PROMOTING ACCESS TO AFRICAN RESEARCH

South African Journal of Chemistry

Log in or Register to get access to full text downloads.

Remember me or Register



Syntheses, Protonation Constants and Antimicrobial Activity of 2-Substituted N-alkylimidazole Derivatives

P Kleyi, RS Walmsley, IZ Gundhla, TA Walmsley, TI Jauka, J Dames, RB Walker, N Torto, ZR Tshentu

Abstract


A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus & Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 μg mL–1) and B. subtilis subsp. spizizenii (5–20 μg mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 μg mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans).

Keywords: N-alkylimidazoles, antimicrobial, pKa effect

 

PDF and supplemetary file attached.




AJOL African Journals Online