Synthesis of Novel Thieno[3,2-*b*]quinolines and Thieno[3,2-*d*][1,3]thiazoles

Yazid Datoussaid^{a,b,*}, Gilbert Kirsch^b, Adil A. Othman^a and Ismail Abdillahi^b

^aLaboratory of Bimolecular and Organic Synthesis, Chemistry Department, Faculty of Science, University of Sciences and Technology-Mohamed Boudiaf-Oran-USTO,MB-, P.O.B. 1505 El-M'naouer, 31000, Oran Algeria.

^bLaboratoire d'Ingénierie Moléculaire et Biochimie Pharmacologique, Institut Jean Barriol, FR CNRS 2843, 1 Boulevard Arago, 57070 METZ, France.

Received 20 April 2012, revised 13 August 2012, accepted 16 August 2012.

ABSTRACT

New heterocyclic 2-Aryl-9-chloro-5,6,7,8-tetrahydrothieno[3,2-*b*]quinoline derivatives [Aryl-CTTQ] (**2a**-e) and 5-aryl-thieno[3,2-*d*][1,3]thiazol-2-amine derivatives[Aryl-TZA] (**6a**-e)were achieved in good yields starting from 5-aryl-3-aminothiophene-2-carboxylic acid (**1a**-c).

KEYWORDS

5-Aryl-3-aminothiophene-2-carboxylic acid, thieno[3,2-b]quinoline, thiourea, thieno [3,2-d][1,3]thiazole.

1. Introduction

Thiophene, thiazole, and quinoline are well-known examples of heteroaromaticorganic compounds found naturally in plants and animal cell constituents. They are also found in artificial compounds,¹ such as agrochemicals,² pharmaceuticals,³ dyes,⁴ plastics, solvents, photographic chemicals, electronics, corrosion inhibitors,⁵ preservatives and polymers.⁶ At the same time, condensed heterocyclic derivatives of thiophene are of interest as biologically active substances and technical materials. A variety of such sulfur-containing heterocycles have been described. In addition to this, the introduction of sulfurcontaining rings into the structure of compounds often modulates their pharmacological properties,^{7–9} reduces the side-effects of drugs¹⁰ or improves the technical characteristics of materials.^{11,12}

Very little is known concerning the thieno[3,2-*b*]quinoline skeleton,^{13,14} as for instance, found in 2-aryl-9-chloro-5,6,7,8-tetrahydrothieno[3,2-*b*] quinolines A and thieno[3,2-*d*][1,3] thiazoles B,¹⁵ shown in Fig. 1.

In terms of biological relevance, benzothiazoles such as the medicinal compound riluzole, which is a benzothiazole with and additional amine group, have been noted to demonstrate anticancer activity and has used to treat amyotrophic lateral sclerosis.^{15,16}

In this present work we report the synthesis and characterization of a series of thieno[3,2-*b*] quinoline derivatives (**2a–e**), as well as a set of thieno[3,2-*d*][1,3]thiazole derivatives (**6a–e**) which are related to **A** and **B**, respectively, and are anticipated to have biological activity.

2. Results and Discussion

2.1. Synthesis and Characterization of Thieno[3,2-*b*]quinoline Derivatives

The synthesis of the 2-aryl-9-chloro-5,6,7,8-tetrahydrothieno[3,2-*b*]quinoline derivatives(**2a–e**) was achieved by the direct condensation of acids (**1a–e**) and cyclohexanone in POCl₃ without the isolation of dehydrated adducts (see Scheme 1 and Table 1). It should be noted that this work is an extension of the research published earlier by one of us.¹⁵ The successful

Figure 1 Structural skeletons of thieno[3,2-b]quinoline (A) and thieno[3,2-d][1,3] thiazole (B).

construction of the 5,6,7,8-tetrahydrothieno[3,2-*b*]quinoline ring systems was proved by ¹H, ¹³C NMR spectroscopy, CHN analysis and mass spectrometry.

The successful one-pot reactions were thought to proceed *via* a rapid dehydration, followed by cyclization and chloro substitution *in situ* in the presence of the chlorinating agent, as shown by the proposed mechanism illustrated Scheme 2.

2.2. Synthesis and Characterization of Thieno[3,2-b]quinoline Derivatives

In continuation tofour previous work¹⁷⁻²⁰, the synthesis of thieno[3,2-d][1,3]thiazole derivatives 6a-e was performed successfully via a multi-step synthesis from 3-amino-5-aryl-thiophene-2-carboxylic acids **1a–e**, as described in Scheme 3. Details concerning the decarboxylation of the aromatic β -amino acids 1a-e¹⁷⁻¹⁹ to the corresponding amines 3a-e has already been published^{15,19-22} 3-Isothiocyanato thiophenes **4a-e** were next isolated in good yields (58–80 %) by treatment of the amines 3a–e with thiophosgene. The isothiocyanates 4a-e were subsequently treated with *p*-anisidine at room temperature after which the thiourea adducts 5a-e were collected in excellent yields (83-96 %), except for compound 5a which was obtained in 40 % yield. Treatment of the thiourea derivatives 5a-e with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) at room temperature for a short time then afforded the 5-arylo-thieno [3,2-d][1,3]thiazoles (6a-e). The structural details, percentages of yields, and important ¹H and ¹³C-NMR spectroscopic data are summarized in Table 2.

3. Conclusions

We have accomplished the synthesis of an expanded set of 9-amino-5,6,7,8-tetrahydrothieno[3,2-b]quinolines **2a–e** and a

^{*} To whom correspondence should be addressed. E-mail:datou_yazid@yahoo.fr

R: $\mathbf{a} = -C_6H_{5}$, $\mathbf{b} = p-MeC_6H_4$; $\mathbf{c} = p-OMe-C_6H_4$; $\mathbf{d} = p-Cl-C_6H_4$; $\mathbf{e} = p-F-C_6H_4$

Scheme 1

Synthesis of substituted tetrahydrothieno[3,2-b]quinoline. (i) POCl₃, reflux, 5 h (for yields see Table 1).

small library of thieno[3,2-d][1,3]thiazol-2-amine analogues 6a-e from the same starting materials 1a-e, in one and four steps, respectively. All compounds, mostly new, were unambiguously identified by thorough spectroscopic analyses. In all cases, angular cyclization took place, which was established from the ¹H NMR spectroscopic data . Moreover, we hope that the synthesized compounds will be biologically tested in due course.

4. Experimental

4.1. General

Melting points were determined on a Stuart SMP3 apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on an AC Bruker 250 MHz spectrometer in CDCl₃ or DMSO-d6. Mass Spectra were recorded on a MicroTof-Q 98. The homogeneity of all compounds synthesized was checked by TLC on $2.0 \text{ cm} \times 6.0 \text{ cm}$ aluminium sheets recoated with silica gel 60 containing a fluorescent indicator, to a thickness of 0.25.

The preparation of 3-amino-5-phenylthiophene-2-carboxylic acid 1a-e and thiophenamines 3a-e has already been described by us.^{15,19–21}

4.2. Synthesis of 9-Chloro-5,6,7,8-tetrahydrothieno[3,2-b] quinoline 2a-e. General Procedure

To a mixture of 1 (10 mmol) and cyclohexanone (20 mL) was carefully added 30 mL of POCl₃ in an ice bath. The mixture was heated under reflux for 5 h, then cooled at room temperature, and concentrated to give a slurry. The residue was diluted with EtOAc, neutralized with aqueous K₂CO₃, and washed with brine. The organic layer was dried over anhydrous K₂CO₃ and concentrated under vacuum.

4.2.1. 9-Chloro-2-phenyl-5,6,7,8-tetrahydrothieno[3,2-b]quinoline 2a Yield: 55 %; brown solid; mp 172 °C. $\delta_{\rm H}$ (CDCl₃, 250 MHz) 1.89 (s, 4H, 2CH₂); 2.89 (s, 2H, CH₂); 3.01 (s, 2H, CH₂); 7.57–7.62 (m, 3H, 3CH); 7.90–7.93 (m, 3H, 3CH; δ_c (CDCl₃, 62.5 MHz) 23.2; 23.6; 24.7; 29.7; 124.1; 126.3; 128.1; 128.9; 129.3; 136.4; 138.2; 139.1; 144.4; 148.8; 161.9. HRMS (APCI): $m/z [C_{17}H_{14}CINS + H]^+$ calcd.: 300.8250; found: 300.8247.

4.2.2. 9-Chloro-2-(4-methylphenyl)-5,6,7,8-tetrahydrothieno[3,2-b] quinoline 2b

Yield: 69 %; pale-brown solid; mp 185 °C. $\delta_{\rm H}$ (CDCl₃, 250 MHz) 1.85 (s, 4H, 2CH₂); 2.88 (s, 3H, CH₃); 2.96 (s, 2H, CH₂); 3.12 (s, 2H, CH₂); 7.67 (d, J = 8.55 Hz, 2H, 2CH); 7.91 (d, J = 8.55 Hz, 2H, 2CH); 8.00 (s, 1H, CH); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 21.2; 22.3; 22.7; 30.1; 118.4; 120.1; 124.0; 126.9; 127.5; 135.3; 137.6; 139.1; 139.4; 141.8; 144.1; 161.9. HRMS (APCI): m/z [C₁₈H₁₆ClNS + H]⁺calcd.: 314.8517; found: 314.8517.

4.2.3. 9-Chloro-2-(4-methoxyphenyl)-5,6,7,8-tetrahydrothieno[3,2-b] quinoline 2c

Yield: 71 %; brown solid; mp 155 °C. $\delta_{\rm H}$ (CDCl₃, 250 MHz) 1.85 (s, 4H, 2CH₂); 2.90 (s, 2H, CH₂); 3.03 (s, 2H, CH₂); 3.88(s, 3H, OCH₃); 7.57 (d, J = 8.55 Hz, 2H, 2CH); 7.85 (s, 1H, CH); 7.91 (d, J = 8.55 Hz, 2H, 2CH); δ_c (CDCl₃, 62.5 MHz) 38.4; 38.8; 40.1; 40.4; 55.2; 112.9; 113.6; 114.4; 121.3; 126.2; 129.1; 132.1; 138.2; 139.3; 156.6; 179.3.HRMS (APCI): m/z [C₁₈H₁₆ClNOS + H]⁺ calcd.: 330.8511; found: 330.8515.

4.2.4. 9-Chloro-2-(4-chlorophenyl)-5,6,7,8-tetrahydrothieno[3,2-b] auinoline 2d

Yield: 56 %; Gris solid; mp 146 °C. $\delta_{\rm H}$ (CDCl₃, 250 MHz) 1.87 (s,

Compound	R	Product	Yield/%	¹ H NMR, ppm ¹³ C				
				C2	C5	C7	C8	C9
1a				7.57	3.01	1.89	1.89	2.88
		2a	55	124.1	29.7	24.7	23.6	23.2
				8.00	2.88	1.85	1.85	2.96
1b	H ₃ C	2b	69	124.0	30.1	22.7	22.3	21.2
				7.85	3.03	1.85	1.85	2.90
1c	H ₃ CO-	2c	71	112.9	40.4	40.1	38.8	38.4
				8.04	3.03	1.87	1.87	2.90
1d		2d	56	121.5	41.4	41.0	39.2	22.1
				8.06	3.01	1.85	1.85	2.90
1e	F	2e	61	121.1	41.4	40.5	39.7	21.6

Y. Datoussaid, G. Kirsch, A.A. Othman and I. Abdillahi, S. Afr. J. Chem., 2012, 65, 223–227, http://journals.sabinet.co.za/sajchem/>.

Proposed mechanism for intramolecular cyclization of thieno[3,2-*b*]quinolone

4H, 2CH₂); 2.90 (s, 2H, CH₂); 3.03 (s, 2H, CH₂); 7.57 (d, J = 8.55 Hz, 2H, 2CH); 7.91 (d, J = 8.55 Hz, 2H, 2CH); 8.04 (s, 1H, CH); $\delta_{\rm c}$ (CDCl₃, 62.5 MHz) 21.9; 22.1; 39.2; 41.0; 41.4; 121.5; 126.2; 127.7; 127.8; 129.3; 131.5; 134.0; 136.0; 145.3; 157.5. HRMS (APCI): m/z[C₁₇H₁₃Cl₂NS + H]⁺calcd.: 335.2702; found: 335.2707.

4.2.5. 9-Chloro-2-(4-fluorophenyl)-5,6,7,8-tetrahydrothieno[3,2-b] quinoline **2e**

Yield: 61 %; brown solid; mp 117 °C. $\delta_{\rm H}$ (CDCl₃, 250 MHz) 1.85 (s, 4H, 2CH₂); 2.90 (s, 2H, CH₂); 3.01 (s, 2H, CH₂); 7.57 (d, J = 8.55 Hz, 2H, 2CH); 7.89 (d, J = 8.55 Hz, 2H, 2CH); 8.06 (s, 1H, CH); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 21.1; 21.6; 39.7; 40.5; 41.4; 121.1; 124.4; 127.7; 127.8; 129.3; 130.5; 134.7; 136.0; 141.3; 157.2 .HRMS (APCI): *m*/*z* [C₁₇H₁₃ CIFNS + H]⁺ calcd.: 318.8156; found: 318.8150.

4.3. Synthesis of 3-Isothiocyanatothiophene **4a–e**; General Procedure

To a stirred suspension of chloroform (21 mL), water (15 mL), sodium hydrogencarbonate (25.0 mmole) andthiophosgene (12.5 mmol), a solution of thiophenamine 3a-e (25.0 mmol) (3a-e) in chloroform (10 mL) was dropwise added during 10 min. The mixture was stirred at room temperature for an additional 2 h, and then it was repeatedly extracted with chloroform (5 × 25 mL). The pooled organics were washed with water, dried over anhydrous sodium sulfate, filtered and rotary evaporated under vacuum.

4.3.1. 4-Isothiocyanato-2-phenylthiophene 4a

Yield: 78 %; pale-brown solid; mp 98 °C. v_{max}: 1670 (N=C=S)

R: $\mathbf{a} = -C_6H_{5}$, $\mathbf{b} = p-MeC_6H_{4}$ -; $\mathbf{c} = p-OMe-C_6H_{4}$ -, $\mathbf{d} = p-Cl-C_6H_{4}$ -; $\mathbf{e} = p-F-C_6H_{4}$ -

Scheme 3

Synthesis of substituted thieno[3,2-d][1,3]thiazoles. (i) oxalic acid, propanol, 40 °C (ii) CSCl₂, CHCl₃, 2h ; (iii) p-anisidine, CH₂Cl₂, r.t , 16 h; (iv) DDQ, CH₂Cl₂, rt, 1 h.

Y. Datoussaid, G. Kirsch, A.A. Othman and I. Abdillahi, *S. Afr. J. Chem.*, 2012, **65**, 223–227, .">http://journals.sabinet.co.za/sajchem/>.

Table 2 Starting materials 1a-e, products 6a-e, percentages of yields and key ¹ H and ¹³ C NMR spectroscopic data.

Compound	R	Product	Yield/%		^{1}H NMR , ppm ^{13}C		
				C2	C5	C6	
1a		6a	87		_ 141.2	1.89 116.8	
1b	H ₃ C	6b	73		_ 154.2	1.85 129.2	
1c	H ₃ CO-	6с	75		- 138.1	1.85 124.7	
1d	CI -	6d	95		_ 138.1	1.87 123.1	
1e	F	6e	93	_ 159.2	- 138.1	1.85 121.6	

cm⁻¹. $\delta_{\rm H}$ (CDCl₃, 250 MHz) 7.09 (s, 1H, CH); 7.17 (s, 1H, CH); 7.33–7.43 (m, 3H, 3CH); 7.53–7.57 (m, 3H, 3CH); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 97.2; 117.5; 124.7; 127.2; 129.0; 134.1; 141.3; 147.1; 161.3.

4.3.2. 4-Isothiocyanato-2-(4-methylphenyl)thiophene 4b

Yield: 58 %; brown solid; mp: 56 °C. \ddot{v}_{max} : 1690 (N=C=S) cm⁻¹. $\delta_{\rm H}$ (CDCl₃, 250 MHz) 2.30 (s, 3H, CH₃); 7.20 (d, J = 7,5 Hz, 2H, 2CH); 7.50 (s, 1H, CH); 7.54–7.56 (d, J = 7,5 Hz, 2H, CH₂); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 20.6; 120.5; 121.0; 123.2; 125.1; 126.3; 129.7; 132.9; 138.0; 143.0.

4.3.3. 4-Isothiocyanato-2-(4-methoxyphenyl)thiophene 4c

Yield: 80 %; pale-brown solid; mp 97 °C. v_{max} : 1560 (N=C=S) cm⁻¹. δ_{H} (CDCl₃, 250 MHz) 3.88 (s, 3H, OCH₃); 6. 90 (s, 1H, CH); 6.94 (s, 1H, CH); 7.04 (d, J =7.5 Hz, 2H, 2CH); 7.45 (d, J = 7.5 Hz, 2H, 2CH); δ_{C} (CDCl₃, 62.5 MHz) 55.4; 114.5; 118.0; 119.4; 125.9; 127.0; 127.6; 131.1; 144.6; 159.9; 143.2.

4.3.4. 2-(4-Chlorophenyl)-4-isothiocyanatothiophene 4d

Yield: 84 %; pale-brown solid; mp 80 °C. v_{max} : 1630 (N=C=S) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) 7.02 (s, 1H, CH); 7.06 (s, 1H, CH); 7.31 (d, J = 7.5 Hz, 2H, 2CH); 7.40 (d, J = 7.5 Hz, 2H, 2CH); δ_{C} (CDCl₃, 62.5 MHz) 119.2; 120.8; 126.9; 128.0; 129.3; 129.6; 131.6; 134.4; 143.2.

4.3.5. 2-(4-Fluorophenyl)-4-isothiocyanatothiophene 4e

Yield: 78 %; pale-brown solid; mp 87 °C. \ddot{v}_{max} : 1730 (N=C=S) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) δ = 7.09 (s, 1H, CH); 7.17 (s, 1H, CH); 7.33–7.43 (m, 3H, 3CH); 7.53–7.57 (m, 3H, CH); δ_{C} (CDCl₃, 62.5 MHz) 97.5; 118.1; 126.3; 129.0; 131.6; 132.3; 139.8; 147.4; 161.2.

4.4. Synthesis of 1-(3-Thienyl)thiourea **5a–e**; General Procedure

p-Anisidine (5 mmol) was added to a solution of isothiocyanato 4a-e (1.53 g, 2 eq. mol) dissolved in chloroform (30 mL). The solid was stirred for about 16 h at room temperature and concentrated under reduced pressure. The mixture was filtered, washed with water and anhydrous dicholoromethane, and dried under vacuum to produce the corresponding thiourea 5 at high purity and in high yield. This compound was used directly without further purification.

4.4.1. 1-(4-Methoxyphenyl)-3-(5-phenyl-3-thienyl)thiourea 5a

Yield: 83 %; pale-brown solid; mp 160 °C. v_{max} : 3240 (NH), 1170 (C=S) cm⁻¹; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 3.73 (s, 3H, CH₃); 6.88 (d, J = 8.8 Hz, 2H, 2CH); 7.30 (m, 3H, 3CH); 7. 38 (m, 2H, 2CH); 7.52 (s, 1H, CH); 7.58 (d, J = 8.8 Hz, 2H, 2CH); 9.62(s, 1H, NH); 9.86 (s, 1H, NH); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 55.7; 89.2; 104.6; 114.5; 126.3; 127.2; 129.6;130.6; 130.9; 135.7; 140.1; 156.9; 179.5.HRMS (APCI): *m*/*z* [C₁₈H₁₆N₂OS₂ + H]⁺ calcd.: 341.4698; found: 341.4697.

4.4.2. 1-(4-Methoxyphenyl-3-[5-(4-methylphenyl)-3-thiényl] thiourea 5b

Yield: 40 %; beige solid; mp: 152 °C. v_{max} : 3160 (NH), 1230 (C=S) cm⁻¹; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 2.30 (s, 3H, CH₃); 3.60 (s, 3H, OCH₃); 6.85 (d, J = 7.5Hz, 2H, 2CH); 7.22 (d, J = 7.5 Hz, 2H, 2CH); 7.31 (d, J = 7.5 Hz, 2H, 2CH,); 7.46 (s, 1H, CH); 7.48 (d, J = 7.5 Hz, 2H, 2CH); 7.60 (s, 1H, CH); $\delta_{\rm c}$ (CDCl₃, 62.5 MHz) 20.7; 55.2; 111.7; 113.6; 114.5; 120.0; 124.9; 126.1; 129.6;130.8; 132.0; 137.2; 138.0; 141.0; 156.5; 179.2. HRMS (APCI): m/z [C₁₉H₁₈N₂O₁S₂ + Na]⁺ calcd.: 377.4782 found: 377.4779.

4.4.3. 1-(4-Methoxyphenyl)-3-[5-(4-methoxyphenyl)-3-thienyl] thiourea 5c

Yield: 96 %; pale-brown solid; mp 162 °C. \vec{v}_{max} : 3050 (NH), 1130 (C=S) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) 3.73 (s, 3H, CH₃); 3.77(s, 3H, CH₃); 6.88 (d, J = 7.5 Hz, 2H, 2CH); 6.95 (d, J = 7.5 Hz, 2H, 2CH); 7.29 (s, 1H, CH); 7. 38 (s, 1H, CH); 7.52 (d, J = 7.5 Hz, 2H, 2CH); 9.54 (s, 1H, NH); 9.78(s, 1H, NH); δ_{C} (CDCl₃, 62.5 MHz) 53.7; 53.9; 92.1; 103.1; 114.5; 116.0; 127.6; 128.7; 129.2; 130.5; 134.2; 138.1; 159.1; 160.2; 179.1. HRMS (APCI): *m*/*z* [C₁₉H₁₉N₂O₂S₂ + H]⁺calcd.: 371.4958 found: 371.4952.

4.4.4. 1-[5-(4-Chlorophenyl)-3-thienyl]-3-(4-methoxyphenyl)thiourea 5d

Yield: 95 %; pale-brown solid; mp 168 °C. \ddot{v}_{max} : 3260 (NH), 1270 (C=S) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) 3.88 (s, 3H, CH₃); 6.88 (d, J = 7.5 Hz, 2H, 2CH); 7.29 (d, J = 7.5 Hz, 2H, 2CH); 7.44 (d, J = 7.5 Hz, 2H, 2CH); 7.6 (d, J = 7.5 Hz, 2H, 2CH); 7.55 (s, 1H, CH); 7.56 (s,

1H, CH); 7.60 (d, J = 7.5 Hz, 2H, 2CH); 9.64 (s, 1H, NH); 9.86 (s, 1H, NH); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 55.8; 88.2; 102.1; 114.6; 127.4; 128.8; 129.5; 131.5; 133.2; 133.8; 135.1; 140.3; 157.4; 179.4. HRMS (APCI): *m*/*z* [C₁₈H₁₅C₁N₂OS₂ + Na]⁺ calcd.: 397.8967; found: 397.8967.

$\begin{array}{l} 4.4.5. \ 1\ -\ [5\ -(4\ -\ Fluorophenyl)\ -\ 3\ -\ thienyl\]\ -\ 3\ -\ (4\ -\ methoxyphenyl) \\ thiourea\ \mathbf{5e} \end{array}$

Yield: 89 %; pale-brown solid; mp 139 °C. \hat{v}_{max} : 3040 (NH), 1150 (C=S) cm⁻¹; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 3.88 (s, 3H, CH₃); 6.88 (d, J = 8.87 Hz, 2H, 2CH); 7.25 (d, J = 8.87 Hz, 2H, 2CH); 7.30 (m, 2H, 2CH); 7.48 (s, 1H, CH); 7.60 (m, 1H, CH); 7.60 (m, 2H, 2CH); 9.65 (s, 1H, NH); 9.89 (s, 1H, NH); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 55.3; 88.9; 104.4; 114.6; 117.4; 127.8; 129.5; 131.5; 133.8; 135.1; 139.3; 156.9; 162.3; 179.5. HRMS (APCI): m/z [C₁₈H₁₅FN₂OS₂ + Na]⁺ calcd.: 381.4421; found: 381.4425.

4.5. Synthesis of Thieno[3,2-*d*][1,3]thiazole **6a–e**; General Procedure

DDQ (5.5 mmol) was added to a stirred solution of primary thiourea 5a-e (5.0 mmol) in CH_2Cl_2 at room temperature. The progress of the reaction was monitored by TLC. After an hour the precipitate was collected by filtration and thoroughly washed with anhydrous dichloromethane.

4.5.1. N-(4-Methoxyphenyl)-5-phenylthieno[3,2-d][1,3] thiazol-2amine 6a

Yield: 87 %; brown solid; mp 230 °C. v_{max} : 3060 (NH) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) 3.72 (s, 3H, OCH₃); 6.60 (d, J = 8.95 Hz, 2H, 2CH); 6.73 (d, J = 8.95 Hz, 2H, 2CH); 7.1 (s, 1H, CH); 7.22 (m, 3H, 3CH); 7. 40 (m, 2H, 2CH); 9.86 (s, 1H, NH); δ_{C} (CDCl₃, 62.5 MHz) 56.1; 86.2; 105.9; 116.8; 118.1;119.8; 126.7; 129.9; 135.5; 136.3; 139.0; 141.2; 153.9; 159.5; 166.0. HRMS (APCI): m/z [C₁₈H₁₄N₂O₁S₂ + H]⁺calcd.: 339.4539; found: 339.4534.

4.5.2. N-(4-Methoxyphenyl)-5(4-methylphenyl)thieno[3,2-d][1,3] thiazol-2-amine **6b**

Yield: 73 %; Gris solid; mp: 264–266 °C. \ddot{v}_{max} : 2950 (NH) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) 2.30 (s, 3H, CH₃); 3.72 (s, 3H, OCH₃); 6.92 (d, J = 8.5 Hz, 2H, 2CH); 7.21 (d, J = 8 Hz, 2H, 2CH); 7.52 (d, J = 8 Hz, 2H, 2CH); 7.53 (d, 2H, 2CH, J = 8.5 Hz); 7.6 (s, 1H, CH); 10.16 (s, 1H, NH); δ_{C} (CDCl₃, 62.5 MHz) 20.7; 55.2; 113.9; 114.2; 118.0;118.8; 124.7; 129.2; 131.5; 134.2; 137.0; 144.0; 154.2; 157.0; 166.0.HRMS (APCI): m/z [C₁₉H₁₆N₂O₁S $_{2}$ + H]⁺ calcd.: 353.4805; found: 353.4799.

4.5.3. N,5-Bis(4-methoxyphenyl)thieno[3,2-d][1,3]thiazol-2-amine 6c

Yield: 95 %; pale-brown solid; mp 160 °C. \ddot{v}_{max} : 3160 (NH) cm⁻¹; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 3.72 (s, 3H, CH₃); 3.77(s, 3H, OCH₃); 6.88 (d, J = 7.5 Hz, 2H, 2CH); 6.95 (d, J = 7.5 Hz, 2H, 2CH); 7.53 (s, 1H, CH); 7.59 (d, J = 7.5 Hz, 2H, 2CH,); 10.15 (s, 1H, NH); $\delta_{\rm C}$ (CDCl₃, 62.5 MHz) 53.7; 53.9; 103.1; 113.8; 116.0; 119.8; 124.7; 129.2; 131.5; 134.2; 138.1; 139.8; 151.2; 159.2; 162.0. HRMS (APCI): *m*/*z* [C₁₉H₁₆N₂O₂S₂ + H]⁺ calcd.: 369.4799; found: 369.4796

4.5.4. 5-(4-Chlorophenyl)-N-(4-methoxyphenyl)thieno[3,2-d] [1,3]thiazol-2-amine 6d

Yield: 75 %; pale-brown solid; mp 224 °C. \hat{v}_{max} : 2960 (NH) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) 3.15 (s, 3H, OCH₃); 6.90 (d, J = 7.5 Hz, 2H, 2CH); 7.14 (d, J = 7.5 Hz, 2H, 2CH); 7.56 (d, J = 7.5 Hz, 2H, 2CH); 7.66 (d, J = 7.5 Hz, 2H, 2CH); 7.73 (s, 1H, CH); 10.18 (s, 1H, NH); δ_{C} (CDCl₃, 62.5 MHz) 56.3; 108.2; 115.1; 116.6; 117.4; 123.1; 129.5; 133.5; 137.2; 138.1; 139.1; 149.8; 159.2; 181.2. HRMS (APCI): *m*/*z* [C₁₈H₁₃Cl₁N₂O₁S₂ + H]⁺ calcd.: 373.8990; found: 373.8990

4.5.5. 5-(4-Fluorophenyl)-N-(4-methoxyphenyl)thieno[3,2-d][1,3] thiazol-2-amine **6e**

Yield: 93 %; brown solid; mp 90 °C. \hat{v}_{max} : 2990 (NH) cm⁻¹; δ_{H} (CDCl₃, 250 MHz) 3.76 (s, 3H, OCH₃); 6.90 (d, J = 8.8 Hz, 2H, 2CH); 7.21 (m, 2H, 2CH); 7.66 (m, 2H, 2CH); 7.72 (s, 1H, CH); 10.15 (s, 1H, NH); δ_{C} (CDCl₃, 62.5 MHz) 55.1; 107.1; 115.1; 117.4; 121.6; 124.7; 129.2; 131.5; 134.2; 138.1; 139.1; 139.8; 151.2; 159.2. HRMS (APCI): *m*/*z* [C₁₈H₁₃FN₂O₁S₂ + H]⁺ calcd.: 357.4444; found: 357.4449.

References

- 1 S.L. Gould, G. Kodis, P.A. Liddell, R.E Palacios, A. Brune, D. Gust, T.A. Moore and A.L. Moore, *Tetrahedron*, 2006, **62**, 2074–2096.
- 2 Y. Higashio and T. Shoji, Appl. Catal., 2004, 260, 251–259.
- 3 I.G. Monterrey, P. Lama, T. Campiglia, P. La Colla, M.V. Diurno, P. Grieco, and E. Novellino, *Arkivoc*, 2004, 5, 85–96.
- 4 Y. Ooyama, T. Mamura and K. Yoshida, *Tetrahedron Lett.*, 2007, 48, 5791–5793.
- 5 M. Rohwerder and A. Michalik, *Electrochim. Acta*, 2007, 53, 1300–1313.
- 6 T.A. Stroganova, A.V. Butin, J.N. Sorotskaya and V.G. Kulńevich, Arkivoc, 2000, 4, 641–659.
- 7 D. Yue and R.C. Larock, J. Org. Chem., 2002, 67, 1905–1909.
- 8 F.E. McDonald, S.A. Burova and L.G. Huffman, *Synthesis*, 2000, 970–974.
- 9 T.G. Tolstikova, V.A. Davydova, E.E. Shul'ts, G.F. Vafina, G.M. Safarova, F.A. Zarudii, D.N. Lazareva and G.A. Tolstikov, *Khim.-Farm. Zh.*, 1990, **24**, 27–31.
- 10 Y. Kita, M.Kirihara, J. Sekihachi, R. Okunaka, M Sasho, Sh. Mohri, T. Honda, Sh. Akai, Y. Tamura and K. Shimooka, *Chem. Pharm. Bull.*, 1990, **38**, 1836–1840.
- 11 Y. Ohba, Y. Murakami, T. Sone and H. Awano, J. Heterocycl. Chem., 1997, 34, 787.
- 12 X. Deng and L.S. Liebeskind, J. Am. Chem. Soc., 2001, 123, 7703-7704.
- 13 C.A. Boateng, S.V.K. Eyunni, X.Y. Zhu, J.R. Etukala, B.A. Bricker, M.K. Ashfaq, M.R. Jacob, S.I., Khan, L.A. Walker and S.Y. Ablordeppey, *Bioorg. Med. Chem.*, 2011, **19**, 458–470.
- 14 M.M. Ghorab, S.G. Abdel-Hamid and A.F. Hala, Drug Res., 2001, 58,175–184.
- 15 G. Revelant, S, Hesse and G. Kirsch, Tetrahedron., 2011, 67, 9352–9357.
- 16 H.L.K. Stanton, R. Gambari, C.H. Chui, M.C.W. Yuen, E. Lin, R.S.M. Wong, F.Y. Lau, G.Y.M. Cheng, W.S. Lam, S.H. Chan, K.H. Lam, C.H. Cheng, P.B.S. Lai, M.W.Y. Yu, F. Cheung, J.C.O. Tang and A.S.C.Chan, *Bioorg. Med. Chem.*, 2008, **16**, 3626–3631.
- 17 D. Subhas Bose and I. Mohd, Tetrahedron Lett., 2007, 48, 669-672.
- 18 E. Migianu and G. Kirsch, Synthesis, 2007, 1096-1102.
- 19 D. Thomae, G. Kirsch and P. Seck, Synthesis, 2007, 1027–1032.
- 20 D. Thomae, G. Kirsch and P. Seck, Synthesis, 2007, 2153-2156.
- 21 I. Abdillahi, G. Revelant, Y. Datoussaid and G. Kirsch, *Synthesis*, 2010, 2543–2546.