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______________________________________________________________________________________ 

Abstract 
This study evaluated histological changes in the digestive organs and kidneys of sheep fed sugarcane 

silage augmented with detoxified castor bean meal (CBM). Forty Santa Inês sheep (initial weight 20 ± 0.3 kg) 
were adapted to the experimental regime for 14 days, after which data were collected for 60 days. The 
treatments consisted of S0: sugarcane silage (SC); S5: SC augmented with 5% CBM; S10: SC augmented 
with 10% CBM; S15: SC augmented with 15% CBM; and S20: SC augmented with 20% CBM. After 74 days 
of confinement, the animals were slaughtered, and then fragments of the liver, rumen, intestine, and kidney 
were collected for histomorphometric analyses. The intake of dry matter and the average weight gain 
increased linearly with the level of CBM (P <0.05), as did the rumen absorption area, the height of the 
papillae and the width of the papillae. The thickness of the keratinized portion of the epithelium was not 
influenced, Thus, no effect was detected of the anti-nutritional factor of CBM on this organ. In the intestine, 
CBM increased the height of the villi and the number of goblet cells. However, S20 caused some kidney 
damage and decreased hepatic glycogen stock, but not sufficiently to reduce performance. Thus, 
augmentation of sugarcane with CBM, up to 20%, is viable in feeding sheep.  
______________________________________________________________________________________ 
Keywords: detoxification, morphometry, Ricinus communis L., rumen histology 
#
Corresponding author: ricardo@cca.ufpb.br 

 
 

Introduction 

Food accounts for about 63% of the total cost sheep production in Brazil (Raineri et al., 2015). Almost 
half of the grains produced in the world are fed to livestock (Sansoucy, 1995). Irregularity in the availability of 
forage reduces the herd, prompting late slaughter and a supply of meat that is periodically incompatible with 
the demand of consumers (Pereira et al., 2013). Therefore, alternative feedstuffs are needed to reduce costs 
and increase sheep production. 

The conservation of sugarcane as silage aroused interest because of its logistical and operational 
benefits. However, in the sugarcane ensiling process, a chemical or bacterial additive should be used that 
favours fermentation to reduce total losses and improves its nutritional value (Torres et al., 2003; Balieiro 
Neto et al., 2007) and thus achieves superior results (Freitas et al., 2006). Among these additives, biodiesel 
wastes such as castor residue (Furtado et al., 2011; Gomes et al., 2017) and detoxified castor meal (Oliveira 
et al., 2016, are promising, since castor meal has approximately 87.3% dry matter, 94.7% organic matter 
(based on dry matter), 26.9% crude protein, 5% ether extract, 49.8% neutral detergent fibre, 40.1% acid 
detergent fibre, 62.8% total carbohydrates, 15% non-fibrous carbohydrates, 72.3% total digestible nutrients 
(percentage of dry matter), and 4.59 Mcal/kg of metabolizable energy (Valadares Filho et al., 2006). 

The castor plant (Ricinus communis L.) has high drought tolerance, and produces an oilseed that is 
economically valuable. The oil has several industrial applications, and the husk, bran, and castor bean meal 
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are processed, yielding 50% oil and 50% by-products (Bomfim et al., 2009). Increased biodiesel production 
would be economically viable if new applications were found for these by-products. Their use in feed for 
livestock would be an important asset (Gomes et al., 2017; Oliveira et al., 2016).  

The literature indicated that high intake of castor beans by sheep can cause weakness, salivation, 
profuse watery diarrhoea, dehydration, mydriasis, gnashing of teeth, hypothermia, and decubitus because of 
the ricin content (Aslani et al., 2007). Severe gastroenteritis, haemorrhage, cardiac necrosis, liver necrosis 
and acute tubular necrosis in kidneys have also been reported (Santos et al., 2018). Since castor meal has 
high nutritional value and low commercial value, it could be used as an additive in sugarcane silage and in 
the feed of small ruminants after detoxification. Therefore, it is necessary to study the form of administration 
and the possible impacts caused by castor meal as an additive to sugarcane silage on the digestive and 
renal tissues of sheep Thus, the objective of this research was to evaluate the histological changes of organs 
of the digestive system and kidneys of sheep subjected to various levels of castor meal in sugarcane silage. 
 

Material and methods 

This study was approved by the Animal Use Ethics Committee of the Federal University of Paraíba 
(UFPB), Brazil, protocol number 02/2018 and was conducted in the Goat and Sheep Sector of the Federal 
University of Alagoas - UFAL Campus Arapiraca in the city of Arapiraca- AL, (latitude 9° 69’ S, longitude 36° 
66’ W, and average altitude of 305 m). The climate in Arapiraca is tropical, Köppen climate classification type 
Aw, with an average temperature of 23.7 °C and average rainfall of 752 mm. 

Forty Santa Inês crossbred sheep were used, with an average bodyweight of 20 ± 0.324 kg. After a 
14-day adaptation period, they were evaluated over 60 days. The animals had been treated for ecto- and 
endo-parasites, and were confined in individual covered stalls with concrete floors, and furnished with 
feeders and drinkers. 

The diets (Table 1) had a roughage to concentrate ratio of 60 to 40 to provide for a growth rate of 
250 g/day (NRC, 2007). The concentrate consisted primarily of soybean meal and corn. The CBM was 
detoxified with calcium hydroxide (CaOH) diluted at 1 kg per 10 l water and treated with this solution at 60 
grams per kg of organic matter (Oliveira et al., 2010). Treatments consisted of S0: unsupplemented 
sugarcane silage (control), S5: sugarcane silage augmented with 5% castor meal replacing sugarcane; S10: 
with 10% castor meal replacing sugarcane, S15: with 15% castor meal replacing sugarcane, and S20: with 
20% castor meal replacing sugarcane. 
 
 
Table 1 Composition of experimental diets for sheep based on the level of detoxified castor meal that was 
included in sugarcane silage 
 

Ingredients (g kg-1 dry matter) 
Levels of inclusion of castor meal in sugarcane silage (%) 

0.00 5.00 10.0 15.0 20.0 

      

Sugarcane silage 600.00  570.00  540.00  510.00  480.00  

Castor meal 0.00  30.00  60.00  90.00  120.00  

Ground corn grain 52.30  77.50  102.00  128.00  153.00  

Soybean meal 326.00  300.00  275.00  250.00  225.00  

Urea/ammonia sulfate (9 : 1) 14.20  14.20  14.20  14.20  14.20  

Mineral mixture
1
 7.50  7.50  7.50  7.50  7.50  

           
1
Dicalcium phosphate, limestone, common salt, sulfur flour, zinc sulfate, copper sulfate, cobalt sulfate, manganese 

sulfate, potassium iodate, and sodium selenite formulated to meet 100% of the macro and micro mineral requirements 
 

 
The feed was offered as a complete mixture twice a day (07h30 and 16h30) at will to allow 10% 

leftovers. The quantities of feed offered and the leftovers were recorded daily to estimate intake. The lambs 
were weighed at the beginning of the experiment and on the day before slaughter to obtain their initial and 
final weights. These data were used to calculate the average daily gain and dry matter intake (Lima et al., 
2018).  

Samples of silage and leftovers were collected daily from each animal. Samples of concentrates were 
collected weekly for each treatment. The daily samples of silage and leftovers were grouped proportionally 
during each 14-day period to form a composite sample. Subsequently, these samples were dried in a 
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convection oven at 60 °C, ground in a mill with a 1-mm sieve, conditioned in a flask with a lid, and stored 
until analysed. 

The animals were slaughtered in random order after feed had been withheld for 16 hours. At the time 
of slaughter, the animals were weighed, desensitized with a compressed air pistol, suspended by the hind 
limbs, and bled by severing the carotid arteries and jugular veins (CONCEA, 2013). While suspended, the 
animals were skinned manually (Cezar & Sousa, 2007).  

Histomorphometric analyses were performed at the Animal Histology Laboratory, Agricultural Science 
Centre, Federal University of Paraíba. Fragments of the liver and kidney were collected no larger than 0.5 
cm

3
, and of the rumen and small intestine no larger than 1 cm

3
, fixed in 10% formaldehyde, and packed in 

identified containers. These fragments were collected from similar locations in all animals.  
Histological processing continued with dehydration, clarification and inclusion in paraffin. Dehydration 

consisted of serial immersion of the tissue sample in solutions of increasing ethyl alcohol concentrations of 
70%, 90%, 100% I, and 100% II for one hour each, and then twice for 30 minutes in 50% alcohol and 50% 
xylol, after which they were embedded in the paraffin. 

A microtome was used to cut the embedded tissue samples to a thickness of 5 µm. Haematoxylin and 
eosin stains were used in the histomorphometric and histopathological studies, and periodic acid Schiff 
(PAS) was used to quantify hepatic glycogen and the duodenal goblet cell index. 

The samples were visualized on an Olympus BX53F microscope (Tokyo, Japan), coupled with a digital 
photo camera (Olympus DP73, Tokyo, Japan). Measurements were made with cellSens Dimension® 
software using the 40x objective for the liver and kidneys, and 4x objective for the rumen and small intestine.  

For samples of the rumen and intestine, four photomicrographs per animal were digitized, and three 
measurements were made of each variable. Thus, there were 96 samples per treatment (8 animals x 4 
photomicrograph x 3 measurements). The variables that characterized the rumen consisted of height of the 
papillae (from the base to the apex), width of the papillae (in the middle region), thickness of the muscular 
layer, and thickness of the keratinized portion of the epithelium. The variables that characterized the 
duodenum were villus height (crypt depth and villus to crypt ratio (villus/crypt) (Barboza et al., 2019). 

To characterize the liver, five photomicrographs per animal were digitized, totalling 40 observations 
per treatment. To quantify hepatic glycogen, the same observer verified the degree of positivity to PAS 
staining (proportional to the amount of hepatic glycogen stock) in each of the photomicrographs, giving a 
score ranging from 0 to 3, with 3 being the highest degree of deposition of glycogen (Ishak, 1995).  

Six photomicrographs per animal were digitized to characterize the kidney, yielding 48 observations 
per treatment. Each of the photomicrographs was examined for histopathological changes in the renal 
corpuscle, proximal twisted tubules, Henle loop, and distal twisted tubules to ascertain the possibility of 
kidney damage because of anti-nutritional factors in the CSM. 

Five photomicrographs per animal were also used to determine the goblet cells index of the 
duodenum. For each animal, the number of goblet cells in a 2000 µm length of intestinal epithelium was 
counted, using four segments of 500 µm (Barboza et al., 2019). Thus, the number of observations per 
treatment was 32. 

The experiment followed a completely randomized design with five levels of dietary castor meal (0%, 
5%, 10%, 15%, and 20%) and eight repetitions. Data were analysed with analysis of variance and regression 
using PROC GLM (SAS Institute, Inc., Cary, North Carolina, USA). Effects were declared significant at the 
5% level of probability. The linear model was: 

             

where:      is the dependent variable observed on the jth animal,  

  is the overall mean,  
   is the effect of treatment i, and  

    is the experimental error. 

 

Results and Discussion  
Dry matter intake increased linearly as CBM was added (Table 2), whereas weight gain and the 

glycogen stock index displayed curvilinear responses. Intake and weight gain were 0.67 kg and 8.9 kg in the 
control and 1.10 kg and 13.48 kg in S20 (Table 2). The highest values of glycogen stock were observed in 
S5 and S15. The lowest glycogen stock was observed in S20. S0 and S10 produced values of the glycogen 
stock index that were intermediate and not different from either extreme. 
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Table 2 Average dry matter intake, total weight gain and the glycogen stock index for sheep fed different 
levels of detoxified castor meal in sugarcane silage 
 

Variables 
Inclusion of castor meal in sugarcane silage, % 

SE 
P-value 

0.00 5.00 10.00 15.00 20.00 Linear Quadratic 

         

Weight gain, kg 8.90
a
 10.02

a
 12.64

bc
 12.10

b
 13.48

c
 0.48 <0.001  <0.001  

Dry matter intake, kg 0.67
a
 0.86

b
 1.00

c
 0.98

c
 1.10

d
 0.03 <0.001  0.071  

Glycogen stock index  1.28
ab

 1.53
a
 1.46

ab
 1.56

a
 1.15

b
 0.18 0.470  0.001  

           
a,b,c,d

 values with a common superscript were not different at the 5% level of probability 
 

  
Figure 1 illustrates the effects of the treatments on the liver glycogen index for sheep fed various 

levels of CBM in sugarcane silage. A lower index was noted for S20 compared with the other treatments in 
which the sheep were fed CBM. 

 
 

 

 
 
Figure 1 Periodic acid Schiff stained photomicrographs illustrating the hepatic glycogen index (magenta colour) 
of sheep fed various levels of detoxified castor meal with sugarcane silage: A) 0% castor bean meal, B) 5% 
castor bean meal, C) 10% castor bean meal, D) 15% castor bean meal, and E) 20% castor bean meal  
 
 

The muscular layer was significantly thicker with CBM at all levels except S15. The height of the rumen 
papilla was significantly greater when CBM was provided. However, the width of the papilla was unaffected by 
the treatments. The absorptive surface area of the rumen was increased and the thickness of the rumen 
epithelium was reduced for S15 and S20. However, the thickness of the keratinized portion of the epithelium 
was not affected significantly by the treatments (P >0.05). Table 3 presents the data that characterized the 
rumen morphology. 
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Table 3 Morphology of rumen of sheep fed various levels of detoxified castor bean meal in sugarcane silage 
 

Variables 
Inclusion of castor meal in sugarcane silage,%   

0.0 5.0 10.0 15.0 20.0 SE P-value 

        

Muscular layer thickness, µm 1044.0 1676.8 1316.8 1153.0 1368.6 443.3 <0.001 

Papilla height, µm 946.7 1010.8 1157.8 1186.3 1525.2 379.5 <0.001 

Papilla width, µm 342.7 336.6 330.1 371.8 290.2 129.1 0.019 

Absorption rumen area, µm
2
 319050 341729 378928 464080 442520 231863 0.004 

Rumen epithelial thickness, µm 109.9 123.5 119.0 76.2 82.9 38.6 <0.001 

Rumen epithelial keratinization, µm 21.8 16.4 22.3 19.8 21.8 15.1 0.291 

        

 
 

Figure 2 illustrates the effects of augmenting sugarcane silage with CBM. The comparison of panels A 
and B shows the greater height of ruminal papilla and muscular layer thickness in animals fed CBM (panel B) 
compared with the control (panel A). Panels C and D illustrate the change in rumen epithelium from 
incorporating CBM. Panels E and F show the changes in the intestinal villi and sub-mucosal layer.  

 

 
 

Figure 2 Photomicrographs of the rumen and intestine of sheep fed without or with inclusion of detoxified 
castor meal in sugarcane silage  
 
Panels A, C and E illustrate papilla and muscular layer of the rumen, rumen epithelium, and the intestinal villi and sub-
mucosal layer, respectively, of sheep that were fed the control. B, D and F show the corresponding tissues for diets 
augmented with castor bean meal 

 
P: papilla height, M: muscle thickness, E: rumen epithelial thickness, V: intestine villi height, S: sub-mucosal layer thickness 
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Treatment effects were significant on villus height, crypt depth, villus/crypt index, mucosal layer 
thickness, sub-mucosal layer thickness, and the number of goblet cells (Table 4). With the exception of S15, 
adding CBM to the sugar can silage increased the villus height. Relative to S0, crypt depth was consistently 
increased by the treatments. Thus, the ratio of villus height to crypt depth was similar to the control for all 
treatments except S15. The mucosal layer thickness was increased significantly by S5, S10 and S20 relative 
to S0. However, S15 and S0 produced similar thicknesses of the mucosal layer. The sub-mucosal thickness 
was increased by all treatments relative to S0, except for S10. S5 and S10 did not increase the number of 
goblet cells compared with S0. However, S15 and S20 produced higher numbers of goblet cells than was 
observed with S0. 

 
 

Table 4 Morphology of the duodenum of sheep fed various levels of detoxified castor bean meal in 
sugarcane silage 
 

Variables 
Inclusion of castor meal in the silage of sugarcane, %   

0.0 5.0 10.0 15.0 20.0 SE P-value 

        

Villus height, µm 321.39  391.67  398.49  336.75  397.84  110.33  <0.001 

Crypt depth, µm 96.33  111.83  110.17  121.60  115.89  34.41  <0.001 

Villus/crypt ratio 3.68  3.79  3.91  3.07  3.75  1.57  0.002 

Mucosal thickness, µm 417.71  503.49  508.65  458.35  513.73  116.05  <0.001 

Sub-mucosal thickness, µm 305.72  401.10  335.72  391.32  364.49  149.97  <0.001 

Goblet cells index 45.88  59.50  54.38  74.50  66.50  14.56  0.005 

              

  
 

Data in Table 5 summarize the histopathological observations. No renal alterations were found in S0. 
In S5 slight congestion was found in the cortical and medullary region of the kidneys, and slight congestion in 
the cortical region in S10. In S15, it was possible to visualize a focal area of haemorrhage and moderate 
congestion in the medullary region. Finally, S20 provoked a focal area of haemorrhage with moderate 
congestion in the cortical and medullary region. In both S15 and S20, a slight formation of hyaline cylinders 
was observed in the glomeruli.  

 

 

Table 5 Histopathological alteration of kidneys in sheep fed diets with various levels of castor bean meal in 
sugarcane silage 
 

Variables 
Levels of inclusion of castor meal in the sugarcane silage, % 

0 5 10 15 20 

      

Congestion - + + ++ ++ 

Haemorrhage - - - + + 

Hyaline cylinders - - - + + 

Necrosis - - - - - 

      

-: absent, +: light, ++: moderate, +++: acute 
 

 

The use of CBM increased the intake of dry matter and the weight gain linearly. Such gains could be 
explained by the increase in the papillae and the area of ruminal absorption, and in the intestinal villus and 
goblet cells, which generate greater intestinal health. However, hepatic glycogen stock was affected 
deleteriously by S20. Ricin in castor bean (Aslani et al., 2007; Santos et al., 2018) was believed to affect the 
glycogen stock negatively and decrease the conversion of propionate to glycogen. Thus, ricin was not 
completely removed from CBM by the detoxification process. Glycogen is converted to glucose in the liver, 
which provides energy or most of the metabolism and production (Brown, 2018). Although S20 had the 
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lowest hepatic glycogen reserve, it did not influence weight gain negatively. On the contrary, sheep in S20 
had the greatest weight gain, probably because of the short time for which the animals were confined.  

The use of CBM to augment sugarcane silage did not cause pathological morphometric changes to 
the rumen and intestine, and resulted in better animal performance. Its inclusion may have allowed greater 
nutrient absorption from the rumen because the increased height of the papillae (Barboza et al., 2019; Silva 
et al., 2019). The increased size of ruminal papillae could be because CBM increased the amount of 
concentrate in the diet. It is known that concentrate promotes an increase in volatile fatty acids (VFA), 
especially when the concentrate has a high carbohydrate content, as in CBM (Caetano et al., 2016; Wang et 
al., 2017). These VFA have a direct relationship with epithelial growth. Propionate and butyrate are 
responsible mainly for cell proliferation and consequently an increase in the papillae (Baldwin et al., 2004; 
Barboza et al., 2019). Thus, the potential for increased production and absorption of VFA provided more 
energy for ruminants, enabling them to satisfy their requirements (Goularte et al., 2011; Oliveira et al., 2013) 
and perform better (Monção et al., 2013).  

Although rumen lesions were not found in this study, Bianchi et al. (2018) stated that sheep fed castor 
bean in the trough had discrete multifocal hydropic degeneration in the mucosa of the rumen and other 
fermentative organs, associated with a mild inflammatory infiltrate composed of lymphocytes and plasma 
cells in the sub-mucosa. Therefore, the detoxification process used in this study may have reduced the ricin 
content sufficiently to not cause injury, in this organ at least. 

It was expected that the thickness of the muscular layer of the rumen would decrease as the level of 
the CBM was increased because the roughage content of the diet was diminished. The more bulk in the diet, 
the greater the need for peristaltic movements for maceration and rumination, which lead to greater 
hyperplasia and hypertrophy of the smooth muscle fibres of the rumen (Silva et al., 2019). This result can be 
rationalized by the rise in dry matter intake, which increased linearly with the inclusion of CBM, which 
provided a greater volume of ingestion, and consequently more peristaltic movements, despite a smaller 
amount of roughage. 

The ruminal epithelium became thinner with the inclusion of 15% and 20% CBM, which can be 
explained by the reduced abrasion imposed by the CBM in relation to the sugarcane silage. This 
characteristic can generate energy savings by reducing the turnover rate of these cells (Brandi & Furtado, 
2009). The keratinized portion did not change, which may signal that CBM did not present ricin or that the 
amount was low enough not to cause hypertrophy of that portion of the epithelium (Barboza et al., 2019; 
Lima et al., 2018). 

The use of CBM increased the height of the intestinal villi, except in S15, which had wide variations 
among animals. In general, the inclusion of CBM in the diet increased the capacity for nutrient absorption 
(Wang et al., 2009), which was manifest in the linear increase in weight. Villus morphology changes when 
more nutrients are available or there is a greater demand for energy (Montanholi et al., 2013). Increased 
crypt depth was also observed, which is associated with a greater need for cell renewal, because of an 
increase in villus size, or injuries, such as those caused by pathogens, mechanical abrasion, toxins, and anti-
nutritional agents (Silva et al., 2010). However, the expected decrease in the ratio of villus height to crypt 
depth was not observed except in S15 because of a reduction in abrasion relative to S0. This could cause 
greater cellular desquamation and proliferation in the intestinal crypt and greater depth. However, in this 
study, CBM inclusion caused an increase in intake which may have enhances rate of passage through the 
intestine and greater cell desquamation. 

The villus to crypt ratio is widely used to check intestinal health, and the higher the ratio, the better the 
health. That is, a large villus and a shallow crypt were expected. If the crypt was deep, this meant excessive 
need for cell proliferation owing to aggression to the epithelium, which also leads to greater energy 
expenditure (Aptekmann et al., 2001; Barboza et al., 2019; Wang et al., 2009). In the present study, CBM led 
to an increase in intestinal villi, which improved the absorption of nutrients and increased weight gain,  but 
without improving intestinal health. 

Goblet cells are also used to measure intestinal health, and  the greater the number of these cells, the 
better the animal's intestine health. The inclusion of CBM at 15% increased these cells, which produce 
mucin, which has several functions, including aid to intestinal transit (peristalsis), mechanical protection of 
the intestinal epithelium, protection against infectious agents to the intestinal mucosa, and composition of 
intestinal glycocalyx (Rocha et al., 2016). In this study, it was inferred that the increase in mucin would 
protect the intestinal surface from ricin, which causes watery diarrhoea (Aslani et al., 2007) and severe 
gastroenteritis (Santos et al., 2018). Another reason for the increase in goblet cells is the enhanced intake of 
dry matter from  CBM. In other words, the increases in goblet cells and in mucin improved intestinal health. 

The inclusion of CBM in the diet led to mild to moderate renal congestion. In addition, mild 
haemorrhage and hyaline cylinders were observed in the kidneys of animals  in S15. The presence of 
hyaline cylinders in the glomeruli, with eosinophilic material in the urinary spaces, could suggest an ultra-
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filtered protein. Ricin can cause necrotic tubular degeneration, glomerulonephritis, and renal congestion 
(Botha & Penrith, 2009). However, such lesions were not found in this study. Ricin is also cited as promoting 
haemorrhage and multi-focal necrosis in lymphoid organs (Bianchi et al., 2018), degeneration of hepatocytes 
.and dilation of hepatic sinusoids (Botha & Penrith, 2009), congestion and haemorrhage in the 
gastrointestinal tract (Santos & Alessi, 2017), and epithelial cells of intestinal crypts that are focal necrotic 
and diffusely haemorrhagic sub-mucosal (Roels et al., 2010; Hong et al., 2011).  Although the lesions were 
not found in the present study at the level of the liver and intestine, it was possible to verify the decrease in 
hepatic glycogen stock in animals that were fed S20. 

The lesions in the kidney and the decrease in hepatic glycogen in S20 demonstrate that at least part of 
the ricin was not eliminated in the detoxification process. However, the ricin content of the diet was not 
enough to alter the performance of animals negatively. Animals fed with CBM showed greater weight gain 
and greater intake of dry matter.  
 

Conclusions 

Castor bean meal is a cheap by-product of biodiesel production. When it is detoxified and used to 
augment sugarcane silage up to 20% based on dry matter, CBM may promote ruminal and intestinal 
alterations that are favourable to nutrient absorption and increased weight gain when fed to sheep.  
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