 = In y2 ; y2 = cumulative heat production,

x3 = In y3 ; y3 = mass of protein in the body,

x4 = In y4 ; y4 = mass of fat in the body.

which is clearly of the same form as E (w (t) . ex w) = Xi = ai + bixI ' for i = 2,3,4. (13)

The previous theorems allow the solution of (3) under

~ 0 0 0 (w (0) . CX:w)'
the assumption of a second moment matrix C with rank
one. From Theorem 3, B = ·cF, with F defined in (5).

0 0 0
Note that cF has only one nonzero root,

0 0 0
y = c (I + b~ + b~ + b~). Since B is symmetric any

three vectors orthogonal to each other and to the vector

0 0 0 kl 0, b2, b3, b~" associated with y, will do as vectors

where exw contains associated with the zero roots. Hence to solve (3),
transform

r ul (0

1
kl 0 b2 b3 b4) XI (t)l

I U2 (t) k.., (0 0 -b4 b3)
X2 (I) j= ., 2l"3 (I)

k3(0 -(bj+b4) b2b3 b2b4) x3 (t)
2 ., 2 b4) x4(t) (14)u4 (t) J k4 (.(b2 + bj + b4) b2 b3

Hence Theorem 5 follows.



The use of (14) in (3) for a second moment matrix C
of rank one results in

t - I
ul (t) = O:u -(o:u - ul (0» pt + L pj Eu (t oj)

j =0

and where p = I - Y ,or to allow for a contin uous approxi-
mation to the difference equation,

The rest of the proof follows from Corollary I to
Theorem 2.

Note that it follows from (15) and (14) that ul (t)
portrays movement along the lines (13) and that u2 (t),
u3 (t) and u4 (t) portray the lack of movement in direc-
tions orthogonal to the straight lines. Note furthermore
that u2 (t) and u3 (t) contain information about the
relationships between the components of the output from
an animal, but that u4 (t) contains all the information
of the possible output versus input relationships which
remain invariant with time. Hence, it follows that in
(15) u I (t) can be interpreted as a growth law and u4 (t)
can be interpreted as the main control law.

If the second moment matrixC is of rank one and Ipl <I,
then u I (t) defines the stable subspace of (l), with
u I (t) -+ 0: U as t -+ 00. The subspace associated with ui (t)
(i = 2, 3, 4) is only stable in the sense of Lyapunov
(vide Kwakemaak & Sivan, 1972).

4 4
xI(t)= L bixi(t)/ L bf+ k, (16)

i = 2 i =2
where k is a constant. Control laws associated with
u2 (t) and u3 (t) can be similarly expressed.

Geometrically the situation of a second moment matrix
C of rank one (vide (5) ) can be represented by a straight
line in 4 dimensions:

It is then trivial to show that this straight line is given by
the intersection of the planes associated with u2 (t),
u3 (t) and u4 (t) in (14). It is also obvious that no plane
orthogonal to the vectors associated with u I (t) and
u4 (t) is possible with the coefficient of xI (t) unequal
to zero. The vector associated with ul (t) is determined
by the nonzero root of a second moment matrix like (5).
Hence, once u4 (t) is chosen no other plane is possible
that contains information on the possible input versus
output relationships. Hence, (16) is a unique member of
the set of planes in which (17) is embedded.

Then it follows from (l6) that the total differential can
be expressed

It follows from the uniqueness of (16) that (I8) portrays
the way in which an animal obeys the law of conservation

dy. dYI
of energy, since when _I = bi - , which follows

Yi YI
from (II), is substituted, an identity results.

The growth system (I) can be perturbed by temporarily
withholding food. This will result in dYI = 0 and
dY2 > 0, dY3 ~ 0 and dY4 <0, where the suhscripts have
the meaning given in (13), so that relative values of the
Yi - s will change in (18). Consequently there will oilly
be a change in intercepts in (13) if feeding is resumed
soon enough for the b - s to remain unaltered. The change
in intercepts can be described in terms of the initial
values in (15). This description illustrates how an animal
may react to all sorts of disturbances by way of a new
growth path distinguishable from the old one in terms of
changes in intercepts in (13). For a discussion on experi-
ments on undernutrition from this point of view, Roux
(1976) may be consulted.

In some situations a change to a new diet, for example,
might enforce a change in the b - s before (18) can be
obeyed. In (IS) this will result in a change from y

~ ~ ~2 ~)') '\ 1to Y = c (I + (b2, + (b3 - + (b4,-). say. An

example is from the experiment reported on by Roux &
Kemm (1981), where some increases in sawdust percent-
age in the diets of pigs resulted in changes from p to
p .•..say.



The closed nature of the system developed here follows
from the law of the conservation of energy and the rela-
tive constancy of the partitioning process, as portrayed
by (13), by which energy is allocated to body functions.
A restriction, like (16) or (18), is enough to cause a
zero latent root in a system, and hence to close it.
(Rosen (1970) can be consulted for a discussion of the
systems theory involved). The conclusion in this paper
is. therefore, in fundamental opposition to that of von
Berta1anffy (1953), as formalised by Rosen (1972),
who takes the point of view that growth is an open
system.

If the parameters of (15) would remain unaltered by
experimental treatment, its closed nature would preclude
the principle of the equifinality (vide von Bertalanffy,
1953) of growth. Since, however, the parameters of (13)
and (15) are influenced by diet or fasting, approximate
equifinality of body mass may be achievable without
contradicting the closed nature of growth.

5. ANIMAL GROWTH AS AN OPTIMAL LINEAR
DISCRETE TIME FEEDBACK CONTROL
SYSTEM

On a biological and biochemical level it is still far from
clear in which way the regulation of growth and feed
intake operates (vide Hervey, 1971). According to Bell
(1971) the importance of the role of the hypothalamus
is beyond dispute. Widdowson & McCance (1975) pro-
vide evidence that there is a critical period of develop-
ment in any animal dUring which "the appetite and other
regulating centres in the hypothalamus are- being inte-
grated with the size of the developing organism at that
time. The plane of nutrition until this time, and conse-
quently the size the animal has reached, determine
what its final size will be, even though it may be smaller
than its genetic legacy". The early determination of final
size is in accordance with the importance of the vector
cx in eq. (I) with cx3 and cx4 (from (1),(13» being the
determinants of fmal size.

According to Hervey (1971) the experimental evidence
in favour of feedback in control of feed intake is am-
bigious. This conclusion is in agreement with the theo-
retical result of subsection (i) below, which indicates a
degenerate type of feedback control characterized by
Lyapunov stability. It follows that indications from
theory may be especially valuable and may suggest new
experimental approaches. Hervey distinguishes between
rapid and long time control mechanisms. The use of the
cumulated form for all variables would place the control
mechanisms proposed in this paper in Hervey's long time

category, with the singularity of the matrix B in (2)
reflecting the possible overriding control of growth
by the hypothalamus.

Assume that animal growth can be completely measured
or sensed by the body and that measurement error is
negligible. The type of description given by Kwakemaak
& Sivan (1972, chapters 3 and 6) are then applicable.
Conventionally the discrete time system is denoted by

where P and Q are constant matrices, x (t) describes the
state of the system and u (t - I) is the input. The control
law is described by

from which it follows that the behaviour of the system
(19) is described by the roots of

It is almost trivial to show that (3) can be transcribed to
(19). Retain the notation of (I), (3) and (5), but use the
subscript r (denoting reduced) for the deletion of the
first element in a vector and the first row and column in
a matrix. Hence (3) can be transcribed to

(xr (t) - cxr) = (I r + Br) (x r (t - 1) - cxr) -

cbr(xl (t)-cxl)+ Er(t),

where br = (b2, b3, b4).

Then, if ( I 7) holds, ( 16) gives

4 4
(xl(t)-cxl)= L bi(xi(t)-cxi)/ L br

i =2 i =2

as control law. Substitution of the control law in (20)
then gives

4
xr (t) - cxr = [ Ir + (I + 1/ L bf) Br ] X

i=2



4
with F defmed in (5) and y= c (I + L:

i=2

On applying the same techniques as in the proof of Theo-
rem 5, it follows from Corollary I of Theorem I that the
influence of £r (t) is eliminated from the parts of(21)
associated with the unity roots. Hence with 0 < Y < I
the system (21) is stable in the sense of Lyapunov
(Kwakernaak & Sivan, 1972).

In the proof of Theorem 3 use was made of the fact that
C of rank one implies L'lxi (t) = biL'lxl (t). However, a
C of rank one is also consonant with a unique vector
cr such that

which is a somewhat stronger assumption since it implies
that the points cr i must always be on the corresponding
straight lines. This assumption of a unique predetermined
cr is in contradistinction to shifts in cr explicable in
terms of the Corollary to Theorem 3, or the permanence
of the shifts in intercepts referred to in Section 3. Hence,
it is, perhaps, no surprise that the assumption of (22) as
a unmutable identity would give, in the place of Theorem
I, A (from eq. (1» equivalent to cF. The use of cF r in
the place of Ir + Dr in (20) should, of course, then result
in so-called deadbeat control.

Diurnal variation in growth (Sollberger, 1965) together
with the possibility of growth being "sensed" by the
animal body by means of a sampler (Kwakernaak &
Sivan, 1972, p. 445) operating after the daily growth
increments, would indicate a discrete description of
growth. Since deadbeat control is the most efficient
control mechanism in the discrete situation, it is. perhaps,
deserving of som~. ~ttention beyond that of mere intel·
lectual curiosity.

(iii) Distinguishing between deadbeat control and
Lyapunov stability

In the situation of Lyapunov stability the roots of the
system (20) are 1 . y, I, I, with y defined below (21).
In the deadbeat situation the roots derived from (19)
would be p, 0, 0, with

4
P = c(1 + L:

i =2

From the discussion in Section 3 it is clear that the unity
roots in Theorem 5 give rise to shifts in intercepts in the
linear relationships between the \ (t) . s. This is the sort
of behaviour that Roux (1976) discerned in experiments

on undernutrition. Further evidence comes from the
modification of body composition by the manipula-
tion of feed intake. about which there seems to be
general agreement that body composition can be modi-
fied easily only through the fat component. Hence it
may be possible to choose a desired b4 for fat deposition
in (13) and to feed animals accordingly to a desired fat
percentage at a given body mass. For values of ynear to
ad libitum feed intake. this may be done on the assump-
tion of the constancy of c. b2 and b3, as is shown by an
experiment reported on by Meissner (1977). Here
y~/ y = 0.88 induced a ratio h ~4/ b4 = 0,86. which
is significantly different from unity at the one percent
level. The slopes b2 and b3 for heat production and
protein did not differ significantly and c =, . approxi.
mately. This behaviour is in line with (21) rather than
(23). The evidence is. therefore. at present convincingly
in favour of Lyapunov stability.

Although deadbeat control is extremely efficient it may
lead to excessively large input amplitudes or to un·
desirable transient behaviour (Kwakernaak & Sivan,
1972). In animal growth this probably means that dead·
beat control would make physiologically impossible
demands. Lyapunov stability, on the other hand, means
that the animal may be able to survive until adverse
circumstances improve again.

(iv) The optimality properties of the control system
with Lyapunov stability

From the roots of Ir + Dr in (20) it is clear that (20) is
not stabilisable. Hence the usual theory on the optimality
of linear discrete time-invariant systems is of no avail
under the present circumstances. However, a suggestion
of Rosen (1967), that in a straight line situation the
straight line is the minimum of the arc length between
2 points, is applicable.

denote the arc length for the corresponding time interval
by L'IS (t). A second moment matrix (4) of rank one
implies a straight line in 4 dimensions. so that the idea
of an arc length in 4 dimensions is meaningful in the
present situation. Hence, if there are no shifts in inter-
cepts (see Section 3), Theorem 5 or the system (21)
ensure that

T 4
L: (L'lS(t)f~ = 2: L

t = I i = 1

T
L L'I~x(t)IL'lx(t),

t = I



where the different tenns are as defined in (I5). The
linear form of (25) suggests

T
L: (6S(t)]2

t =2
T
L:

t =2
r

'" L:
t=2

from (5) and (15), as candidate for minimization by the
systems (15) and (21). The deterministic nature indicated
by the rank one situation of the matrix C would ensure
that the minimum of (24) would be reached if there are
no charrges in intercepts of the linear system. In contrast
the presence of an error term in (25) gives the minimum
of (26) as a lower limit of the achievable minimum
induced by (25). Equations (24) and (26) are similar to
the quadratic forms considered for minimization in the
construction of linear optimal control systems. These
minima portray aspects of the law of conservation of
energy and the regular partitioning of energy, as should
be clear from a comparison with the development in
Section 3.

At present enough experimental evidence has accumu·
lated at the AD.S.RJ., Irene to warrant taking the
theory developed here seriously. Some results from 4
experiments will be mentioned in support.

Under the usual circumstances heat production is
obtained by subtraction on the arithmetic scale. To
counter the objection of artificailly creating linear
dependency by subtraction, 3 lambs were permanently
kept in confinement and their heat production measured
in an open system calorimetric unit. Measurements were
taken on alternate weeks, with the other weekly values
obtained by interpolation. Body composition was
obtained by the tritium dilution technique, (Meissner,
1977) which depends on two independent measurements
i.e. tritiated water space and body mass, so that no
artificial linear dependency can be created. Nutrient

The percentage values of the latent roots of the
covariance matrix of the logarithms of cumulative

digestable energy intake, body protein, body fat and
cumulative heat production of Mutton Merino lambs

Sheep
No.

Number of Largest Second Third Smallest
observations root root root root

KI
WI5
W25

99,34
99,12
99,33

0,04
0,15
0,11

0,00
0,00
0,00

0,62
0,73
0,56

uptake before birth was estimated by the method given
by Meissner, Roux & Hofmeyr (1975) -and added to
cumulative feed intake. Since there is a break in some
relationships with the onset of puberty at 13 weeks,
only results of biweekly data from 13 to about 30 weeks
are given. Most of the measurements fell in this period
during which the lambs approximately doubled their
body masses from 25 kg to about 50 kg.

This experiment is described by Meissner (1977), and a
full discussion will be published by Roux, Meissner &
Hofmeyr (1980) in which the biological aspects will be
accentuated. In the present context the principal com-
ponent analysis is important. The results are given in
Table I. In all 3 cases the dominant root is equal to
more than 99% . This implies that more than 99% of the
aggregate variation in the log measurements of cumulative
feed intake, body fat, body protein and cumulative heat
production can be explained by the postulated single
dimensional linear relationship.

The results of experiment I are confirmed by data on
pigs from an ad libitum feed intake experiment of
Kemm (reported by Roux & Kemm, 1981) in which
feed intake was regulated by adding from zero to 32%
sawdust to the experimental diets.

In this experiment nutrient uptake during pregnancy and
before weaning was estimated from data on efficiency
and body composition in the literature, and added to the
first measurement of the metabolisable energy consumed
during the course of the experiment.

Measurements on feed intake, protein and fat, with heat
production obtained by subtraction on the arithmetic
scale resulted in a first root of more than 99% . Kemm's
data are the results of chemical analyses of carcases, so



The percentage values. of the latent roots of the
covariance matrix of the logarithms of cumulative

metaboliseable energy inmke, body protein, body fat
and cumulative heat production of pigs

Treatment
No.

No. of Largest Second Third Smallest
animals root root root" roor

I II 99,5 0,3 0,2 0,0
Z 10 99,4 0,5 0,1 0,0
3 II 99,6 0,3 0,1 0,0
4 II 99,6 0,2 0,2 0,0
5 II 99,3 0,5 0,2 0,0,
6 II 99,4 0,4 0,2 0,0

that each datum represents a different animal. The
spread of the data was adequate, since masses were
available for pigs growing on a regular course from
II weeks at 20 - 27 kg to 31 weeks at 83 - 121 kg,
depending on treatment.

It seems, therefore, reasonable to conclude from Tables
1 and 2 that the ranks of the covariance matrices are
equal to one with the nonzero values on roots 2, 3 and
4 being attributable to measurement error or individual
variation, as the case may be. The mathematical plausi-
bility of this conclusion derives from results by Bellman
(1960, pp. 60 - 63) on matrices with small perturbations
added to them.

With careful experimentation it is often possible to
measure feed intake more accurately than body mass,
which is influenced by intestinal content. To establish
that a first order autoregressive process described growth
adequately, h2 was tested for significance in a model

Xl (t) =g + hI XI (t -1) + h2 XI (t -2) + E (t), (27)

where Xl (t) is In (cumulative feed intake at timet). The
results are given in Table 3 for the pigs slaughtered near
the end of-the experiment."

Experiment 3

The procedure of eq. (27) was also repeated on the
sheep data otherwise discussed by Raux (I 976). The
results are in Tables 4 and 5. The conclusion from Tables
3, 4 and 5 is that a first order autoregressive process
fits the data adequately. One point remains. The question
is if the values of the regression coefficients near one are
not indicative of a root of value one. That the values of
p (0,93 < P < 0~7) are significantly different from
unity in Tables 3 and 4 in Roux (1976) follows from
Table 8.5.2. of Fuller (1976) by the use of the published
standarde-rrors; Sp.

In an experiment on the feeding of baconers Siebrits
(1979) found that pigs fed with a p = 0,94 [defined in
(15) ] grew in body mass with a p = 0,94 on a low pro-
tein (14%) diet and a p =0,92 on a high protein (16%)
diet, in both cases with a standard error of 0,003. The

dJ. Pig No. Treatment No, hi Sh h2 ShI 2

14 311 I 1,094** 0,127 ·0,162 0,114
18 160 I 0,608** 0,225 0,274 0,204
12 112 2 1,048** 0,193 -0,115 0,176
14 314 2 0,435* 0,157 0,418* 0,144
16 312 3 1,056** 0,221 - 0,129 0,201
14 109 3 1,382** 0,274 -0,423 0,253
16 355 4 0,995** 0,243 -0,069 0,224
14 113 4 0,571* 0,259 0,353 0,244-
16 161 5 0,888** 0,249 0,046 0,234
14 310 5 0,661 * 0,243 0,243 0,223
14 315 6 0,958** 0,251 -();047 0,226
16 163 6 0,706* - 0,243 0,191 0,223

* Significant at the 5 % level
** Significant at the I % level



deviant value of p was accompanied by slight curvi-
linearity in the system, as one might expect. The value
of 0,92 for p is in the vicinity of the value of 0,91
found by Roux & Kemm (1981), for a diet with 19
percent protein. The p used for feed intake was,
actually, more extreme than a p = 0,93 obtained
for pigs on ad libitum feed intake, with their feed energy
concentration diluted by 32 percent sawdust. Hence the
high protein diet allowed some reversion in the direction
of faster nonnal growth at lighter body masses.

1. An advantage in experimental design and analysis
is that the usual estimators of ai' bi (i = 2,3,4
and 5, say, for body mass) and xI (0), ex: 1 and p ,
for feed intake, are sufficient statist ics for nonnal
distributions under the usual regularity assump-
tions. Working with sufficient statistics provides a
basis for the use in data analysis of estimates of
parameters for individual animals, instead of the
actual observations. Hence feeds and breeds can be
evaluated in tenns of the parameters describing
growth and its efficiency and rations can be
quantified in relation to ad libitum feed intake,
in tenns of percentages of y = -I np , and the
behaviour of the slopes and intercepts can be
described with reference to this percentage. To
this must be added that the description of growth
in terms of log-linear theory has the advantage
that it provides an easy way of reducing measure-
ment error by the combination of repeated measure-
ments. This is of value in quantifying breeds and
feeds over the whole period of active growth, if
some estimate of prenatal nutrient uptake of the
foetus or pre-experimental feed intake., is available.
Roux (1976) and Meissner (I977) can be con-
sulted for examples.

2. The model can only be expected to hold for the
period of active growth since the log-linear system
corresponds to the way in which a young animal is
scaled to maturity. This involves ideas on biological
similarity (vide Gunther, 1975) which are based on
the mechanical similarity of Newton and the
dimensional analysis of Maxwell. That the model
does not hold at maturity is indicated by theorems
(4) and (5), where cumulative feed intake goes to
ex: 1 as t -+ 00, which indicates an intake rate of zero
at that point.

3. To the best of knowledge this is at present the
only theory which suggests definite error structures
to observations on which appropriate statistical
analyses can be based. In the other cases an error is
merely tagged on, as is convenient. For further
discussion, see Roux ( 1976).

Regression coefficients and their standard errors
for Mutton Merino ewe lambs

Sheep hi Sh h2 Sh
No. I 2

05 1,030** 0,263 ·0,091 0,245
06 1,050** 0,260 -0,102 0,244
016 0,429 0,242 0,459 0,224
017 1,029** 0,261 -0,088 0,244
018 1,002** 0,244 -0,059 0,230
019 1,198** 0,248 - 0,248 0,231
023 0,997** 0,195 -0,666 0,182
025 0,299 0,200 0,589** 0,186
029 1,283** 0,239 - 0,321 0,226
030 0,877** 0,253 0,067 0,239

* Significant at the 5 % level
** Significant at the-l % level

4. The transformation to straight lines has the
advantage that any sort of deviation or change in
growth is easily discernable. In this way different
growth phases, such as for example, a phase from
birth to the onset of puberty, and from the onset
of puberty to maturity, have been identified in
different species, vide Roux (1976), Meissner
(1977) and Scholtz (I979). In each situation the
growth phase coincided with some definite identi-
fiable physiological phase such as, say, the develop-
ment to sexual maturity.

Regression coefficients and their standard errors
for Karakul lambs

Sheep hi Sh h2 Sh
No. I 2

K2 0,918** 0,233 0,037 0,223
K3 1,156** 0,255 - 0,188 0,245
K4 0,867** 0,239 0,082 0,230
K5 0,734** 0,259 0,224 0,251
K6 1,123** 0,256 -0,149 0,248
K13 0,885** 0,256 0,063 0,244
K14 0,793** 0,241 0,136 0,227
KI7 0,842** 0,233 0,105 0,223
K18 0,617** 0,244 0,298 0,229
K26 0,725** 0,262 0,203 0,246

* Significant at the 5 % level
** Significant at the 1% level



developed in mutual consultation. Dr. H.S. Hofmeyr
introduced me to the topic and the biological and
physical implications of many concepts were clarified in
discussions with him. I am grateful to Mrs. E. van der
Westhuizen for most of the computation.

My sincere thanks are due to Drs. H.S. Hofmeyr, HR.
Meissner and E R. Kemm for their cooperation in
experimentation and the intellectual stimulation which
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