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ABSTRACT

Recent studies have shown that more than 80% of the analysed samples of urinary calculi in our laboratory were mainly composed
of four types of calculi, consisting of the following substances: (1) whewellite and weddellite, (2) whewellite, weddellite and uric
acid, (3) whewellite, weddellite and struvite and (4) whewellite, weddellite and carbonate apatite. In this work the results of
classification of these types of calculi (using their infrared spectra in the region 1450–450 cm–1) by feed-forward neural networks
are presented. Genetic algorithms were used for optimization of neural networks and for selection of the spectral regions most
suitable for classification purposes. The generalization abilities of the neural networks were controlled by an early stopping
procedure. The best network architecture and the most suitable spectral regions were chosen using twentyfold cross-validation.
The cross-validation error for the real samples varies from 5.3% to 5.9% misclassifications, which makes the proposed method a
promising tool for the identification of these types of calculi.
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1. Introduction
Owing to the considerable advances in instrumentation used

in clinical laboratories today, it is easy and relatively inexpensive
to obtain great quantities of data. However, the main problem
with these data is their suitable evaluation and interpretation.
Since the beginning of the 1980s with the introduction of
computerized instrumentation in clinical laboratories many
computerized methods for the determination of the composi-
tion of urinary calculi have been developed.1–11 Most of them are
suitable for the determination of the qualitative composition of
the calculi comparing the collected data with the data stored in
the database.

Determination of the composition of the calculi is important
due to the fact that it could help in finding the reasons for the
occurrence of the calculi and could help determine suitable diets
in order to prevent their further recurrence. One of the most
suitable instrumental techniques for the analysis of urinary
calculi is infrared spectroscopy.12 This method, coupled with
chemometric techniques such as factor-based methods,5,7,9,13 as
well as those based on artificial neural networks (ANN)8–11 have
been previously used for quantitative and qualitative analysis of
urinary calculi.

The specific problem in this study was to identify the type of
the calculi according to their infrared spectra. Hence we are
dealing with the classification problem. A recent study14

revealed that more than 80% of the samples were composed of
mainly four types of calculi: (1) whewellite and weddellite, (2)
whewellite, weddellite and uric acid, (3) whewellite, weddellite
and struvite and (4) whewellite, weddellite and carbonate
apatite. Because of the low frequency of appearance at this stage
we do not have considerable numbers of other types of calculi so
we will focus our study on the above noted types.

In this work the results are presented of our attempt to develop
a method for the classification of urinary calculi using artificial
neural networks. Since ANN and their application in chemistry
are well documented15,16 here only the procedure for their
optimization will be explained in detail.

The network architecture which shows the best performance,
as well as the selection of the most suitable wavenumber inter-
vals, was determined using genetic algorithms (GA). The genetic
algorithms are explained in more detail below.

Genetic algorithms are optimisation tools17–20 based on a
stochastic search of the optimal parameters guided by the princi-
ples of natural evolution and genetics. They are especially
suitable for optimization of discrete functions. GA are valuable
optimization tools allowing a search for the optimal parameters
to be achieved without the need to run every single parameter
permutation. When GA are used the parameters are represented
by binary strings called genes. The genes from different parameters
are combined into chromosomes. The algorithm searches, for
the chromosome(s) with best performance(s) among the group
of chromosomes so called population. Using natural selection
and genetic operations (crossover and mutation), chromosomes
with better performances are selected. Natural selection retains
the genetic material from chromosomes with best performances
for the reproduction procedure. During crossover new chromo-
somes are produced by swapping genetic material between
selected parent chromosomes. This operation, in general,
produces individuals with better performances and improves
the algorithm convergence. Different crossover techniques can
be found in the literature.20 One-point crossover (Fig. 1a) consists
of randomly partitioning the binary strings that represent the
parent chromosomes into two sections. New chromosomes are
formed by swapping the genetic material. They contain genetic
material from both parent chromosomes. Two-point cross-over
(Fig. 1b) is similar to the previously explained procedure;
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however, in this case the parent chromosomes are split into
three parts, and newly formed chromosomes contain two parts
from one parent and one part from the other parent chromo-
some. Mutation is the procedure of random alternation of one or
more genes in the chromosomes (Fig. 2). This operation prevents
the GA from converging too quickly in a small area in the param-
eter search space. The probability at which mutation occurs in
the whole population is defined by the user.

2. Experimental
A total number of 179 mixtures was used for the training of

ANN. Some of the mixtures (whewellite, weddellite and uric
acid; whewellite, weddellite and carbonate apatite) were used in
our previous works,9,10 while additional mixtures consisting of
whewellite and weddellite as well as of whewellite, weddellite
and struvite were prepared. The mixture design for the samples
composed of oxalates and uric acid are given in Fig. 3a. The
mixture designs for the samples consisting of whewellite,
weddellite and carbonate apatite as well as of whewellite,
weddellite and struvite are presented in Fig. 3b. Twelve addi-
tional samples of whewellite and weddellite were prepared with
the mass fraction of the constituents varying from 0 to 1.

Whewellite, weddellite, carbonate apatite and struvite were
synthesized according to procedures found in the literature,21–22

while uric acid was a Merck product (Darmstadt, 99.9%). The
spectra of these compounds were compared using a digital data-
base of infrared spectra of constituents of urinary calculi from
Dao and Daudon.23

In this study we used 160 infrared spectra of the urinary calculi
collected in the period between 1996 and 2003 in our laboratory.14

The qualitative composition of these samples (depending on the
size of the calculi) was determined if possible by target factor
analysis.5,13 In all other cases the composition was determined by
comparing different spectral regions of the sample with the
database of infrared spectra from Dao and Daudon.23 The data
set consisted of 47 samples of whewellite and weddellite type of
calculi, 20 samples of whewellite, weddellite and uric acid type

of calculi, 11 samples consisted of whewellite, weddellite and
struvite, while 82 belonged to whewellite, weddellite and
carbonate apatite type of calculi.

Prior to recording the infrared spectra, up to 2 mg of the
sample was homogenized with 250 mg spectroscopy grade KBr.
Pellets were prepared after application of pressure of 10 tonne
per square centimetre on homogenized mixtures. The infrared
spectra were recorded at room temperature in the region of
1450–450 cm–1, using a Perkin–Elmer System 2000 FTIR instru-
ment (with resolution of 4 cm–1 and sampling interval of 1 cm–1),
with 32 scans for the samples and 32 scans for the background
(atmosphere and 250 mg KBr pellet). If the maximum value of
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Figure 1 Crossover techniques: (a) single point crossover; (b) double point crossover.

Figure 2 Mutation of the gene in the chromosome.

Figure 3 Mixture designs for the training samples prepared from binary
and ternary mixtures of (a) whewellite, weddellite, carbonate apatite; (b)
whewellite, weddellite and carbonate apatite or struvite. (A –
whewellite; B – weddellite; C – uric acid, carbonate apatite or struvite).



the absorbance in the recorded spectrum exceeded 1, the mass of
the sample in the pellet was proportionally reduced in order to
achieve the desired maximum value of absorbance.

3. Data Analysis

3.1. Preprocessing
Before the optimization of ANN started, proper preprocessing

of the data was applied. The spectra of the prepared mixtures for
the training of the networks as well as the spectra of the urinary
calculi were stored in a single data matrix (D). The rows in the
data matrix correspond to infrared spectra of different samples,
and the columns correspond to different wavenumbers. The
spectra were offset corrected and normalized to unit area. In
order to make further calculation faster the columns in the
matrix D were reduced according to the equation:
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di,j in Equation (1) represents the data from the normalized
matrix, i is the sample number, j represents absorbance values at
different wavenumbers, while di m

r
, are data from the i-th sample

in the reduced data matrix. Then the variables in the reduced
data matrix were autoscaled. The autoscaling inflates the error in
the baseline region; however, since we used genetic algorithms
not only for finding the optimal ANN architecture but also for
variable selection, here it helps for better selection of the spectral
regions which carry information suitable for classification
purposes.

In order to extract as much information as possible within the
fewest possible data points and to make the training process
faster, principal component analysis (PCA) was applied. Calcu-
lated principal components were used for the training of the
ANN.

The output data were stored in another data matrix. The
composition of the samples was expressed using a unit vector
with length four.

3.2. Artificial Neural Networks
Throughout this work a three-layered feed-forward neural

network with sigmoid transfer function in the hidden layer and
linear transfer function in the output layer was used. The
network architecture with the best performance was searched,
changing the number of input neurons (principal components)
and number of hidden neurons. The number of output neurons
was fixed at four. Each output neuron serves as an indicator for
different types of calculi.

The weights and the biases of the networks were initialized
according to the Nguyen-Widrow algorithm24 to force the active
regions of the layer’s neurons to be distributed roughly evenly
over the input space. The weights and biases of the networks
were adjusted using the Levenberg-Marquardt algorithm25 for
back-propagation of error. In order to avoid overtraining, which
could produce networks with poor generalization abilities, an
early stopping procedure26 was applied. The procedure requires
division of the data into three sets: training, validation and test
sets. When early stopping is used the weights and biases of the
networks are adjusted using the training set. The validation set
serves to monitor the performances during the training process.
In the beginning of the training process the error in the validation
set decreases together with the error in the training set. How-
ever, when the network starts to overfit the data the error in the
validation set starts increasing. This finding was used to control

the generalization abilities of the networks. The network training
was stopped when all the samples were correctly classified or if
in ten consecutive iteration cycles the number of misclassified
samples in the validation set increased. In the latter case, the
weights and biases that correspond to a minimum in the validation
error are restored. The test set serves to check the performances
of the trained network.

4. Results and Discussion
As previously stated, the genetic algorithm was used for

variable selection as well as for a search of the optimal network
architecture. The percentage variances captured by each principal
component obtained by decomposition of the reduced data
matrix are presented in Table 1. It can be seen that 15 principal
components carry 100% of the variance in the data matrix. These
principal components are usually used to determine the optimal
number of input neurons.10 However, in our case while using
genetic algorithms where the genes are represented using
binary strings the number of possible combinations is 2n, where n
is a positive integer, so we decided to change the number of
input neurons in the interval from 1 to 16. The optimal number
of hidden neurons of the networks was searched in the same
range. Together with the genes representing the absorbances at
100 different wavenumber values, the chromosomes consisted
of a total number of 108 genes (four genes were used to deter-
mine the optimal number of hidden neurons and the other four
to determine the optimal number of input neurons). The initial
population of 80 chromosomes was randomly generated.

Prior to the training of different network architectures,
variable selection was performed, followed by decomposition of
the data matrix (consisting of selected wavenumber regions) by
PCA. The principal components obtained were used for training
of ANN. The performances of each chromosome were obtained
as an average number of misclassified samples after twentyfold
cross-validation. The weights and biases were adjusted using a
training set consisting of the 179 prepared mixtures, while the
160 real samples were randomised and divided into five subsets.
Four of the subsets (80% of the samples) formed the validation
set, while the fifth was used as a test set. During five consecutive
optimizations of ANN (using network architecture as well as the
wavenumber intervals determined by the same chromosome)
each of the five subsets was used once as a test set. After five
repetitions of the cross-validation the order of the samples in the
data matrix was randomly changed.
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Table 1 Percentage variance captured by first 16 principal components
obtained by decomposition of the data matrix.

Number of PCs Percentage variance Cumulative percentage
variance

1 43.6 43.6
2 22.2 65.8
3 13.0 78.8
4 10.6 89.4
5 6.0 95.4
6 1.4 96.7
7 1.1 97.9
8 0.6 98.4
9 0.4 98.9

10 0.3 99.1
11 0.2 99.3
12 0.2 99.5
13 0.2 99.7
14 0.1 99.9
15 0.0 100.0
16 0.0 100.0



The genetic algorithm was repeated within 450 generations.
The population consisted of 80 chromosomes. During each
generation the 16 chromosomes (20% of the whole population)
with best performances were kept unchanged. The mating pairs
were formed with selection of chromosomes according to the
‘roulette wheel selection’ rule.20 When this selection rule is used
all chromosomes are placed on the ‘wheel’. The fraction of the
wheel which belongs to a different chromosome is proportional
to its performance (better performances – larger fraction). The
use of this technique allows a better propagation of genetic
material from chromosomes with better performances to be
favourable compared with the rest of the chromosomes.

The genetic material among the chromosomes was changed
using the two-point crossover technique (Fig. 1b). The initial
mutation rate was 0.10 and it decreased linearly to 0.05 in
generation 150. After that the mutation rate was kept at 0.05.

Because the weights and biases were randomly initialized
and also because the validation and test sets were randomly
generated before each optimization the chromosomes which
showed best performance, even if the optimization was repeated
twenty times, did not always show the same performances in the
successive generations. This may also serve as an explanation
why the chromosomes with best performances presented in the
Fig. 4 did not gradually approach a minimal average classifica-
tion error for the test set. That is why the intermediate results for
the chromosomes, and the chromosomes themselves which
showed the best results, were saved.

The absorbance intervals from four chromosomes with best
performances are presented in Fig. 5. The average percentage of
misclassified samples for these solutions as well as the optimal
number of input and hidden neurons are presented in Table 2.
The average percentage of misclassified samples was calculated
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Figure 4 Average number of misclassified samples in the chromosomes used as parents (- - - - ) and the average performances of the best chromosome
in the population in each generation (——).

Figure 5 Infrared spectra of five substances used in this study: (a) whewellite; (b) weddellite; (c) uric acid; (d) struvite; (e) carbonate apatite, and the
four best solutions with wavenumber intervals selected by genetic algorithms.



using the test set after two-hundredfold cross-validation. Note
that the overall performance varies from 5.3 to 5.9%. Examining
the classification performances for different types of calculi we
note that the best accuracy is obtained for whewellite, weddellite
and uric acid (0.8–1.6%) and whewellite, weddellite and struvite
(2.0–4.3%). The average percentages of misclassified samples for
whewellite and weddellite type of calculi vary from 3.8 to 7.1%,
while the percentage of misclassified samples of calculi
composed of whewellite, weddellite and carbonate apatite is in
the interval between 6.8 and 7.7% and is the highest compared
with the other types of calculi.

5. Conclusion
Here we have shown that feed-forward neural networks,

coupled with genetic algorithms for finding the optimal
network architecture as well as for variable selection, have been
successfully used for the classification of the infrared spectra of
urinary calculi. The low overall percentage of misclassified
samples (varying from 5.3% to 5.9%) makes this procedure a
promising tool for the identification of these types of calculi.
Although, due to the limited number of samples from other
(less frequent) types of calculi, this study focused on the
classification of the four most frequent types,14 the procedure
described here could be easily extended for classification of other
types of urinary calculi.
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Table 2 Average percentage of misclassified samples in the test set determined by two-hundredfold cross-validation (ww = whewellite and
weddellite; wwu = whewellite, weddellite and uric acid; wwc = whewellite, weddellite and carbonate apatite; wws = whewellite, weddellite and
struvite).

Solution Average misclassification error Network architecture

Overall ww wwu wws wwc Input neurons Hidden neurons

1 5.9 7.1 1.6 2.0 6.8 3 12
2 5.8 4.3 1.1 2.1 8.3 3 14
3 5.3 3.8 0.8 2.7 7.6 3 14
4 5.7 4.5 0.9 4.3 7.7 3 16
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