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Abstract

This study ascertained the influence of liquid passage rates on solid digesta passage rates and the
possibilities of simultaneous prediction of solid and liquid passage rates in ruminants. Artificial neural
networks were used to develop models of solid and solid-plus-liquid passage rates. Studies that reported
fractional passage rates, class and body mass of ruminants were included in the dataset. Animal and feed
factors that affect the rate of passage were identified. The database had observations of domestic and wild
ruminants of variable body mass from 74 (solid using predicted liquid passage rate) and 31 (solid using
observed liquid passage rate) studies. Observations were randomly divided into two data subsets: 75% for
training and 25% for validation. Developed models accounted for 76% and 77% of the variation in prediction
of solid passage rates using predicted and observed liquid passage rate as inputs, respectively.
Simultaneous prediction accounted for 83% and 89% of the variation of solid and liquid passage rates,
respectively. On validation using an independent dataset, these models attained 45% (solid using predicted
liquid), 66% (solid using observed liquid), 50% (solid predicted with liquid) and 69% (liquid predicted with
solid) of precision in predicting passage rates. Simultaneous prediction of solid and liquid passage rate
yielded better predictions compared with independent predictions of solid passage rate. Simultaneous
prediction of solid and liquid passage rates accounted for more variation compared with independent
predictions of solid rates. Inclusion of liquid passage rate as an input variable gave better predictions of solid
passage rates.
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Introduction

Solid and liquid digesta in the rumen are intermingled. Solid digesta is suspended in the fluid phase,
with products of fermentation present in solution. Passage of fluid greatly influences the amount of by-pass
protein of dietary origin (Fox et al., 2004) and the amount of microbial protein available to the host as a
protein source (Dijkstra et al., 2007). There is a possibility that the rate of passage of liquid in the rumen may
influence the rate of movement of solid digesta out of the rumen. The role of liquid passage rates in
influencing the passage of particulate matter is still not well understood. Previous works of Ellis et al. (1982),
Faichney & White (1988), and Faichney et al. (1989) demonstrated that small particles and microbial matter
move along the digestive tract at a rate close to that of water and solutes. Aharoni et al. (1999) also used this
concept. However, passage rate modelling exercises have developed models that are used to predict solid
and liquid passage rates separately, although these processes may be mutually inclusive (Faichney, 1980).
Given that the two phases are intermingled, current studies need to consider predicting both solid and liquid
passage rates using interacting phases. Simultaneous prediction of solid and liquid passage rates is possible
using feed compositions, animal factors, and environmental and management conditions.
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It is still unclear why few studies, if any, have failed to exploit the effects of liquid passage rate in
predicting the rate of particulate passage in the rumen. This study ascertained the influence of liquid
passage rates on solid digesta passage rates in ruminants. The objectives of this study were i) to develop
solid passage rate prediction model(s) using liquid passage rate as one of the input variables; and ii) to
develop a single model that simultaneously predicts solid and liquid passage rates. The study tested the
hypothesis that inclusion of the liquid passage rate improves the precision and accuracy of predicting solid
passage rate.

Materials and Methods

Data were collected from studies that reported at least average values or ranges for bodyweights of
animals, and measured fractional passage rates and/or mean retention times in the reticulo-rumen. A
dataset was created bearing passage rates from wild and domesticated ruminants. Factors that affect
passage rates were identified in each of these studies and included animal and feed factors. Quantification
of factors that affected passage rates are fully described in Moyo et al. (2017). Most studies that reported
solid passage rates did not measure fluid passage rates, and vice versa. Therefore, two datasets were
collated: one for solid passage rate, which did not report liquid passage rates; and another for solid passage
rates with observed liquid passage rates. Input variables in studies that reported the solid passage rate alone
were entered into the liquid passage prediction model by Moyo et al. (2017) to estimate probable (predicted)
liquid passage rates. After prediction of liquid passage rates, two final datasets for solid passage rate with
observed and predicted liquid passage rates were created. These two datasets were used to develop solid
passage rate prediction models that included the predicted (model 1) and observed (model 2) liquid passage
rates as input variables. A third model (model 3) used data that reported both solid and liquid passage rates.
Although the publications that were collected to create these datasets might not include all published
literature, studies used to build these datasets were readily available to authors and sourced as in Moyo
et al. (2017).

In the present work, artificial neural network models were programmed on the 32-bit Visual Basic Ver
6.0 to develop three process models to predict solid passage rates using predicted liquid passage rate as an
input (model 1) to predict solid passage rates using observed liquid passage rate as an input (model 2), and
simultaneously to predict both liquid and solid passage rates (model 3). Datasets included data from studies
that reported solid passage rates alone with liquid passage rates predicted using models of Moyo et al.
(2017) (models 1), that reported both solid and liquid passage rates (model 2), and that reported solid
passage rates alone (model 3). These models were developed using three separate datasets. Each dataset
was divided into two subsets of 75% data for model training and the remaining 25% for model validation.
Since different variables span wide ranges, normalization (within the interval (-1, 1)) of input and output data
was done.

For modelling, a three layer Levenberg—Marquardt BP neural network was adopted, which generally
includes one input layer, one hidden layer and one output layer. The network topologies consisted of
24-13-1, 24-13-1 and 24-13-2, which corresponded to the numbers of neurons of input, hidden and output
layers for model 1, model 2 and model 3, respectively. Training was carried out using back-propagation
algorithm. These models were trained for 2700 (model 1), 2300 (model 2) and 3000 (model 3) epochs at
learning rate of 0.05, and momentum of 0.8. The net errors were reduced to 0.018 (model 1), 0.015 (model
2) and 0.013 (model 3) on training data.

The correlation procedure of SAS 9.3 software (SAS Institute Inc., Cary, NC, USA) was used to
establish the Pearson correlation coefficients of any two input variables, as reported in Moyo et al. (2017).
For all evaluations, regression analyses of observed against predicted passage rates, residuals against
observed passage rate, and residuals against predicted passage rates were carried out using the linear
regression procedure. Coefficients of determination were used to evaluate the precision of regression lines in
approximating real data points of models. Root mean square error (RMSE) was used to determine the
accuracy of these models. To evaluate the linear and mean biases in model predictions, the residuals
(observed minus predicted passage rates) were regressed against predicted passage rates. The intercept
and slopes of these regression lines were tested against 0 to determine any linear or mean bias St-Pierre
(2003). Residual plots against observed passage rates were used to determine how close predictions were
from real data. Process models developed in this study have been deposited in the Repository of Intelligent
Models (REDIM) with accession numbers PRQGO001771, PRSQ001583 and PRNG000922 for model 1,
model 2 and model 3, respectively (http://www.redim.org.za/?search=PRQG001771,
http://www.redim.org.za/?search=PRSQ001583).
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Results

Numbers of observations in these datasets were unevenly distributed among ruminant feeding types
for solid prediction using observed liquid passage rate and for simultaneous predictions of solid and liquid
passage rates (70% were grazers, 19% were browsers and 11% were intermediate feeders), and predicted
liquid passage rate (72% were grazers, 8% were browsers and 20% were intermediate feeders). In
predicting the solid passage rate using the observed liquid passage rate as an input variable, 16
observations were on pregnant and lactating animals (4 pregnant cattle, 4 lactating cattle, 4 lactating sheep
and 4 pregnant sheep). Only four (4) observations on pregnant and lactating (4 pregnant sheep) were used
for validation. All other classes of ruminants were neither lactating nor pregnant. In predicting solid passage
rates in which input included predicted liquid passage rate, 113 observations were on pregnant and lactating
animals (6 pregnant cattle, 92 lactating cattle, 4 lactating sheep, 7 pregnant sheep and 4 lactating ibex).
Twenty-three (23) observations on pregnant and lactating animals (2 pregnant cattle, 16 lactating cattle, 4
lactating ibex and 1 pregnant sheep) were used for validation. All other classes of ruminants were neither
lactating nor pregnant.

In predicting both solid and liquid passage rate, 14 observations were on pregnant and lactating
animals (3 pregnant cattle, 2 lactating cattle, 2 lactating sheep and 7 pregnant sheep). Six (6) observations
on pregnant and lactating animals (1 preghant cow, 2 lactating cattle, 1 pregnant sheep and 2 lactating
sheep) were used for validation. All other classes of ruminants were neither lactating nor pregnant. Tables 1,
2 and 3 give the animal and diet compositional attributes used in model development.

The regression relationship between the observed (Y) and predicted (X) solid passage rates (per h)
was Y = 0.0008 (£ 0.00148) + 0.921 (+ 0.03786) X (n = 175, RMSE = 0.00704), accounting for 77% of the
variation in prediction. The intercept was not different from 0 (P = 0.5697), but the slope was less than 1
(P = 0.039) (Figure 1a). A plot of residuals (predicted-observed solid passage rates) against predicted solid
passage rate followed the pattern (Figure 1b) in this equation: Y = 0.0008 (+ 0.00148) — 0.079 (x 0.0379) X
(R2 = 0.024; RMSE = 0.00704). The intercept of the residual plot was not different (P = 0.5697) from zero,
but the slope was different (P = 0.0391) from zero, showing that the model had no mean bias, but had a
linear bias. With the exception of two outliers (sheep), it can be observed from the plot that residuals did not
form a defined pattern on the horizontal axis. A plot of residual solid passage rate against observed solid
passage rate was used to assess the goodness of predictions (Figure 1c). It can be observed from the plot
that residual solid passage rate increased with increasing solid passage rates. Using validation data, the
regression relationship between the observed (Y) and predicted (X) solid passage rates (per h) was
Y = -0.0028 (+ 0.00368) + 1.062 (+ 0.1013) X (n = 58, RMSE = 0.010), which accounted for 66% of the
variation in unseen data. The intercept and slope were not significantly different from 0 (P = 0.449) and unity
(P = 0.543), respectively (Figure 1d).

The regression relationship between the observed (Y) and predicted (X) solid passage rate (per h)
was Y = -0.0006 (x 0.00103) + 1.079 (x 0.02929) X (n = 424, RMSE = 0.009), which accounted for 76% of
the variation in prediction. The intercept was not different from zero (P = 0.5453), but the slope was different
from 1 (P = 0.007) (Figure 2a). A plot of residual solid passage rate against predicted solid passage rate
assessing the mean bias (intercept) and linear bias (slope) (Figure 2b) gave the equation Y = -0.0006
(= 0.00103) + 0.079 (x 0.0293) X (R2 = 0.0169; RMSE = 0.00902). The intercept of this equation was not
different from zero (P = 0.5453), but the slope was different from zero (P = 0.0073), showing that the model
had no mean bias, but had a linear bias. It can be observed from the plot that residuals did not form a
defined pattern on the horizontal axis. A plot of residual solid passage rate against observed solid passage
rate assessing the goodness of the prediction (Figure 2c) showed that the residual solid passage rate
increased with increasing solid passage rates. The regression relationship between the observed (Y) and
predicted (X) liquid passage rates (per h) was Y = 0.00797 (= 0.00241) + 0.7566 (+ 0.070) X (n = 142,
RMSE = 0.0123), accounting for only 45% of the variation in unseen data. The intercept and slope were
significantly different from zero (P = 0.0012) and unity (P = 0.001), respectively (Figure 2d).



761
Moyo et al., 2018. S. Afr. J. Anim. Sci. vol. 48

Table 1 Species and feeding attributes of animals used in training to predict and validate solid passage rates

Solid using observed liquid passage rate Solid using predicted liquid passage rate

Solid passage Liquid passage Solid passage Liquid passage

Species Prediction Validation rate (per h) rate (per h) Prediction Validation rate (per h) rate (per h)
Mass (kg) 14 12 15 14
1.5-1238 1.5-1238 1.5-1238 1.5-1238
Grazers 121 41 312 98
Cattle 47 18 0.031 £ 0.015 0.078 £ 0.031 208 56 0.031 £ 0.020 0.098 + 0.052
Sheep 57 21 0.035+0.014 0.077 £ 0.025 89 36 0.036 + 0.015 0.072 £ 0.022
Buffaloes 0 0.024 + 0.000 0.048 £ 0.030 2 0 0.024 £ 0.000 0.059 + 0.010
Antelopes 0 0.024 £ 0.004 0.056 + 0.018 4 4 0.024 £ 0.004 0.033 £ 0.001
Muskoxen 2 0.037 + 0.033 0.057 £ 0.037 9 2 0.032 +0.031 0.043 +0.017
Browsers 34 10 33 15
Moose 6 3 0.022 £ 0.007 0.028 £+ 0.008 6 6 0.022 £ 0.006 0.030 £ 0.000
Okapi 13 3 0.045 £ 0.010 0.062 £ 0.014 14 2 0.045 £ 0.010 0.054 + 0.009
Dik-dik 7 3 0.040 £ 0.016 0.076 £ 0.014 7 3 0.040 £ 0.016 0.043 £ 0.000
Duikers 4 1 0.039 £ 0.008 0.048 £ 0.010 2 3 0.039 £ 0.008 0.058 + 0.002
Mouse deer 4 0 0.046 + 0.004 0.051 + 0.006 4 1 0.046 + 0.004 0.053+0.011
ntermediate 20 7 79 30
Anoa 3 1 0.039 £ 0.008 0.081 £ 0.011 3 1 0.039 + 0.008 0.081 + 0.039
Reindeer 1 2 0.020 + 0.000 0.036 + 0.000 2 2 0.020 + 0.000 0.033 + 0.000
Gazelles 5 1 0.056 + 0.012 0.099 + 0.014 3 3 0.056 + 0.012 0.099 + 0.008
Goats 11 3 0.027 £ 0.003 0.122 £ 0.017 56 15 0.027 £ 0.007 0.091 + 0.031
Ibex 0 0 - - 15 9 0.054 + 0.021 0.096 + 0.032
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Table 2 Species and feeding attributes of animals used in prediction and validation data sets of passage
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rates in simultaneous prediction of liquid and solid passage rates

Solid and liquid passage predicted simultaneously

Species Prediction  Validation Solid passage rate Liquid passage rate
Mass (kg) (per h) (per h)
14 10
1.5-1238 1.5-1238
Grazers 118 44
Cattle 48 17 0.031 £ 0.015 0.078 £ 0.031
Sheep 57 21 0.035+0.014 0.077 £ 0.025
Buffaloes 2 0 0.024 + 0.000 0.048 £ 0.030
Antelopes 5 3 0.024 + 0.004 0.056 + 0.018
Muskoxen 6 3 0.037 £ 0.033 0.057 + 0.037
Browsers 34 10
Moose 7 2 0.022 + 0.007 0.028 + 0.008
Okapi 11 5 0.045 +0.010 0.062 + 0.014
Dik-dik 7 3 0.040 £ 0.016 0.076 £ 0.014
Duikers 5 0 0.039 + 0.008 0.048 £ 0.010
Mouse deer 4 0 0.046 + 0.004 0.051 + 0.006
Intermediate feeder 23 4
Anoa 2 2 0.039 + 0.008 0.081 +0.011
Reindeer 3 0 0.020 + 0.000 0.036 + 0.000
Gazelles 5 1 0.056 + 0.012 0.099 £+ 0.014
Goats 13 1 0.027 + 0.003 0.122 £ 0.017

The regression relationship between the observed (Y) and predicted (X) liquid passage rates when
predicted simultaneously with solid passage rates (per h) was Y = -0.00018 (x 0.0022) + 1.006 (x 0.027) X
(n =175, RMSE = 0.010452), accounting for 89% of the variation in prediction. The intercept (P = 0.9323)
and slope (P = 0.8374) were not different from 0 and 1, respectively (Figure 3a). A plot of residual liquid
passage rate against predicted liquid passage rate assessing the mean bias (intercept) and linear bias
(slope) (Figure 3b) gave the equation Y = 0.00003 (x0.00218) + 0.00359 (x0.0274) X (R2 = 0.0001,
RMSE = 0.0104). The intercept (P = 0.9883) and slope (P = 0.8959) from the residual plot were not different
from zero. It was observed that residuals showed no obvious pattern on the horizontal axis. A plot of residual
liquid passage rate against observed liquid passage rate was used to assess the goodness of predictions
(Figure 3c) and how far predictions are from reality; the plot indicated that residual liquid passage rate
increased with increasing liquid passage rates when simultaneously predicted with solid passage rates. The
regression
relationship between the observed (Y) and predicted (X) liquid passage rates (per h) using the validation
data was Y = 0.0127 (= 0.00586) + 0.8697 (+ 0.0781) X (n = 58, RMSE = 0.0153), accounting for 69% of the
variation in unseen data. The intercept was different from 0 (P = 0.0351) and slope was not different from
unity (P = 0.1011) (Figure 3d).

The regression relationship between the observed (Y) and predicted (X) solid passage rate when
predicted simultaneously with liquid passage rates (per h) was Y = 0.00153 (x 0.00125) + 1.036 (+ 0.0357) X
(n =175, RMSE = 0.00648), accounting for 83% of the variation in prediction. The intercept (P = 0.2231) and
slope (P = 0.2816) were not different from O and 1, respectively (Figure 4a). A plot of residual against
predicted solid passage rate assessing the mean bias (intercept) and linear bias (slope) (Figure 4b) gave the
equation: Y = 0.00153 (+0.00125) + 0.03855 (+0.0357) X (R* = 0.0067, RMSE = 0.00648). The intercept
(P = 0.2231) and slope (P = 0.2816) from the residual plot were not different from zero. It can be observed
from the plot that residuals showed no obvious pattern on the horizontal axis. A plot of residual solid passage
rate against observed solid passage rate was used to assess the goodness of predictions (Figure 4c) and
how far these predictions were from reality. It can be observed from the plot that residual solid passage rate
increased with increased solid passage rates when concurrently predicted with liquid passage. The
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regression relationship between the observed (Y) and predicted (X) solid passage rates (per h) was
Y = 0.0073 (£ 0.0035) + 0.775 (= 0.1026) X (n = 58, RMSE = 0.0100), accounting for 50% of the variation in
unseen data. The intercept and slope were different from 0 (P = 0.0447) and 1 (P = 0.0323), respectively
(Figure 4d).

Predicting solid passage rates simultaneously with liquid passage rate accounted for more variation
compared with using observed (+6%) and predicted (+7%) liquid passage rates as input variables for
prediction of solid passage rate. In model validation, the method simultaneously predicting both rates
explained +5% more variation compared with validation where liquid passage rate was an input. However,
validation of solid passage rate when simultaneously predicted with liquid passage rates explained -16% less
variation compared with validation of the solid using observed liquid model.

Table 3 Summary statistics of feed and animal attributes used in both prediction and validation of passage
rates

Solid using observed liquid passage rate model

N Max Min Mean SD
Urea (g/kg) 233 7.065 0 0.200 1.032
Dry matter (g/kg) 233 957 171 778 239
Neutral detergent fibre (g/kg) 233 910 110 505 174
Acid detergent fibre (g/kg) 233 603 55 316 109
Crude protein (g/kg) 233 295 25.700 147 65.159
Ash (g/kg) 233 138 25 78.478 18.413
Days in pregnancy (days) 233 138 0 3.768 18.739
Days in lactation(days) 233 45 0 1.043 5.761
Mature body mass (kg) 233 1100 2 300 268
Physiological age 233 1.515 0.169 0.623 0.292
Animal production level 233 1.827 0.875 1.065 0.182
Fractional passage rate (per h) 233 0.081 0.007 0.034 0.015
a (g/kg) 233 498 53 211 106
b (g/kg) 233 796 298 544 96.66
c (per h) 233 0.174 0.010 0.053 0.026
Potential degradability at half-life (g/kg) 233 701 308.5 467 0.73
Potential degradability (g/kg) 233 964 413 711 123.4

a: rapidly degradable water-soluble fraction of fibre; b: slowly degradable fraction of the insoluble fraction of
fibre; c: rate of degradation

Discussion

The critical role of liquid passage rate in determining the passage of particulate matter is undermined
to the extent that solid and liquid passage rates are normally predicted separately. It has been only recently
that liquid passage rate prediction equations have accurately predicted liquid passage rates, and accounted
for 82—94% of the variation in prediction (Seo et al., 2006; 2007; Moyo et al., 2017). Previously, inclusion of
liquid passage rate as an input variable for predicting solid passage rate may have been hindered by the
failure to accurately predict liquid passage rates. Passage rate of particulate matter through the rumen partly
depends on how much material passes out, using liquid as a medium and how much is hindered by the
reticulo-omasal orifice. This makes simultaneous prediction of liquid and solid phases relatively important.
Normally, passage rate prediction models have been developed for specific ruminants: buffalo, cattle, sheep
and goats (Cannas & Van Soest, 2000; Seo et al., 2009).

Prediction models developed in this study accounted for a large amount of variation in unseen
observations. Models achieved high precision in predicting solid passage rates using observed and predicted
liquid passage rates as input factors for 15 ruminant animal species (wild and domesticated) from a wide
range of climatic regions using a single model. In all model predictions and validations, all classes of
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ruminants clustered along the ideal prediction line. Some sporadic outliers are identifiable in prediction of
solid passage rates using observed liquid passage rate for sheep, where passage rates were
underestimated (high residuals) (Figure 1la). These data included Blackhead sheep that inhabit the
temperate climate. These findings support the suggestions that accounting for variations in ambient
temperature between studies may improve accuracy in predicting solid passage rates (Warren et al., 1974;
Chaiyabutr et al., 1987).

Inclusion of liquid passage rate as an input variable yielded better models for predicting particulate
passage rates in the rumen. The solid passage rate prediction models developed in this study accounted for
+10% (using predicted) and +11% (using observed) more variation, but lowered RMSE by -52 (observed
liquid) and -39% (predicted liquid) in prediction of solid passage rates compared with the solid passage rate
prediction model by Moyo et al. (2017). On evaluation (validation) using independent datasets, models gave
improved R? values by +24 (observed liquid) and +3% (predicted liquid) compared with the solid passage
rate model of Moyo et al. (2017). These agree with suggestions by previous workers that fine particles move
along the digestive tract at a rate closer to that of water and solutes (Ellis et al., 1982; Faichney & White,
1988; Faichney et al., 1989; Aharoni et al., 1999). Better predictions have been reported that accounted for
86% (Seo et al., 2009) and 87% and 95% (Seo et al., 2006) of the variation for solid passage rates.

However, these predictions were limited to beef cattle or dairy cows and included intake as a major
input variable, unlike those from this study. Previously published equations attained modest R’ values in
predictions of 15-66% for rates of passage of particulate matter (Cannas & Van Soest, 2000). An improved
R? value for the particle passage rate model because of including liquid passage rate as an input variable
authenticates the importance of fluid passage in influencing particulate digesta movement (Faichney, 1980;
Aharoni et al.,, 1999). Simultaneous prediction of solid and liquid passage rates generally improved
coefficient determination, but reduced RMSE compared with independent predictions of solid passage rates
reported in this study and those of Moyo et al. (2017). Using the simultaneous method, the amount of
variation accounted for in the prediction of the liquid passage rate was +7% greater compared with the
prediction of liquid passage rate alone by Moyo et al. (2017). Similarly, the simultaneous method improved
the explained variation in solid passage rate (observed vs predicted) by +17% compared with prediction of
solid passage rate alone by Moyo et al. (2017).

Mathematical relationships between the passage rates of liquid (k) and solid (k,) matter have been
proposed. Those of Nsahlai et al. (1999) take the form of k;= (k, — 0.0018) + 0.360 and k= (k, — 0.0148) +
0.163. Similarly, the selectivity factor, which is a quotient of the mean retention time of liquid to solid in the
rumen, has been proposed by Clauss & Lechner-Doll (2001). The model developed to predict the solid
passage rate using the observed liquid passage rate took advantage of the influence of fluid in the
movement of solid in the rumen to develop improved solid passage rate prediction models. However, the
disadvantage of this model is that the passage rate of liquid has to be known prior to prediction. To
overcome this disadvantage, a model that uses predicted liquid passage rate to predict the passage rate of
solid matter was developed. It helps to predict solid passage rate without having to measure liquid passage
rate prior to prediction. Although using predicted liquid comes with an error of prediction, its predictive
potential was shown to be equal to that of using observed liquid passage rate. This suggests that the added
neurons in the typology ([24-13-1] and [24-13-2] vs [17-17-1]) and/or the passage of liquid would help to
modulate particulate passage rate.

Given that solid and liquid phases are intermingled in the rumen, simultaneously predicting passage
rates for both phases removes the error incurred in predicting and using the liquid passage rate as an input
when estimating the solid passage rate. Better predictions of solid and liquid passage rate were obtained
when the two phases were predicted simultaneously compared with individual predictions of solid and liquid
passage rates. The reason that the validation of solid passage rate using simultaneous prediction models
could explain only 50% of the variation is not known but may be owing in part to variation and interaction
because of changes in ambient temperature and type of animal. The influence of liquid passage rate on
particulate passage rate is important to increase the accuracy of predictions.
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Conclusion

Inclusion of liquid passage rate as an input variable gave better predictions of solid passage rates.
Liquid passage rates play an important role in facilitating the passage of particulate matter out of the rumen.
Liquid passage rates should be taken as a critical factor in development of particulate passage rate models.

Acknowledgements

This study was supported financially by the National Research Foundation of the Republic of South Africa (Project
name ‘Modelling of intake, feeding behaviour and kinetics of digestion and passage of digesta in ruminants’. Grant
number: 112905. Project name: Intake of roughage by ruminant herbivores. GUN number: 87738).

Authors’ Contributions

IVN conceptualized the idea. IVN and MM designed the study, collected and analysed the data, interpreted the
results and drafted the article. EBGK programmed and developed the ANN models, and drafted the ANN modelling
section of the methodology. All authors provided critical revision of the manuscript.

Conflict of interest
All the authors of this manuscript agree to the submission. The manuscript has not been published or considered
for publication anywhere else. The authors declare that they have no competing interests.

References

Aharoni, Y., Brosh, A. & Holzer, Z., 1999. Comparison of models estimating digesta kinetics and faecal output in cattle
from faecal concentrations of single-dosed markers of particles and solutes. J. Anim. Sci. 77, 2291-2304.

Cannas, A. & Van Soest, P.J., 2000. Simple allometric models to predict rumen feed passage rate in domestic
ruminants. In: Modelling Nutrient Utilization in Farm Animals. J.P. McNamara, J. France & D.E. Beever (eds).
CABI, Wallingford, UK. pp. 49-62.

Chaiyabutr, N., Buranakarl, C., Muangcharoen, V., Loypetjra, P. & Pichaicharnarong, A., 1987. Effects of acute heat
stress on changes in the rate of liquid flow from the rumen and turnover of body water of swamp buffalo. J. Agric.
Sci. 108 (3), 549-553.

Clauss, M. & Lechner-Doll, M., 2001. Differences in selective reticulo-ruminal particle retention as a key factor in
ruminant diversification. Oecologia 129, 321-327.

Dijkstra, J., Kebreab, E., Mills, J.A.N., Pellikaan, W.F., Lopez, S., Bannink, A. & France, J., 2007. Predicting the profile of
nutrients available for absorption: From nutrient requirement to animal response and environmental impact.
Animal 1, 99-111.

Ellis, W.C., Lascano, M., Teeter, R. & Owens, F.N., 1982. Solutes and particulate flow markers. In: F.N. Owens (ed).
Protein Requirements for Cattle. Oklahoma State University, Stillwater, USA. pp. 37-56.

Faichney, G.J., 1980. Measurement in sheep of the quantity and composition of rumen digesta and of the fractional
outflow rates of digesta constituents. Aust. J. Agric. Res. 31, 1129-1137.

Faichney, G.J. & White, G.A., 1988. Rates of passage of solutes, microbes and particulate matter through the
gastrointestinal tract of ewes fed at a constant rate throughout gestation. Aust. J. Agric. Res. 39, 481-492.

Faichney, G.J, Poncet, C., Boston, R.C., Bernard, L., Pochet, S., Beaufort, M.T., Delval, E., Fabre, M., Pichon, P. &
Flechet, J., 1989. Passage of internal and external markers of particulate matter through the rumen of sheep.
Reprod. Nutr. Dev. 29 (3), 325-337.

Fox, D.G., Tedeschi, L.O., Tylutki, T.P., Russell, J.B., Van Amburgh, M.E., Chase, L.E., Pell, A.N. & Overton, T.R., 2004.
The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim.
Feed Sci. Technol. 112, 29-78.

Moyo, M., Gueguim Kana, E.B. & Nsahlai, I.V., 2017. Modelling of digesta passage rates in grazing and browsing
domestic and wild ruminant herbivores. S. Afr. J. Anim. Sci. 47, 362-377.

Nsahlai, 1.V., Bryant, M.J. & Umunna, N.N., 1999. Utilization of barley straw by steers: effects of replacing urea with
protein, source of protein and quantity of rumen degradable nitrogen on straw degradation, liquid and particle
passage rates and intake. J. Appl. Anim. Res. 16 (2), 129-146.

Seo, S., Tedeschi, L.O., Lanzas, C., Schwab, C. & Fox, D.G., 2006. Development and evaluation of empirical equations
to predict feed passage rate in cattle. Anim. Feed Sci. Technol. 128, 67-83.

Seo, S., Lanzas, C., Tedeschi, L.O. & Fox, D.G., 2007. Development of a mechanistic model to represent the dynamics
of liquid flow out of the rumen and to predict the rate of passage of liquid in dairy cattle. J. Dairy Sci. 90, 840-855.

Seo, S., Lanzas, C., Tedeschi, L.O., Pell, A.N. & Fox, D.G., 2009. Development of a mechanistic model to represent the
dynamics of particle flow out of the rumen and to predict rate of passage of forage particles in dairy cattle. J. Dairy
Sci. 92, 3981-4000.

St-Pierre, N.R., 2003. Reassessment of biases in predicted nitrogen flows to the duodenum by NRC 2001. J. Dairy Sci.
86, 344-350.

Warren, W., Martz, F., Asay, K., Hilderbrand, E., Payne, C. & Vogt, J., 1974. Digestibility and rate of passage by steers
fed tall fescue, alfalfa and orchardgrass hay in 18 °C and 32 °C ambient temperatures. J. Anim. Sci. 39, 93-96.


http://www.publish.csiro.au/cp/OpenURL_BaseURL?atitle=Passage of internal and external markers of particulate matter through the rumen of sheep.&title=Reproduction, Nutrition, Development&date=1989&volume=29&spage=325&epage=cfArticle2ecfc1997462761$funcENDPAGE@167a601a&aulast=Boston&aufirst=RC

	M. Moyo1, E.B. Gueguim Kana2 & I.V. Nsahlai1#
	Authors’ Contributions

