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Abstract  
The fleeces of mammals with dense coats, such as the mohair fleeces of Angora goats, usually 

include medullated fibres. These fibres constitute a problem for the textile industry because of their 

structural characteristics. Three experiments were conducted in this study, with the aim of comparing 

human image analysis to digital image analysis and artificial intelligence (AI), in terms of their ability to 

determine the incidence of medullation in mohair samples. The experiments entailed determining the 

incidences of industry non-objectionable medullated (NOB) fibres and objectionable medullated (SME) 

fibres, as percentages of the non-medullated fibres. In each experiment, a set of samples was analysed 

by both laboratory personnel and by different AI models using a Smart Fiber Medullometer. Laboratory 

personnel showed better coincidence and higher correlations with the AI models when counting SME 

fibres (r = 0.64–0.97) than when counting NOB fibres (r = 0.57–0.87). This could be the result of the 

more clearly defined characteristics of SME fibres, in relation to NOB fibres. The results of this study 

indicate a great advance in the automatic detection of SME and NOB fibres in mohair samples. However, 

further adjustments of the AI models are required for counting NOB fibres.  
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Introduction 
The fleeces of mammals with dense coats, such as mohair, wool, cashmere, alpaca, and llama 

fleeces, usually include medullated fibres (Wildman, 1954; Hunter, 1993). These are fibres with a 

continuous or fragmented hollow or partially filled central canal running along their length, and are 

considered contaminants. 

In mohair, medullated fibres constitute a problem for the textile industry because dyed 

medullated fibres appear much lighter than the surrounding dyed non-medullated fibres, and thus show 

up prominently in fabric. This occurs because the cells in the medulla affect the optical properties of the 

light passing through the fibre by diffraction (Hunter, 1993). Of all the types of medullated fibres, those 

collectively described as ‘kemp’ are the most visible and unwanted in the final product because they 
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have a large medulla and are coarse in texture, and their presence consequently increases the prickle 

sensation and the heterogeneity of fabrics. Medullated fibres also have adverse effects on other quality 

characteristics of mohair yarn and fabrics, like handle, hairiness, and stiffness (Hunter, 1993). The 

presence of even a small amount of medullated fibres, in an otherwise high-quality fleece, may therefore 

have a pronounced adverse effect on its value and end-use potential (Hunter, 1993). 

The standard, direct, and objective method to determine the incidence of medullation in most 

animal fibres is the use of a projection microscope. However, this procedure is laborious, expensive, 

and time-consuming (Lupton & Pfeiffer, 1998; Shakyawar et al., 2013), and large-scale sample 

processing can thus be a problem. In addition, as for other subjective methods, the precision and 

accuracy of the results may be affected by the training level of the person determining the percentage 

of medullation. Therefore, having access to practical instruments and methods to quantify and identify 

medullated fibres is crucial for the production, commercialisation, and processing of mohair fleeces. 

Along with the development of computer science and image analysis, research efforts have 

been made to develop algorithms that allow the processing of fibre images captured by cameras to 

measure fibre diameter and curvature, as well as some other fibre characteristics (Baxter, 1992; Qi et 

al., 1995; Deng & Ke, 2010; Quispe et al., 2017). As an example, Qi et al. (1995) and Shakyawar et al. 

(2013) used a projection microscope with image analysis software to determine the percentage of 

coarse and kemp-type fibres in sheep and goat fleeces, with high precision and accuracy.  

In this context, artificial intelligence (AI) has been found to efficiently recognise arbitrarily shaped 

objects, when given large data training sets, or at least sufficient data to allow the application of data 

augmentation techniques, and thus avoid overfitting in training (Krizhenysky et al., 2012; Krizhenysky 

et al., 2017). More specifically, deep-learning techniques have been proven to be efficient for fast object 

recognition (Goel et al., 2019). Moreover, they can reduce human error, automate and improve 

classification processes, and provide greater precision in the metrics used in testing textile fibres. 

Therefore, AI could be useful for the recognition of medullated and non-medullated fibres, as well as for 

the recognition of different types of medullated fibres. In recent years, Quispe et al. (2017, 2022, 2023) 

have focused on the development of technology (instruments and AI models) for this purpose. These 

authors have developed and tested an automatic system, comprising both hardware (including 

mechanical, electronic, and optical components) and software, that is able to determine types of 

medullation in alpaca, llama, and mohair fibres, and this has provided the foundation for the further 

development of novel equipment and testing methods. 

The use of AI has grown rapidly in recent years, with an increasing number of techniques and 

tools becoming available. At the same time, there is a growing need for a practical and efficient 

procedure to identify and quantify medullation in the mohair production and textile industries. Therefore, 

this study was carried out to compare human image analysis to digital image analysis and AI, in the 

context of determining the incidence of medullation in mohair samples. 

 

Materials and methods 
Sample source and preparation  

Mohair mid-side samples (n = 72) were obtained, at shearing, from commercial herds of 

Argentine Angora goats. At the Textile Fibres Laboratory of the National Institute of Agricultural 

Technology (INTA) of Bariloche (Río Negro, Argentina), the samples were washed according to standard 

procedures (Australia/New Zealand standard for wool-fleece testing and measurement) to determine 

the individual animal washing yield. After washing, measurement slides were prepared according to 

ASTM D2968-95 guidelines (Anonymous, 2008). Samples were processed using a Hardy micrometre 

to obtain fibre fragments of 0.4–0.8 mm in length. The fragments were placed on a slide with immersion 

oil as the mounting medium and dispersed using a stirring rod. A coverslip was then placed on top of 

the fragments.  

 

Sample measurement and fibre counting  

Around 150 photographs (raw images), obtained using a Smart Fiber Medullometer (hereinafter 

referred to as an S-Fiber Med), were taken of slides containing fragments from each mohair sample, 

and were used for sample measurement and fibre counting. Each photograph contained an average of 

15 fibres.  
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For manual medullation assessment (human counting), laboratory personnel trained in the 

determination of medullation by microprojection (ASTM D2968-95; Anonymous, 2008) from the Textile 

Fibres Laboratory of INTA Bariloche, Argentina (hereafter referred to as laboratory personnel A) and 

from the Natural Fibres Technology company of Peru (hereafter referred to as laboratory personnel C) 

performed the counts of the total and medullated fibres in the photographs. In each photograph, every 

fibre was labelled as being one of five types: non-medullated, fragmented medullation, discontinuous 

medullation, continuous medullation, and coarse fibres with strong medullation (medulla greater than 

60% in diameter).  

Subsequently, the same images were processed by different versions of AI models (v1, v3.3, 

and v3.4), based on YOLOv5m architecture (Ultralytics®), to detect, classify, and quantify the mohair 

fibres. For this purpose, a computer equipped with an NVIDIA GTX 1660Ti graphics card and an Intel 

Core i7-9750H CPU was used. For the training of the AI models, fibres in each photograph were labelled 

as the five original types (one non-medullated and four medullated). The labelling consisted of enclosing 

each fibre in a bounding box. A data augmentation technique was implemented to enhance the training 

sets, with 350 images for model v1 and 1201 images for models v3.3 and v3.4. The dataset exhibited 

significant class imbalance, with a predominance of non-medullated fibres, compared to medullated 

ones. To address this, specific class weights were adjusted in the loss function, to emphasise the 

detection of the less prevalent fibres. A Google Colab virtual machine powered by a V100 GPU was 

used for training purposes. 

For the purposes of this analysis, medullated fibres were regrouped into two groups: non-

objectionable medullated fibres (NOB; including fibres with fragmented medullation, discontinuous 

medullation, and continuous medullation) and objectionable medullated fibres (SME; including coarse 

fibres with strong medullation, in which more than 60% of the diameter was occupied by the medulla).  

The trained models were then evaluated, comparing the percentages of NOB and SME 

medullation obtained by the AI models with those obtained by the human assessors. 

 

Experimentation  

Three separate experiments were conducted. In each case, mohair samples were processed 

using an S-Fiber Med, and 148–149 photographs – each containing 8–16 fibres – were obtained per 

sample (slide).  

The photographs were processed at the laboratory by trained personnel (personnel A or C) and 

by different AI models (v1, v3.3, or v3.4), using S-Fiber Med equipment. A total of 27, 30, and 15 samples 

were analysed in experiments 1, 2, and 3, respectively (Table 1). 

 

Table 1 Details of the three experiments performed, in which the incidence of medullated fibres in 
mohair samples was determined by either human personnel or artificial intelligence models  

 Experiment 1 Experiment 2 Experiment 3 

    

Samples analysed 27 30 15 

Laboratory personnel  A C - 

AI model v1 v1 and v3.3 v1 and v3.4 
    

 

Descriptive analysis 

To visualise the results of the NOB and SME fibre counts for each sample, as detected by the 

laboratory personnel and the different versions of the AI models, we constructed dumbbell and scatter 

plots with linear trends and confidence intervals. 

The relationships between the processing methods in each experiment were evaluated using 

their paired Pearson correlation coefficients.  

 

Statistical analysis 

Preliminary exploratory analysis of the SME and NOB variables indicated that they did not fit a 

normal distribution. We therefore used the generalised estimating equation (GEE) method (Liang & 
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Zeger, 1986), which is suitable for percentage-paired data with a non-normal distribution. In the GEE 

framework, the model can be written as: 

 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗 + 𝑠𝑖 + 𝜀𝑖𝑗 

 

Where: 

𝑌𝑖𝑗: Response variable for observation i and processing method j, 

𝛽0: Overall intercept, 

𝛽1: Processing method fixed effect, 

𝑠𝑖: Term for observation i to account for correlation between the paired outcomes, 

𝜀𝑖𝑗: Random error for observation i and processing method j, and  

𝑋𝑖𝑗: Identity matrix relating observations to processing methods. 

The correlation structure was defined as being exchangeable, which indicates that the 

observations within the same sample are more correlated than the observations between different 

samples. 

We tested the null hypothesis that the different processing methods would have the same 

means as: 

 

𝐻0: 𝛽1 = 0 vs 𝐻1: 𝛽1 ≠ 0 
 

The significance level used to reject H0 was P <0.05. 

When the processing method effect was significant, the paired contrasts for the levels of the 

effect were estimated using the least squares means, adjusted using the Bonferroni method. 

 

Results 
Descriptive analysis – dumbbell plots 

Figure 1 shows the dumbbell plots for the samples analysed in experiment 1.  

 

 

Figure 1 Dumbbell plots comparing the fibre counts performed by laboratory personnel A ( ) and 

artificial intelligence model of image analysis v1 ( ) for (a) strongly medullated fibres and (b) non-

objectionable medullated fibres in mohair samples. 

 

a b 
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As can be seen in Figure 1, for the samples analysed in experiment 1, laboratory personnel A 

and AI model v1 achieved more coincident results for SME fibres than for NOB fibres, based on the 

proximity of the fibre counts obtained by each method. Furthermore, for NOB fibres, model v1 counted 

more fibres than laboratory personnel A in 24 of the 27 samples analysed (89%).  

In experiment 2, laboratory personnel C had better coincidence with AI model v3.3 than with AI 

model v1 for SME fibre counts. Model v1 frequently detected a higher number of SME fibres than both 

laboratory personnel C and AI model v3.3 (Figure 2). For NOB fibre counts, frequent coincidences were 

observed between the three processing methods.  

 

 

Figure 2 Dumbbell plots comparing the counts performed by laboratory personnel C ( ), and AI models 

of image analysis v1 ( ) and v3.3 ( ), for (a) strongly medullated fibres and (b) non-objectionable 

medullated fibres in mohair samples. 

 

In experiment 3, AI models v3.3 and v3.4 showed good coincidence in detecting NOB and SME 

medullated fibres (Figure 3), with the exception of NOB fibres in sample number two. 

 

a b 
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Figure 3 Dumbbell plots comparing the counts performed by two different AI models of image analysis 

(v3.3  and v3.4 ) for (a) strongly medullated fibres and (b) non-objectionable medullated fibres in 

mohair samples. 

 

Descriptive analysis – scatter plots 

In experiment 1, the scatter plots show high coincidence between the SME fibre counts 

performed by laboratory personnel A and those performed by AI model v1 (Figure 4a), with a correlation 

of 0.97 between the two methods. In contrast, Figure 4b shows high dispersion for NOB fibre detection, 

with more differences in higher than in lower values. The correlation for this group of fibres was 0.57. 

 

  

Figure 4 Scatter plots of counts performed by laboratory personnel A vs counts performed by AI model 

of image analysis v1 for (a) strongly medullated fibres and (b) non-objectionable medullated fibres in 

mohair samples.  

 

In experiment 2, the highest coincidence in SME fibre detection was observed between the 

counts performed by laboratory personnel C and AI model v3.3 (Figure 5b). The correlation calculated 

in this experiment was 0.97. When the counts performed by AI model v1 were compared with those 

a b 

a b 
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performed by laboratory personnel C and AI model v3.3, the correlations were lower (r = 0.64 and r = 

0.72, respectively). The scatterplots also showed higher dispersion between the processing methods at 

higher medullated fibre incidences (Figures 5a and 5c). 

 

   

Figure 5 Scatter plots of counts performed by laboratory personnel C and AI models of image analysis 

v1 and v3.3 for strongly medullated (SME) fibres in mohair samples (a: C versus v1, b: C versus v3.3, 

c: v1 versus v3.3). 

 

The results for NOB fibres showed high correlations and low dispersions between the counts 

performed by model v3.3 and the counts performed by personnel C (r = 0.87) and model v1 (r = 0.83) 

(Figures 6b and 6c). In contrast, high dispersion and low correlation (r = 0.68) was observed between 

model v1 and laboratory personnel C (Figure 6a).  

 

   

Figure 6 Scatter plots of counts performed by laboratory personnel C and AI models of image analysis 

v1 and v3.3 for non-objectionable medullated (NOB) fibres in mohair samples (a: C versus v1, b: C 

versus v3.3, c: v1 versus v3.3). 

 

In experiment 3, the correlations for the counts of SME and NOB medullated fibres between AI 

models v3.3 and v3.4 were 0.97 and 0.89, respectively. The scatter plots show higher levels of 

coincidence in the counts of SME fibres than in the counts of NOB fibres (Figure 7). 

 

a b c 

a b c 
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Figure 7 Scatter plots of counts performed by AI models of image analysis v3.3 and v3.4 for (a) strongly 

medullated (SME) fibres and (b) non-objectionable medullated (NOB) fibres in mohair samples. 

 

Statistical analysis 
Table 2 shows that the results of human (laboratory personnel A) and automated (AI model v1) 

counting methods were significantly different for both SME and NOB fibres in experiment 1. For SME 

fibres, laboratory personnel A counted more fibres than AI model v1. The opposite was observed for 

NOB fibre counts, with laboratory personnel A counting fewer NOB fibres than AI model v1. 

 

Table 2 Analysis of the Wald statistics of the generalised estimating equation models, least squares 

means, and method contrasts (when significant) for strongly medullated (SME) and non-objectionable 

medullated (NOB) fibre determinations in mohair fleeces in experiment 1 

 SME  NOB 

 Wald statistic Df P-value  Wald statistic Df P-value 

        

Method 4.56 1 0.033*  16.9 1 4e-5*** 
    

Least squared means Estimate SE P-value  Estimate SE P-value 

Lab. pers. A 0.76 0.18   0.55 0.09  

Model v1 0.65 0.15   1.01 0.14  

Lab. pers. A – model v1 0.11 0.05 0.033*  -0.46 0.11 1e-4*** 
        

Df: degrees of freedom, SE: standard error, lab. pers. A: laboratory personnel A, model v1: artificial intelligence 
model version 1. ***: P <0.001, **: P <0.01, *: P <0.05. 

 

Significant differences (P <0.001) between the counting methods were observed for SME fibre 

counts in experiment 2 (Table 3). The pairwise contrasts showed differences when AI model v1 was 

used. In both cases, model v1 counted about twice as many SME fibres as laboratory personnel C and 

AI model v3.3. For NOB counts, there were no differences between the processing methods (Table 3). 

No differences between AI models v3.3 and v3.4 were observed in experiment 3 for the counting 

of SME and NOB fibres (Table 4).  

 

 

 

 

a b 
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Table 3 Analysis of the Wald statistics of the generalised estimating equation models and method 

contrasts for strongly medullated (SME) and non-objectionable medullated (NOB) fibre 

determinations in mohair fleeces in experiment 2 

 SME  NOB 

 Wald statistic Df P-value  Wald statistic Df P-value 

        

Method 16.2 2 3e-4***  0.155 2 0.93 
    

Least squared means Estimate SE P-value  Estimate SE P-value 

Lab. pers. C 0.49 0.12   0.83 0.14  

Model v1 1.09 0.19   0.87 0.11  

Model v3.3 0.54 0.13   0.85 0.11  

Lab. pers. C – Model v1 −0.59 0.15 2e-4***  - - - 

Lab. pers. C – Model v3.3 −0.05 0.03 0.434  - - - 

Model 1 – Model 3.3    0.55 0.14 2e-4***  - - - 
        

Df: degrees of freedom, SE: standard error, lab. pers. C: laboratory personnel C, model v1: artificial intelligence 
model version 1, model v3.3: artificial intelligence model version 3.3. ***: P <0.001, **: P <0.01, *: P <0.05. 

 

 

Table 4 Analysis of the Wald statistics of the generalised estimating equation models, least squares 

means, and method contrasts for strongly medullated (SME) and non-objectionable medullated 

(NOB) fibre determinations in mohair fleeces in experiment 3 

 SME  NOB 

 Wald statistic Df P-value  Wald statistic Df P-value 

        

Method 0.044 1 0.83  1.01 1 0.31 
    

Least squared means Estimate SE P-value  Estimate SE P-value 

Model v3.3 0.72 0.25   2.00 0.39  

Model v3.4 0.71 0.24   2.21 0.46  
        

Df: degrees of freedom, SE: standard error, model v3.3: artificial intelligence model version 3.3, model v3.4: 
artificial intelligence model version 3.4.  

 

Discussion 
The results of this study indicate a great advance in the automatic detection of medullated fibres 

in mohair samples, but some differences in the detection and counting of NOB and SME fibres were 

observed. Laboratory personnel A showed better coincidence and higher correlations with AI model v1 

when counting SME fibres than when counting NOB fibres. Similar results were obtained when 

comparing laboratory personnel C with AI model v3.3 for fibre counts. Regardless of the models used 

and the personnel involved in carrying out the visual classification, the coincidences and correlations 

were higher for SME fibres than for NOB fibres. This could be a result of the clearly defined 

characteristics of SME fibres, relative to NOB fibres, and may indicate that AI learning tools may need 

to be improved.  

When measuring fragmented, discontinuous, continuous, and strongly medullated fibres in 

alpaca (n = 3) and llama (n = 3) samples, Quispe et al. (2023) found no significant differences between 

the AI model v1 and direct counting. However, when measuring mohair (n = 4) samples, these authors 

found significant differences between the AI model and laboratory personnel for fragmented, continuous, 

and strongly medullated fibres. Furthermore, Lee et al. (1996) reported that an optical fibre diameter 

analyser (OFDA100) underestimated the number of medullated fibres by 8.2%. Lupton & Pfeiffer (1998), 

in an experiment using 124 mohair fibre samples, similarly found significant differences between 

projection microscope and OFDA assessments when measuring kemp-type fibres (equivalent to SME 
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fibres), and quite low coefficients of determination for all types of medullated fibres, but particularly for 

kemp-type fibres (r2 = 0.14). The most likely cause of the poor agreement between projection 

microscope and OFDA measurements of kemp-type fibres in mohair samples is the low accuracy and 

precision of the projection microscope measurements, when fewer than 1000 fibres are examined 

(Lupton et al., 1994). 

When evaluating alpaca fibres, Pinares et al. (2018) found that the correlation between 

measurements performed using the OFDA100 and a projection microscope was 0.56 for total 

medullated fibres and 0.79 for continuous medullated fibres. Although the OFDA100 does random 

punctual reads and does not differentiate the medullation type, it seems to produce values that are more 

related to the continuous medullated fibre content than to the total medullated fibre content (Quispe et 

al., 2023). 

A low incidence of medullated fibres represents a modelling challenge for mohair medullation 

testing. In the present study, the Wald statistics of the GEE models showed that AI model v3.3 improved 

counting performance, relative to AI model v1, for the determination of the percentage of medullated 

fibres in mohair fleeces, and no differences were observed between AI models v3.3 and v3.4. This 

reflects an improvement in the models implemented. However, the models require further adjustments 

for counting and classifying mohair fibres with non-objectionable medulla. A specific class weight 

adjustment is needed for NOB fibres, as is done for coarse and medullated fibres. Although AI model 

v3.3 identifies and counts SME fibres fairly accurately, the SME content is a key determinant of mohair 

quality and thus needs to be accurately quantified (Hunter, 1993; Atav & Hunter, 2023). 

An issue not addressed in this study that should be highlighted is the measurement time for the 

different assessment methods examined. The average time taken to measure 1800 fibres (three slides 

containing 600 fibres each) by a laboratory operator using the microprojection method is 50–60 minutes, 

in addition to the time taken to prepare the slides, which is the same for all methods. The measurement 

time for human counting is related to the percentage of medullation in the samples. In llama or alpaca 

fibres, this percentage is greater, reaching up to 50%, whereas in mohair fibres it is less than 6%.  

 

Conclusions  
The AI-based models evaluated in this study are specifically designed to detect, count, and 

classify the different types of fibres according to their medullation. These models have the potential to 

assess the medullation content in mohair fibres in less than two minutes, and with high precision relative 

to human determination. The current AI model v3.3 identifies and counts SME fibres with acceptable 

accuracy; however, counting and classifying NOB mohair fibres will require an improved model. 

The accuracy and speed of the measurements made by the S-Fiber Med instrument represents 

a significant leap forward within the field of fibre quality analysis. With the possibilities for improvement 

offered by the AI tools available today, we foresee a promising future for this technology in animal fibre 

textile chains, and, specifically, in the determination of the medullated fibre content of mohair fleeces. 
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