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___________________________________________________________________________________ 

Abstract  
This study tested the hypothesis that the use of pooled genetic and phenotypic parameters and 

genomic selection would optimize selection response in indigenous chicken breeding programmes. This 
premise was tested with deterministic simulation in three breeding schemes based on the sources of 
information used to estimate breeding values. These schemes used a conventional breeding scheme 
with non-pooled parameters (CSN), pooled parameters (CSP), and genomic information in a genomic 
selection scheme (GSS). A one-tier closed nucleus breeding programme was considered with a mating 
ratio of 1 to 5 for males to females, Four traits were used in the breeding goal, namely live weight at 
twelve weeks (LW), egg number for twelve weeks (EN), age at first egg (AFE), and antibody response 
(Ab). The genetic gain for CSN was 1.5 times higher than that of CSP. The rate of inbreeding for CSN 
was 19% lower than in CSP. The accuracy of selection followed the same trend with CSN producing 9% 
higher accuracy of selection than CSP. The GSS scheme resulted in an additional 59.3% genetic gain 
and 30% accuracy compared with CSP. The GSS scheme also had a reduced rate of inbreeding by 46% 
compared with CSP. When compared with CSN, GSS produced 38.7% greater genetic gain, a 27% lower 
rate of inbreeding and 21.0% higher accuracy of selection. Use of pooled parameter estimates and 
genomic information optimized response to selection, whereas non-pooled inputs overestimated and 
underestimated rates of genetic gain and inbreeding. 
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Introduction 

Most developing countries recognized the social, economic and nutritional roles of indigenous 
chickens (IC) in improving the livelihoods of resource-poor rural households (Kattel, 2016; Moussa et al., 
2019). This was confirmed by their attempts to improve productivity of IC in growth and egg production. 
These attempts focused on genetics, nutrition, health, housing and capacity building of farmers and on 
general management and marketing (Wondmeneh et al., 2014; Ayieko et al., 2015; Mpenda et al., 2018). 
Genetic improvements were initiated through experiments modelled to provide information for informed 
decision making before investing in breeding programmes. Modelling of breeding programmes, however, 
requires population-specific input parameter estimates and constant monitoring of loss in genetic 
variance owing to intense selection and adoption of new technologies such as genomic selection for 
sustainable long-term genetic gains (Rutten et al., 2002; Lillehammer et al., 2016; Miyumo et al., 2018). 

Population-specific parameter estimates require pedigree and performance recording, which is the 
biggest challenge in developing countries owing to small flock sizes and lack of commitment by 
smallholder farmers (Wasike et al., 2011; Mrode et al., 2020). The IC breeding programmes therefore 
were modelled with input parameters sourced from single studies, as recommended by Koots and 
Gibson (1996). However, bias can arise in predicting response to selection because certain parameters 
were picked, whereas others were omitted. First, parameters were generated from studies carried out in 
different geographical zones with various data sizes. Second, data analysis used different methods 
(Haunshi & Shanmugam, 2012; Niknafs et al., 2013). To overcome these challenges, the use of pooled 
parameters from a number of studies was proposed as they accounted for variability in geographical 
conditions, data source, size and analytical procedure (Akanno et al., 2013).  
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Genetic variance was demonstrated to decrease over time owing to selection (Willoughby et al., 
2015; Seyedsharifi et al., 2018). Selection can also lead to increased rates of inbreeding, because the 
chances of two related animals being selected together are higher, especially in small populations 
(Mwangi et al., 2016). Inbreeding may eventually lead to reduction in additive genetic variance owing to 
fixation of alleles (Esfandyari et al., 2017). A high rate of inbreeding affects response to selection for 
individual traits negatively, and levels beyond 0.1% would not be optimal for evolution (Franklin & 
Frankham 1998; Tongsiri et al., 2019). Ignoring loss in genetic variance and inbreeding and not 
accounting for mitigation strategies such as genomic selection against these factors could be detrimental 
to long-term genetic gain in a breeding programme. 

Genomic selection was demonstrated to be more efficient in making selection decisions that 
simultaneous manage inbreeding in animal populations (Liu et al., 2017; Thomasen et al., 2020). it 
generates information on Mendelian sampling terms more accurately, leading to less co-selection of sibs, 
because estimated breeding values between individuals within families can be differentiated better, 
hence reduced rates of inbreeding (Daetwyler et al., 2007; Júnior et al., 2016). It also accelerates the rate 
of genetic gain, as it increases the accuracy of selection and reduces the generation interval (Miller, 
2010). But its adoption in developing countries, especially in IC breeding programmes has been limited 
owing to high genotyping costs being assumed without the returns being considered. This study therefore 
investigated the premise that using pooled input parameter estimates, accounting for loss in genetic 
variance, and adopting genomic selection in IC breeding programmes in developing countries would 
accelerate genetic gains. This hypothesis was tested with deterministic simulation of breeding schemes 
(Lwelamira et al., 2008; Ebrahimpourtaher et al., 2018) that resembled those used in IC breeding 
programmes in developing countries. 
 

Materials and Methods 

Deterministic simulation was used to model various breeding schemes in a closed single-tier 
nucleus breeding system in SelAction software (Rutten et al., 2002). The breeding schemes were 
conventional and genomic. The conventional schemes mimicked the current chicken breeding 
programmes in developing countries, whereas the genomic schemes represented alternative breeding 
systems. A single tier was considered, since the chickens produced from the breeding stations were 
regarded as being sold to farmers for production. This implied that the breeding goals in the breeding 
stations and those of the farmers were in tandem. 

A breeding goal was adopted in the current study that targeted the improvement of IC as dual 
purpose. Most farmers raise IC for multiple roles, which include provision of meat and eggs (Okeno et al., 
2013). Three breeding goals for IC in Kenya were developed in consultation with farmers, traders and 
consumers (Okeno et al., 2013). These included IC-broiler, IC-layer and IC-dual purpose, which targeted 
improvement of IC for meat, eggs and both. The traits in the breeding goal in the current study were live 
weight at twelve weeks (LW), egg number for twelve weeks (EN), age at first egg (AFE), and antibody 
response (Ab) ( Bett et al., 2011; Okeno et al., 2013). Antibody response (Ab) was used as an indicator 
trait for disease tolerance. Inclusion of traits of economic importance in the breeding goal required 
estimation of their economic values (Amer et al., 2001; Bytyqi et al., 2015). The values for traits of 
economic importance for IC in Kenya had been estimated (Okeno et al., 2012) and the traits in the 
breeding goal were weighted with these values (Table 1).  

The genetic and phenotypic parameters were sourced from studies in the tropics. Non-pooled 
parameters were obtained from single studies, whereas pooled parameters were obtained from a number 
studies for each trait and subjected to meta-analysis (Ndung’u et al., 2020). The aim was to account for 
variances in data size, geographical conditions, and the statistical evaluation model (Jembere et al., 
2017). Parameters estimated in a certain location could be used in other populations owing to minimal or 
no differences between parameters obtained from different populations (Koots & Gibson, 1996). The 
pooled and non-pooled parameters that were used in this research were drawn from the studies of 
Okeno et al. (2013) and Ndung’u et al. (2020) (Table 1). 

A single-tier closed nucleus breeding structure was considered that resembled those in developing 
countries. The activities within the nucleus included chicken identification with wing tags, phenotyping, 
genotyping, predicting breeding values, selecting, and mating. The best candidates were selected by 
truncation of estimated breeding values (EBV) calculated by best linear unbiased prediction (BLUP) and 
used as replacement stock, whereas the rest of the flock was culled. Three breeding schemes were 
considered. 
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Table 1 Economic values, phenotypic variance, and estimates of heritability (along diagonal), genetic 
correlation (above diagonal) and phenotypic correlation (below diagonal) for egg number, live weight, age 
at first egg, and antibody response  
 

Traits EV, US$    
  

Pooled parameters  Non-pooled parameters 

EN LW AFE Ab  EN LW AFE Ab 

            

EN 0.0887 130.64  0.12  -0.12  -0.30  -0.04   0.35 -0.06 -0.19 -0.04 

LW 0.7346 15627.50  0.08  0.24  0.05  -0.07   -0.02 0.43 -0.15 -0.07 

AFE -0.1394 144.24  -0.36  -0.10 0.25 -0.04   -0.16 -0.04 0.47 -0.03 

Ab -0.1831 39.44  -0.02  -0.05  0.00  0.27   -0.02 -0.07 0.00 0.28 

             

EV: economic value,   
 : phenotypic variance. EN: egg number, LW: live weight, AFE: age at first egg, Ab: antibody 

response 

 
 
The CSN used non-pooled estimates of the input parameters and assumed that the parents were 

selected based on pedigree and phenotypic information only. This represented the current breeding 
programme in most developing countries, where selection is based on performance records. The input 
parameter estimates were sourced from various studies in the tropics. This mimicked most breeding 
models that were used to develop livestock breeding programmes in developing countries such as Kenya 
(Okeno et al., 2013). 

The CSP used pooled estimates of the input parameters. This scheme was similar to CSN, but the 
input parameter estimates resulted from meta-analysis. The aim was to obtain pooled parameter 
estimates that accounted for variances in data size, geographical condition and statistical evaluation 
model. The scheme aims at reducing the biasness that could be attributed to use of non-pooled 
parameter estimates (Safari et al., 2005; Akanno et al., 2013). 

The GSS was similar to CSP, but selection of candidates was based on genetic markers as an 
additional source of information to phenotypes. It represented the selection technologies used in 
developed countries to optimize response to selection, but its adoption in developing countries has been 
slow (Ebrahimpourtaher et al., 2018). 

A base population of 4800 chickens with a sex ratio of 0.5 was assumed. Ninety-six (96) males 
were selected from a population of 2400 males, whereas 480 hens were selected as parents of the base 
generation from a population of 2400 females for one round of selection. This proportion was chosen 
because few males are required for breeding compared with females. The mating ratio was assumed to 
be one cock to five hens. Each hen was assumed to lay 15 eggs per clutch with a hatchability of 95% and 
survival rate to sexual maturity of 70% (Yitbarek & Atalel, 2013). Selection was by truncation using EBV. 
For the sex-limited traits and those phenotyped later in life such as EN, AFE, and Ab, the candidates 
were selected based on phenotypic data from their female ancestors and sib performances. On the other 
hand, selection for LW was based on own performance before maturity, phenotypic data from male and 
female ancestors, and sib performances. Since all the birds were raised in the same environment, the 
common environmental effect was assumed constant. The effect of the nucleus size and mating ratios on 
response to selection was considered by increasing the number of breeding females in the population 
from 480, 960, 1440, 1920, 2400, and 2880. The mating ratio of males to females ranged from 1 to 5 with 
96 males and 480 females to 1 to 30 with 2880 females and 576 males. Starting from a population of 
1440, artificial insemination (AI) was considered to be in use since the semen from one cock could be 
used to inseminate 100 hens with extenders (Mohan et al., 2018).  

The rates of genetic gain and inbreeding per generation were computed and compared under 
conventional and genomic breeding schemes. In CSP, the response to selection was computed for all the 
traits in the breeding goal (H) which was the sum of the true breeding values (TBV) of traits, weighted by 
their economic weights. A selection index, which was the sum of the TBVs for the traits in the breeding 
goal and their economic weights, was computed as (Rutten et al., 2002): 

 
              

 
where: A are true breeding values, and  

 V are weighting factors for each trait.  
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In the GSS, genomic traits were included in the selection index as extra correlated traits with 
heritability equal to one (Dekkers, 2007). Estimates of the genetic and phenotypic correlations between 
the true breeding value and the extra trait (     and    ) where   equals the square root of the heritability 

of the trait and     is the accuracy of the genomic estimated breeding values. The     was determined by 

the size of the reference population (  ), the effective number of loci in the base population (  ), and the 

correlation of the true breeding values of the genotyped individuals and their phenotypes (r), and were 
based on the model below (Van Grevenhof et al., 2012): 
 

    = √
   

    

where: and  is the heritability,  

,  

where: is the historic effective size of the base population and  

  L is the size of the genome in Morgan.  
 
The IC genome was assumed to be 32 in Morgan units (Groenen et al., 2009), and the effective 

population size was 16.02 (Okeno et al., 2012). The genetic and phenotypic correlations between the 
genomic traits were calculated according to the procedure of Dekkers (2007). The response to selection 
for each trait was calculated as: 
 

            
 
where:     is a vector containing selection response for each trait, 

  is a vector of index weights,  
    is a matrix of co-variances between information sources and true breeding values of selection 

candidates,  
I is the selection intensity, and 

      is the standard deviation of the index.  
 
The total gain in the breeding goal in economic units was calculated as: 

      
       

 
where: ∆H, is the breeding goal.  

 
The rate of inbreeding was calculated in three steps. In the first step, a regression model was used 

to predict the long term contributions: 
          

 ( )     (     ̅̅ ̅̅ ) 
 
where: E(r) is the expected contribution,  

 α, the contribution of an individual with an average breeding value, AND 
 β accounts for the increase of the contribution of parents with higher breeding value implying that 
the parents with high breeding values will have more selected offsprings (Rutten et al., 2002).  
 

Second, the square of the expected contributions was calculated. And finally, inbreeding was 
calculate as: 

 

    
 ⁄   ( )  

 
where: N is the number of parents, and  

  ( ) , is the square of the expected contributions.  
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Results and Discussion 
The findings of the current study confirmed the authors’ premise that using pooled input parameter 

estimates, accounting for loss in genetic variance, and adopting genomic selection would optimize 
response to selection. The rate of genetic gain was lower and the accumulation of inbreeding was higher 
in CSP compared with CSN. The genomic scheme (GSS) on the other hand outperformed the 
conventional scheme in response to selection. The genetic gain, loss of genetic variance, and accuracy 
of selection per generation in the three breeding schemes are presented in Table 2. 

The genetic gain for CSN was 1.5 times higher than that of CSP (Table 2). The rate of inbreeding 
for CSN was 19% lower than for CSP. The accuracy of selection followed the same trend with CSN 
resulting in 9% higher accuracy of selection than CSP. The GSS scheme produced an additional 59.3% 
genetic gain and 30% accuracy compared with CSP. The GSS scheme also had a reduced rate of 
inbreeding by 46% compared with CSP. When compared with CSN, GSS had 38.7% greater genetic 
gain, 27% lower rate of inbreeding and 21.0% higher accuracy of selection. The GSS scheme had the 
lowest rate of inbreeding at 0.22% compared with 0.49% and 0.68% for CSN and CSP. 

 
 

Table 2 Response to selection, rate of inbreeding, and accuracy of selection in conventional and 
genomic breeding schemes per generation in breeding schemes that use different sources of genetic 
information  
 

Strategy Response, US$ Rate of inbreeding, % Selection accuracy 

    

CSN 61.13 0.49 0.67 

CSP 40.58 0.68 0.58 

GSS 99.83 0.22 0.88 

    

CSN: breeding scheme with non-pooled parameters, CSP: breeding scheme with pooled parameters, GSS: genomic 
breeding scheme with pooled parameters 

 
 

The genetic gains for individual traits in the breeding goal in the three breeding schemes are 
presented in Table 3. The genetic gain for individual traits followed the same trend as observed in the 
overall genetic gains for each scheme in Table 2. For instance, the genetic gain for EN was -0.39 in CSN 
as compared with -0.49 in CSP. The live weight in CSN was 27.64 g higher than that of CSP. Age at first 
egg was reduced by 1.40 days in CSN, but increased by 0.34 days in CSP. Immune antibody system 
changed by -0.24 in CSN and -0.27 in CSP. In all the traits except for EN and Ab, GSS realized higher 
genetic gain compared with CSP. The genetic gain for LW was at least doubled in GSS compared with 
CSP. The highest genetic gain was obtained from the live weight trait in all the schemes. 
 
 
Table 3 Genetic gain per generation for individual traits in breeding schemes that use different sources of 
genetic information  
 

Trait CSN CSP GSS 

    

Egg number  -0.39  -0.49  -3.24  

Live weight  82.93  55.29  136.26  

Age at first egg  -1.40  0.34  0.64  

Antibody response  -0.24  -0.27  -0.60  

       

CSN: breeding scheme with non-pooled parameters, CSP: breeding scheme with pooled parameters, GSS: genomic 
information used for selection 

 
 

The effect of nucleus size and mating ratio of males to females on rates of genetic gain and 
inbreeding were investigated by changing nucleus size and mating ratios. Since the trends for CSN and 
CSP were identical, only CSP and GSS are presented. The rate of change in genetic gain and inbreeding 
when the nucleus size was increased is presented in Figure 1. Although genetic gain realized in GSS 
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ranked above CSP, the rate of gain in the two schemes increased at diminishing rate with increase in 
nucleus size. A similar trend was observed in the rate of inbreeding, but with GSS ranking below CSP. 

 
 

 
Figure 1 Trends for rates of genetic gain and inbreeding with increase in nucleus size in conventional 
breeding scheme with pooled parameter estimates and genomic selection of indigenous chickens 

 
 
The change in rates of genetic gain and inbreeding with increased mating ratio is presented in 

Figure 2. The genetic gain increased with increase in the mating ratio for both CSP and GSS. It 
increased with increase in the number of hens per cock from 5 to 30, although at a diminishing rate in 
both schemes. The rate of increase, however, was higher for GSS than for CSP. The rate of inbreeding 
increased with increase in the mating ratio for the CSP, whereas it decreased with the increase in the 
mating ratio for GSS. 

These findings supported the hypothesis that not accounting for variation in sources of input 
parameter estimates and ignoring loss in genetic variance over time overestimated response to selection. 
It also confirmed that adoption of genomic selection in an IC breeding programme would optimize 
response to selection. These findings were supported by Akanno et al. (2013), who demonstrated that 
utilization of input parameters from a single study could lead to bias. This implies that in the event that 
primary data is not available to estimate the genetic parameters, there is need to subject parameters 
sourced from different studies to meta-analysis to obtain pooled parameters (Jembere et al., 2017; 
Gathura et al., 2020). As demonstrated in the findings (Table 2), the genetic gain realised in CSN was 
higher than that obtained in CSP. This could be attributed to differences in input parameters used in the 
two breeding schemes. 

The input parameters for CSN were obtained from various literature sources, which had higher 
heritability values, compared with those adopted in CSP, where pooled parameters were used after 
meta-analysis (Table 1). The difference in heritability values obtained in CSN could be because of data 
size, evaluation model, and the year in which the data were collected (Giannotti et al., 2005; Akanno et 
al., 2013). These values have direct impact on accuracy of selection and therefore true breeding values 
(Toghiani, 2012; Zhang et al., 2019). When comparing the impact of different levels of heritability on 
accuracy of selection, Toghiani (2012) and Zhang et al. (2019) found that heritability had a significant 
effect on both conventional and genomic breeding programmes. These studies found that higher 
heritability values resulted in higher accuracies. This could explain the higher accuracy of selection 
realized in CSN compared with CSP (Table 2) in the current study. Similarly, in Ellen et al. (2007), high 
accuracy of individual selection was found when heritability was higher compared with selection based on  
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Figure 2 Trends for rates of genetic gain and inbreeding with increase in mating ratio in conventional 
breeding scheme with pooled parameter estimates and genomic selection of indigenous chickens 

 
 

the performance of full sibs. Since all other input parameters were constant in these two schemes, the 
economic and individual trait responses presented in Tables 2 and 3 could be attributed to differences in 
selection accuracies. This implies that it would be highly recommendable for each breeding programme 
to be evaluated based on primary data generated from the breeding programme to obtain a more precise 
estimation of response to selection. Where that is not feasible, meta-analysis of sampled input 
parameters should be carried out. Meta-analysis was conducted to obtain the input parameters in this 
study in which lower heritability estimates were obtained for CSP as compared with CSN. The 
parameters in CSN had been obtained directly from the literature as found in Okeno et al. (2013). 

The lower heritability values could be the reason for the higher rate of inbreeding in CSP compared 
with CSN (Table 2). According to Woolliams and Bijma. (2000) when heritability estimates are low and 
BLUP is used, the information from relatives is given more weight, which increases the possibility of 
relatedness and therefore high rates of inbreeding. This is consistent with the findings of the current 
study in which low heritabilities in CSP resulted in higher rates of inbreeding (Table 2). The high rate of 
inbreeding was demonstrated to affect response negatively to selection for individual traits in the 
breeding goal in poultry (König et al., 1999; Tongsiri et al., 2019). Inbreeding has also been shown to 
affect negatively traits such as milk production, growth and health in cattle (Mészáros et al., 2014).This 
could explain the low genetic gain for individual traits and subsequent economic response realized under 
CSP in the current study. Generally, all three breeding schemes had higher rates of inbreeding than the 
recommended levels of 0.1% for evolutionary potential (Franklin & Frankham, 1998). This could be 
explained by the low effective population size of 320, since rate of inbreeding is determined by population 
size (Wang et al., 2016). This size was lower than the recommended 500 to 1000 for conservation in 
animal populations (Frankham & Franklin, 1998; Krupa et al., 2015; Lopes et al., 2019).The highest 
genetic gains and lowest rates of inbreeding for GSS compared with CSN and CSP implied that this 
scheme could yield more response to selection in IC breeding. 

Genomic selection was superior to conventional breeding programmes in response to selection 
and reduction in rates of inbreeding in various species (Thomasen et al., 2020). The high response to 
selection in GSS compared with CSP (Table 2) was attributed to high accuracy of selection and lower 
rates of inbreeding in GSS. This accuracy could be attributed to the power of GSS to trace the 
inheritance of chromosomal segments and estimate relationships between selection candidates (Stock & 
Reents, 2013). A genomic information-based relationship matrix has been demonstrated to provide 
accurate relationship coefficients among individuals (VanRaden et al., 2009; Zhang et al., 2020). 
Establishment of close relationships optimizes utilization of information from different related candidates 
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and therefore increases accuracy of selection, which has a direct impact on EBV and genetic gain 
(Dekkers, 2007; Meuwissen et al., 2013). The impact of increased accuracy on individual traits was 
evident in Table 3 in this study where all the traits in the breeding goal had higher responses in GSS than 
CSP. On the other hand, the independent management of ancestral contributions owing to the use of 
genomic selection unlocked the association between the genetic gain and relationships (Henryon et al., 
2014). This was owing to the establishment of more accurate relationships, which increased the accuracy 
of Mendelian sampling terms (Avendaño et al., 2005; Henryon et al., 2014; Liu et al., 2017). This 
constrained identity-by-descent among the parents, leading to a low rate of inbreeding. This could explain 
the lower rates of inbreeding in GSS compared with CSP in the current study. This study therefore shows 
that adoption of GSS in IC breeding programmes would optimize response to selection, even with small 
nucleus sizes. 

The effect of increasing the nucleus size was also investigated under the current CSP and 
alternative GSS breeding programme. In the two schemes, response to selection increased with 
population size, but with diminishing returns (Figure 1). These findings were supported by Lillehammer et 
al. (2011) and Henryon et al. (2012), who demonstrated marginal diminishing returns in a pig genomic 
selection strategy. In these two studies, there were diminishing returns as more candidates were 
genotyped based on truncation selection. The diminishing returns in the current study could be attributed 
to the truncation selection method, in which animals that were ranked at the top were selected based on 
their estimated breeding values (Caballero et al., 1996). This implied the best ranking animals would 
have higher breeding values than low-ranking selection candidates. Therefore, as more candidates were 
added to the nucleus population after truncation selection, the low ranking candidates could not 
outperform the high-ranking candidates. This meant that the benefits from the genetic gains derived from 
the low ranking candidates were not as great as those obtained from the high-ranking candidates. This 
led to diminishing returns to selection as more candidates were being recruited into the nucleus. Although 
the genetic gain increased with nucleus size for both CSP and GSS strategies, only the population size of 
2880 attained a rate of inbreeding of around 0.1% for CSP, which is required to maintain genetic diversity 
and long-term viability for animal populations (Franklin & Frankham 1998; FAO, 2000). A larger nucleus 
size would lead to a higher costs in inputs and resources such as feeding, genotyping and recording 
(Kahi & Nitter, 2004; Janssen et al., 2018). There was also an increase in genetic gain with rise in mating 
ratio (Figure 2), although at diminishing return. This could be attributed to the increase in the selection 
intensity of the males as it is one of the factors that affect genetic gain (Lopes et al., 2019). Previous 
studies demonstrated that increasing selection intensity, especially that of males, had a huge positive 
impact on genetic gain (Abdel-Salam et al., 2010; Battagin et al., 2016; Granleese et al., 2017). The 
diminishing return in response to selection could be attributed to the increase in relatedness and 
reduction of genetic variability owing to selection of more related animals for breeding (Doublet et al., 
2019). 

The decreasing rate of inbreeding with increased number of candidates in the nucleus population 
in the GSS scheme could be explained by capability of this scheme to rank full sibs. The GSS scheme 
uses genomic rather than numerator relationship matrix leading to generation of different breeding values 
for the full sibs (Su et al., 2018; Chu et al., 2019). Such breeding values can be used to rank full sibs, 
hence minimise chances of mating related individuals (Dekkers et al., 2007) leading to a low rate of 
inbreeding, as observed in the current study. On the other hand, the decreasing rate of inbreeding in 
CSP could be attributed to the increase in the breeding population for both males and females because 
the increase in the mating population increases the effective population size, which is indirectly 
proportional to the rates of inbreeding (Ghafouri-Kesbi, 2010; Biscarini et al., 2015). This could explain 
the increasing trend of rate of inbreeding realized in Figure 2 as the number of males was kept, whereas 
the female population increased. This implied each male was mated to more females and hence would 
result in close relationships in future generations. Although this study demonstrated that adoption of GSS 
would optimize response to selection, conventional breeding schemes would still play a significant role in 
establishing breeding programmes for IC in developing countries, because the GSS scheme would 
require reference population with phenotyped and genotyped candidates (Lee et al., 2017; Eynard et al., 
2018). However, the level of recording for traits of economic importance for IC, in particular in developing 
countries, is rudimentary because resource-poor rural households do not see the value of recording or 
have no capacity.  

 

Conclusion  
The use of non-pooled estimates of input parameters rather than pooled estimates results in over- 

and underestimation of the rates of genetic gain and inbreeding. The use of pooled parameter estimates 
minimizes overestimation because the parameters are subject to meta-analysis, which puts into account 
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the accuracy with which they have been estimated. In the absence of population-specific input 
parameters, the information sampled from various studies should be subject to meta-analysis to obtain 
pooled estimates as it would avoid overestimation of the genetic response. Genomic selection could be 
used to optimize response to selection in IC breeding programmes. This is achieved from attainment of 
improved genetic gain and reduction of rates of inbreeding. To realize potential benefits from genomic 
selection, establishment of necessary infrastructure is recommended in some research institutions, 
especially in developing countries. This would include setting up sequencing and genomic data analysis 
tools, which would help in obtaining data to conduct genomic evaluations before selection and mating of 
indigenous chickens in the breeding plans.  
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