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DIE ALLOMETRIESE-OUTOREGRESSIEWE MODEL IN GENETIESE STUDIES: OORERFLIKHEDE

EN KORRELASIES BY DIE ROT

Die a1lometriese-outoregressiewe kwantifisering van groei en doeltreffendheid verdeel rotgroei in 3 verskillende fisiologiese fases. Be-
tekenisvoUe verskille tussen families vir sommige van hierdie parameters kom voor. Die oorerflikhede, en fenotipiese en genetiese kor-
relasies is gevolglik vir die verskillende parameters beraam. Sommige van die parameters toon betekenisvolle oorerflikhede terwyl ander
oorerflikhede van nul toon. Die verskilJende korrelasies tussen die parameters wissel van sterk negatief of positief tot korrelasies van
feitlik nul. Hoewel die aantalle waarop hierdie beramings gebaseer is, relatief klein is, is die verkree beramings biologies sinvoL Selfs as
slegs die onderste grense van die betroubaarheidsintervalle van die betekenisvolle oorerflikheidsberamings geneem word. word redelik hoe
oorerflikhede verkry. Die beramings van oorerflikhede van sommige parameters wat na aan nul was, word in die lig van moontlike ho-
meostatiese effekte verklaar, terwyl die betekenis van die ander beramings ook bespreek word.

The allometric-autoregressive quantification of growth and efticiency divides rat growth into 3 different physiological phases. Significant
differences between families for some of these parameters existed. Consequently, heritabilities and, phenotypic and genetic correlations
of the different parameters were estimated. Significant heritabilities were found for some of the parameters, while the heritabilities for
others were close to zero. The correlations between the parameters varied from highly positive or negative to correlations of practically
zero. AltilOugh based on few animals, the heritability estimates appear to be reasonably acceptable, both statistically and in their bio-
logical context. The heritability estimates which approach zero for some parameters are discussed in the light of possible homeostatic
effects and the implications of the different estimates are evaluated.

The application of an allometric-autoregressive model in
the quantification of growth and efficiency of feed uti-
lization for purposes of selection for efficiency and
growth has been discussed by Scholtz & Roux (1980).
This model is based mainly on the following 2 equa-
tions.

(2) The equation for cumulative feed intake is (Roux,
1976; 1980):

(x(t) - ex:x) = p(x(t -- 1) - ex:x) + E:(t)
or (2)

t - I
X(t)=(ex:x~x(O»pt+ L: pjE:(t-j),

j =0
( I ) The well known allometric function to describe

efficiency namely: x(t) = In (cumulative feed intake)
at time t,

x(O) = In (cumulative feed intake)
at time O.

where w = body mass and v = cumulative feed in-
take (Roux, 1976). Slope (b) and intercept (In a)
can thus be estimated by linear least squares pro-
cedures.

Part of MSc (Agric) thesis of the senior author sub-
mitted to the University of the Orange Free State.



Scholtz & Roux (1980) reported in a previous publica-
tion that rat growth and efficiency can be divided into
3 different growth phases by this model, each of which
can be described by a straight line in terms of slope and
intercept. These different growth phases are associated
with the physiological processes of the rat.

Significant differences between families for both slope
and intercept in the first 2 phases and for x (0) in all 3
phases were reported by Scholtz & Roux (1980). These
significant differences between families are an indication
that the allometric-autoregressive quantification of
growth and efficiency of feed utilization may be of
value in the selection of animals for efficiency of feed
utilization, or in changing the growth curves of animals.
Genetic parameters such as heritabilities and correla-
tions are therefore reported in this publication.

The numbers on which these heritabilities and correla-
tions were based are in some instances too small to ob-
tain accurate estimates. Preliminary indications of what
to expect may, however, serve an important purpose in
suggesting further topics for research and methods to
be used in such investigations. Several suggestions are
made in the Discussion.

Ninety rats, from the outbred Wistar line, consisting of
10 families with 8 to 10 rats each, were used in the ex-
periment. Litter size was standarized and the animals
were maintained in standard cages under conventional
conditions and controlled environmental conditions. The
details have been reported by Scholtz & Roux (1980).

Details of data collection and procedures followed to
estimate the different parameters have been described
by Scholtz & Roux (I980).

In this experiment a male was mated to only one female,
so that all families consisted of full sibs (FS) only. The
heritability (h2) can thus be estimated by the foIlowing
equation (Falconer, 1964):

2a~

at
where tFS is the intraclass correlation, a ~ is the be.

tween family variance, and a t is the total variance.

Values of a ~ and at,where at = a~ +a<v, and

where a <v is the within family variance, are there-

Table 1
Expected values of Mean SqUQres in a two-factor

experiment

Mean Squares Mixed model, A fixed, B random

A a<v 2 + k n a2
+ k aAB A

B a<v + ks a2
B

AB a2 + k alBW

error a<v

where s is the number of sexes, n is the number of families, k
is the number of individuals per family, A is sexes and B is
families.

fore reqUired for estimation of h2. For estimation
purposes a mixed model was used with sexes as the
fixed variable and families and progeny within families
as the random variable. Table I shows the expected values
of the mean squares (MS) in a two-way analysis of varia nee
(Snedecor & Cochran, 1967). a ~ can be calculated
from the mean squares for B in Table I,

2 MS - MS
a B = _--.!3 ~

ks

where a <v = MSE which is directly available from the
analysis of variance table. According to Snedecor &
Cochran (1967) varying family sizes can be accommo-
crated by

ILk ~
k = ---(N I) ,

(n - I) N
where N is the total number of animals, and ki is family
size of the i - th family.

The confidence intervals of tFs were calculated accor-
ding to Graybill (1961), Turner & Young (1969), and
~l'ark (1971) as foIlows:

P { [ MSerror kF I -- a: /2

MSB + MSerror (k-l) F I - a: /2

a<v

MSerr~r kF a: /2

MSB + MSerror (k - 1) F a: /2



where, F 1 _ ex: /2 and F ex: / 2 are the lower and upper
limits corresponding to a confidence level of (1 -- ex: )

for an F distribution. Bearing in mind-that h2 = 2t,
the confidence interval for h 2 from Turne:r & Young
(1969) is,

netic (rG) and environmental (rE) were calculated be·
tween the different parameters by the methods given by
Becker (1967). The standard errors of the correlations
were calculated according to Scheinberg (1966).

where C I and C2 are the upper and lower limits of the
interval respectively.

The average values and standard deviations of the dif·
ferent parameters were as described by Scholtz & Roux
(1980). The values of 0 ~ and 0 t for all the parame·
ters were calculated from the analyses of variance tables
and are given in Table 2 for purposes of possible future
experimental design.

?A 1n a b p ex: ex: X (0)
os X Y.c::c..

1. 4,508 x 10 -3 1,190 x 10-4 7,000 x 10 -4 7,760 x 10 -4- 9,682 x 10-4 1,800 x 10-3

02 2. 7,806 x 10-3 2,050 x 10-4 3,010 x 10 -6 3,691 x 10-4 -2,480 x 10 -4 5,869 x 10-4B

3. -4,730 x 10 -4 -7,800 x 10 -5 -1,000 x 10-5 -9,595 x 10-3 4,438 x 10-4 1,126 x 10-3

1. 1.918 x 10-2 7,550 x 10 -4 1,657 x 10 -4 5,326 x 10 -2 1,973 x 10-2 7,292 x 10-3

02 2. 4,136 x 10-2 I,lll x 10-3 6,600 x 10 -5 1,032 x 10-1 2,989 x 10 -2 3,118 x 10-3T

3. 3,056 x 10-1 6.313 x 10-3 3,350 x 10 -3 8,444 x 10 -1 2,746 x 10-1 3,285 x 10-3



--~-~------

rp rG rE
---------~

3} b} -- 0,97 ± 0,21 - 0,96 ± 0,42 0,99 ± 0,26

32 b2 - 0,95 ± 0,21 - 0,96 ± 0,43 0,94 ± 0,20



The different heritabilities were estimated using equa-
tion 3. Confidence intervals for some of the heritabili-
ties were calculated to illustrate the accuracy of the he-
ritability estimates for the different magnitudes (Table
3).

The different correlations, rp. rC and rE within and
between In a and b within and between phases I and 2,
where significant differences between families exist,
were estimated, and the standard deviations calculated
(Table 4).

The phenotypic and genetic correlations between all the
parameters involved (In a, b, p , 0: x, 0: y and x (0) )
within and between all the growth phases were estimated
and are represented in Table 5. The 95% confidence
intervals for some of the phenotypic correlations were
estimated from the graphs of Beyer (1968), to illustrate
the confidence intervals which can be expected from the
numbers involved and for the range of correlation co-
efficients recorded. The phenotypic correlations are
given above the diagonal and the genetic correlations be-
low the diagonal in Table 5.

The significant heritabilities of In a and b in phases I
and 2 (Table 3) indicate that progress in selection can
be expected for either of the 2 parameters. All these
heritabilities are between 0,3 and 0,5. The heritability
estimates of In a and b obtained for the third phase are
unrealistic. The numbers on which the estimates are
based are too small to provide accurate estimates. As
judged by the lower limits of the interval, it would ap-
pear that the estimates in phases I and 2 indicate herit-
abilities of considerable magnitude, although the confi-
dence intervals are rather wide.

The magnitude of these heritability estimates is in agree-
ment with the heritability estimates of the conventional-
ly accepted description of efficiency. Johannson &
Rendel (1969) quote heritability estimates for efficien-
cy of 0,26 .. 0,60 for pigs, 0,36 ~ 0,42 for cattle and of
approximately 0,29 for sheep.

It appears that the allometric part of this allometric-
autoregressive model may be of value in selection for
efficiency, as both In a and b are directly proportional
to growth efficiency, where growth efficiency can be de-

w b-I dw b-l
fined as either = av or = abv . Since the

dv

allometric parameters show significant heritabilities, it is
possible to use this model to change the entire efficiency

curve of animals in a predictable manner. This would
appear to be of value as opposed to the conventional ap-
proach with its focus on specific growth intervals.

It is of interest to note that the parameters p and
0: x apparently have heritabilities of close to zero (Table
3). If this is the true situation, it would appear that these
values tend to be fixed for certain environments, what-
ever the genetic constitution of a rat from a particular
strain. This is analogous to the way in which, say, a four-
chambered heart is a fixed feature of a rat. Thus, herit-
abilities of zero may be evolutionary in origin with fac-
tors involved such as canalization, adaptive norms and
stabilizing selection. Fu~ther details of these factors have
been described by Dobzhansky (1970). Balch & Reid
(1976) maintain that feed intake, and therefore also
growth rate, are part of the natural mechanisms which
control homeostatis in the animal body. The inherent ca-
pacities for growth must, therefore, be kept within cer-
tain fixed limits to maintain homeostasis (Balch, 1973).
According to this author the importance of feed intake
as an active controlling agent in the maintenance of
homeostasis is also reflected in the fact that certain areas
of the hypothalamus appear to have as their prime func-
tion the co-ordination of intake behaviour. Balch & Reid
(1976) believe that deviations from the homeostatic
limits may result in metabolic disorders and even death.
Accordingly, if this argument is valid, one would expect
the parameters p and 0: x' which quantify feed intake,
to be canalized.

The heritability estimates for limit mass, O:y, is non-
significant in the first 2 phases, while it is high (0,69) in
the third phase (Table 3). A limit value for body mass in
the first 2 phases is not of direct practical importance,
since the animals switch to a different phase before the
limit is reached. A limit value for body mass in the third
phase is, however, directly meaningful, since in this
phase 0: y is a measure of the mature mass that the ani-
mal may reach. Mature mass is highly heritable and
Johannson & Rendel (1968) found the heritability to be
0,40 for sheep and cattle.

On ignoring the error terms in equation 2, the following
equation for growth rate can be derived:

dw 0: w
-=ywln (---)
dt w (0)

where y (0) is body mass at time t = 0, and y = - In p
From the equation it is therefore evident that the para-

meters by which growth rate (dw) can be altered are
dt



y and a: w' However, y (= - In p ) has a heritability
of zero, so that only a: w (mature size) with a sizeable
heritability remains. ThIs is in agreement with Eisen's
(1976) remark that the parameters analogous to y,
which are proportional to growth rate, of some of the
growth functions most widely used in the past have
estimated heritabilities of approximately zero. Further-
more, all the equations of these functions include ma-
ture or final mass (Eisen, Lang & Legates, 1969), for
which Johannson & Rendel (1968) give heritability
estimates ranging from 0,4 to 0,8. This conclusion is in
agreement with the. observation of Webster (1980) that
differences in growth rate in cattle are mainly due to dif-
ferences in size.

The heritability estimates for x (0) (cumulative feed in-
take at the beginning of a phase) is significant in all 3
phases. This is expected, as the amount of feed con-
sumed up to a particular age should be heritable since it
is related to body mass at that point.

Very high negative correlations (approximately -0,96,
for rp, rG and rE) exist between In a and b of the same
phase (Table 4). The standard errors of rp and rE are
reasonably small, in all cases less than a quarter of the
correlation. The standard error of rG' however, is rela-
tively large. The high negative correlations between In
a and b of the same phase are not present between In a
and b of different phases. These high negative correla-
tions between In a and b of the same phase lead to prac-
tical problems, since both are directly proportional to
growth efficiency, where growth efficiency can be de-

w b-l· dw b-l
fmed as either-.- = av or - = abv . Hence the

v dv
negative correlations indicate that efficiency at any
point is a compromise between the benefits of a large a
and a large b, with a large a probably important for effi-
ciency early in a phase and b important in the long term
(Roux, 1980). It thus appears that selection for efficien-
cy at a certain age will probably result in an optimal
combination of a and b. A case in point is the compari-
son of Meissner (1977) between Karakuls and Mutton
Merinos. Meissner (1977) found that Mutton Merinos
had a larger a and a lower b than Karakuls on a concen-
trate diet. It is likely" that the Mutton Merino was in-
directly selected for efficiency as a correlated response
to selection for growth rate at an early age, since accord-
ing to Johannson & Rendel (1968) growth rate and
efficiency of feed utilization are positively related.

The high negative correlation between In a and b of
the same phase is probably due to geometric as well as
genetic causes. The geometric effect is illustrated by

y(O) •••••••••••••••••

---;:"~~",,, !
i

.(0)

Fig. 1. The equation for a straight line through the point
x (0) , y (0) is

In a = y(O) - bx(O)
where y(O) and x(O) are respectively In (body mass)
and In (cumulative feed intake) at the starting point,
t = O. It is clear from Fig. I that if b increases a will de-
crease. if y(O) and x(O) are kept constant. It thus ap-
pears that the mathematics of the model may be a con-
tributing cause of the extremely high negative correla-
tions between In a and b of the same phase. It seems
that, in this situation, the only suitable manner to dif-
ferentiate between geometric and genetic causes would
be to conduct a selection experiment.

The phenotypic correlation of all parameters between
phases are low, being less than I 0,2 I (Table 4). This
indicates that an animal (rat) with a good performance
as measured by slope or intercept in one phase, does not
necessarily have a good performance in another phase. It
may, therefore, be of importance to take possible
growth phases in to consideration in performance test·
ing, since the performance of an animal in one phase
may be a poor indication of its performance in another
phase. These phenotypic correlations correspond with
estimates of Meissner (1977) on sheep. It is, however, in-
teresting that the genetic correlation of the same para-
meter between different phases is relatively high, greater
than 0,65 (Table 4).

The phenotypic correlations between the parameters of
the time relationship, p , a: X and a: y (Table 5) within



Table 5

The phenotypic and genetic correlations of the parameters of the allometric-autoregressive model in all the growth phases

----- ~--- ---------~--~~--------- ----_._---------------------

al bl PI 0: 0: x1(O) a2 b2 P2 0: 0: x2(O) a3 b3 P3 0: 0: x3(O)X[ YI X2 Y2 '3 Y3
-_ .._-------~-----"------_. __ ._-------~~~--_._-~-------- ---------- . ----------~-- - -----_._---------

al - 0,97" - 0,05 - 0,Q2 - 0,16 0,06 0,20 - 0,18 - 0,08 0,08 0,00 0,08 0,31'- 0,33** 0,00 0,09 - 0,05 0,05
bl - 0,96 0,08 0,07 0,28'- 0,02 0,05 0,06 0,05 - 0,10 0,01 0,09 0,30" 0,30-' 0,01 0,08 0,Q7 0,08

0,10--0,46
PI - 0,02 0,Q3 0,92" 0,81 ,- 0,13 0,11 0,11 0,13 0,06 0,01 0,05 0,05 0,05 0,00 0,16 0,17 0,11
0: 0,14 - 0,01 0,88 0,94" 0,15 0,1,0 0,11 0,07 0,04 0,01 0,01 0,00 0,oJ 0,Q3 0,15 - 0,14 0,05x[

0,91-0,97
0: 0,23 0,01 0,55 0,89 0,21- 0,23' 0,19 0,06 0,00 - 0,01 0,23' 0,01 - 0,54-' 0,03 - 0,05 - 0,10 0,21 'Y[

0,04-0,42
x1(O) 0,79 - 0,67 0,66 0,90 0,87 0,23- 0,19 0,05 0,05 0,01 0,17 0,18 0,14 0,Q2 0,03 0,04 0,48**

-----_.---

a[ 0,67 - 0,67 - 0,42 - 0,65 - 0,05 1,13 - 0,95" 0,27-- - 0,15 0,30'- 0,46-' 0,13 0,14 0,06 0,12 - 0,10 0,24-
0,93-0,97

--J bl - 0,67 0,65 0,55 1,04 0,41 - 0,87 0,96 0,34'- 0,20 0,39' - 0,34'- 0,17 0,17 0,08 0,13 0,13 - 0,16
Vo Pi - 0,34 0,32 \,53 2,01 0,91 0,12 0,90 0,93 0,82" 0,74" 0,17 0,16 0,13 0,31 " 0,08 0,12 - 0,14

0,61-0,81
0: - 0,82 0,42 3,58 5,01 0,53 0,00 0,94 0,46 0,27 0,71 ,- 0,22 0,Q3 0,05 0,32-- 0,19 0,33-' 0-01

x2
0,60-0,80

0: 0,49 0,51 \,51 3,61 0,72 0,00 - 0,60 0,77 - 0,05 0,87 0,10 - 0,04 0,08 0,28-' - 0,16 - 0,13 0,07
Xfh) 0,55 0,31 - 0,17 - 0,13 - 0,56 - 0,81 - 0,67 0,44 0,08 0,00 0,00 - 0,18 0,14 0,14 - 0,20 - 0,25' - 0,27'-

------ ..-

a3 0,01 0,81 - \,00 - 3,10 - 0,83 0,00 - 0,12 - 0,93 - 0,57 0,74 - 4,33 0,00 - 0,99** - 0,30-' 0,48" 0,36'- 0,08
0,33-0,62

b[ 0,11 - 0,06 - 0,07 0,17 0,21 0,00 - 0,Q4 0,09 0,17 - 0,10 0,32 0,00 - 0,84 0,03 - 0,55'- - 0,37'* - 0,02
P3 - 0,39 0,16 - 0,48 - 1,36 0,03 0,00 0,13 0,22 0,18 2,39 0,72 0,00 0,82 0,31 - 0,12 - 0,18 0,24-
0:

0,00 - 0,32 0,12 0,07 - 0,61 0,18x3 0,00 - 0,17 - 0,05 - 0,Q1 0,58 0,27 0,00 0,54 0,11 0,11 0,95'-
0,93-0,97

0: 0,05 1,03 - 0,61 - 0,11 0,37 0,00 0,81 0,10 - 0,22 - 3,99 0,47 0,00 - 0,42 0,87 - 0,35 0,91 0,23Y[
x3(O) 0,62 - 0,47 0,23 0,90 0,75 0,92 0,oJ - 0,64 - 0,24 0,00 0,00 0,55 0,00 0,00 0,00 0,00 0,00

---~--

Phenotypic correlation - above the diagonal, genetic correlation - below the diagonal.
Subscript indicates phase_



the first two phases are high (0,71 - 0,94). This is also
true for most of the genetic correlations. This confirms
the belief that these parameters are functionally inter-
related. The high phenotypic and genetic correlations
between the time relationship parameters for feed in-
take (ex: x) and body mass (ex: y) within ~ll 3 phases
(rp = 0,71. - 0,95 and rG = 0,87- 0,91) IS expected,
since mass (output) is dependent on intake (input) with-
in a physiological· phase (Table 5). There is, however, no
significant correlation between corresponding time re-
lationship parame'ters in the different physiological
phases, except between P 2 and P 3 where the pheno-
typic correlation is 0,31. This is in agreement with the
previous conclusion that the rating of a rat in one phase
is a poor indication of its rating in another phase.

It seems that the model which has been described may
be useful in understanding some of the consequences of
selection for growth and efficiency, since the effect of

such selection can be studied on parameters which can
be biologically interpreted. Evidence for the association
between the parameters of the model and the physiolo-
gical processes of animals follows from the observation
that the homeostatic mechanisms and limits seem to
correspond with the values of the estimates of the herit-
abilities and genetic correlations of the parameters.

A selection experiment is presently being conducted to
investigate the nature of the relationship between slope
and intercept. In an additional group, with selection for
a high y (see equation 4) an immediate reduction in fit-
ness characters, such as litter size and survival to wean-
ing, occured as a correlated response. This strongly in-
dicates antagonism between natural and artificial selec-
tion through the agency of embryonic deaths or low
fertility of individuals with extreme values of y.
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