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Abstract 
A method is described for the determination of Au, Pt, Pd, Ru and Rh in a converter 

matte sample, using inductively coupled plasma optical emission spectrometry 

(ICP-OES), with Y or Sc as internal standard.  The results obtained by this method 

are discussed and compared with values obtained by an independent laboratory.  

The efficiency of internal standardization was evaluated by varying the operating 

conditions of the ICP-OES.  Changes in the amount of energy transferred from the 

plasma to analyte, the amount of aerosol reaching the plasma and analyte residence 

time, were studied in terms of their effect on the emission intensity of the analyte and 

the internal standard.  It was found that changes in the emission signals of the PGMs 

due to power variations could be effectively compensated for, using either Sc, Y or 

Ar lines as internal standards.  For variations in aerosol gas flow rate, both Sc and Y 

could only compensate for Pd and Au between flow rates of 0.60 and 0.80 l min-1 

and for Pt, Ru and Rh at 0.80 l min-1.   The effect of sodium on the determination of 

Au and the PGMs, and the use of Sc and Y as internal standards, to compensate for 
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Na matrix effects on accuracy were also studied.  It was found that emission 

intensities of the analytes decreased with increasing Na concentration.  Furthermore, 

Sc as an internal standard could compensate for Pt, Ru and Rh up to 5 g l-1 Na, 

while Y could only compensate for the same elements up to 1 g l-1 Na. 
 

Keywords ICP-OES; internal standardization; platinum group metals. 

 

1. Introduction 
Due to their unique applications in new technologies,1-9 there is an increasing 

demand the world over for gold (Au) and the platinum group metals (PGMs) 

consisting of Pt, Pd, Ru, Rh, Ir and Os.  Inductively coupled plasma optical emission 

spectrometry (ICP-OES) is widely used for the quantitative analysis of the PGMs 

using the internal standardization method.2,9  Although interferences are less of a 

problem in ICP-OES than in other spectroscopic techniques,5,14 matrix effects, 

thermal drift, effects of change in the energy transfer and effects of change in the 

aerosol formation and transport may be present.  These can affect the analytical 

results in terms of accuracy and precision.10-21 

The isolation of PGMs sometimes requires an alkali fusion.  During the fusion, 

which is normally carried out using sodium peroxide, easily ionizable elements (EIEs) 

like sodium are introduced into the sample solution.  The presence of EIEs in the 

plasma may result either in an enhancement or a depression of the analyte emission 

intensity, as well as a shift in its spatial distribution.  The effects of EIEs in ICP-OES 

have been widely recognized and studied,10-15 but owing to various factors that affect 

the overall behaviour of the analyte, the mechanism involved in the effect of EIEs on 

the analyte emission intensity is still not completely understood. 

Internal standardization can be used in ICP-OES to compensate for degra-

dation in accuracy and precision.11,14,16-21  This is accomplished by adding one or 

more elements, at the same concentration, to the samples and standards, in order to 

correct for variations in the analyte response.  Variations may arise from the adverse 

effects associated with instrumental factors.  Internal standardization will be most 

effective if the behavioural characteristics of the internal standard and the analyte 

elements are very similar with respect to plasma conditions18,19,20 and interference 

effects.11,14  Previously published work shows that the use of internal standardization 
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is complex,11,14,16-21 not necessarily efficient and depends strongly on the operating 

conditions.18-20  In some cases,19,20 the use of a combination of several standards 

was recommended, because the use of a single standard was insufficient to 

compensate for the variation in each analyte emission intensity.  Computations 

resulting from the above can be complex and time consuming. 

Considerable disagreement exists within the PGM industry relating to the use of 

an internal standard for the determination of Au and the PGMs.  There are several 

alternatives used in industry, for example In, B, Sc and Y.  Concentrations as high as 

500 µg ml-1 of an expensive internal standard such as Sc (1000 ZAR, 2001 price) are 

often added.  Of the above possibilities, Y would be a cost effective substitute, 

providing it was as effective or better than Sc. 

The aim of this work was to investigate the possible selection of Y rather than 

Sc as internal standard, during the analysis of Au and the PGMs in a converter matte 

sample.  The efficiency of the method was therefore evaluated under various 

operating conditions.  Possible variations, that may have occurred during analytical 

procedures, were simulated.  Modifying the aerosol carrier gas flow rate was used as 

one variation.  Modifying the forward power simulated a change in the amount of 

energy transferred from the plasma to the analyte.  The effect of Na on the 

determination of Au and the PGMs in samples containing 1, 5 and 10 g l-1 Na was 

also studied.  The method was evaluated with water-based calibration standards and 

internal standardization was applied during the analysis of various Na matrix 

samples.  Included was an evaluation of the concentration required, as lower 

concentrations of the internal standard would obviously be more cost effective and 

consequently more beneficial to the industry. 

 
2. Experimental 
Instrumentation 

A simultaneous Perkin-Elmer Optima 4300DV ICP-OES, which allows either axial or 

radial mode of viewing, was used.  Instrumental operating conditions are 

summarized in Table 1.  This system was equipped with a 40 MHz free running 

solid-state generator and an Echelle grating, associated with a segmented array 

charge coupled device (SCD) detector.  A Fassel-type demountable quartz torch was 

used with a 2.0 mm i.d. injector tube.  A cross flow gem tip nebulizer, capable of 
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handling solutions containing high concentrations of salt was used with a double 

pass (Scott type) spray chamber made of Ryton. 

 

Table 1 Instrumental operating conditions. 
 

Forward power/W 
Outer plasma gas flow rate/l min-1 
Intermediate plasma gas flow rate/l min-1 
Aerosol carrier gas flow rate/l min-1 
Sample uptake rate/ml min-1 

1400   
15   
0.3 
0.8 
2.0 

 

Wavelength Selection 

As a method was required which needed minimum mathematical computation, it was 

important to find lines that were free from interferences.  In preliminary investigations 

spectra were recorded of elements of interest, and intense, interference free lines 

were selected, and are listed in Table 2. 

 

Table 2 Analytical wavelengths selected. 
 

Element Wavelength (nm) 

Pt I 
Pt II 
Pd I 
Rh I 
Ru II 
Au I 
Au I 
Y II 
Sc II 
Ar I 
Ar I 

265.945 
214.423 
340.458 
343.489 
240.272 
242.795 
267.595 
371.030 
361.384 
363.268 
420.069 

 

Reagents 

All reagents and standards used were prepared from analytical-reagent grade and 

Specpure chemicals (Johnson Matthey).  The spectrometer was calibrated for Au, Pt, 

Pd, Ru and Rh using six standard solutions prepared from 1000 µg ml-1 standard 
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stock solutions (Specpure, Johnson Matthey) in a concentration range selected to 

cover the full range of Au, Pt, Pd, Ru and Rh in the converter matte sample.  Y or Sc 

standard stock solutions (Specpure, Johnson Matthey) were added as internal 

standard to obtain a selected concentration of 5 µg ml-1.  To study the effect of EIEs 

on the determination of Au, Pt, Pd, Ru and Rh, a series of working standard 

solutions containing 1, 5 and 10 g l-1 Na was prepared.  UnivAR® sodium chloride 

(Saarchem,SA) was used for all sodium additions.  All solutions were prepared in 

pure water (distilled and passed through a Milli-Q water purification system from 

Millipore, Milford, MA, USA). 

 

Sample preparation 

A 10 g portion of a converter matte sample (material obtained after PGM sulphides 

are mostly converted to oxides) and 30 g of NH4Cl were accurately measured into a 

600 ml beaker.  The mixture was dissolved in 300 ml HCl and then heated until the 

reaction was completed.  The PGMs were precipitated by the addition of 25 ml SnCl2 

and 200 ml boiled distilled water.  They were separated from the mother liquor, 

containing base metals, by filtration.  After washing, the PGMs were dissolved in 40 

ml aqua regia.  The final volume was adjusted to 100 ml with pure water.  The 

internal standard (Y or Sc) was added to the sample to obtain a final concentration of 

5 µg ml-1. 

 

3. Results and Discussion 
3.1. Determination of Au and some PGMs 
Platinum, palladium, ruthenium, rhodium, and gold were determined in a converter 

matte sample.  A suitable certified reference material is not available, therefore, the 

same converter matte sample was analyzed by an independent laboratory, Lakefield 

Research Laboratories, Johannesburg, RSA. The independent laboratory used a 

lead fusion fire assay sample preparation method for Au, Pt and Pd; and a nickel 

sulphide fusion fire assay method for Ru and Rh with ICP-OES.  The results of this 

work obtained without internal standardization are compared with values obtained by 

an independent laboratory (Table 3).  The results in Table 3 represent the mean of 

three readings of samples, however, the RSDs reported are those for triplicate 

measurements of the instrument precision.  The concentration of Au, when no 
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internal standard was used, was 16.5% lower than that obtained by an independent 

laboratory.  Using the students’ t-test this was found to be significantly different 

(P>0.5).  This difference may be attributed to ‘instrumental’ differences, or the 

different sample preparation method (lead fusion fire assay) used by the 

independent laboratory. 

 

Table 3 Comparison of analytical results (µg ml-1) for Au and the PGMs in a 
converter matte sample. 

 

    Independent Laboratory This Work 

Element Mean RSD Mean RSD 

Pt 
Pd 
Ru 
Rh 
Au 

110 
  49.6 
  26.7 
  15.7 
    3.33 

0.75 
1.0 
2.5 
2.8 
0.34 

111 
  50.1 
  25.6 
  16.0 
    2.78 

0.22 
0.48 
0.53 
0.43 
0.50 

 

The results obtained from the analysis of Au, Pt, Pd, Ru and Rh in a converter 

matte sample with and without using Y and Sc as internal standards are given in 

Table 4 together with the results obtained using the method of standard additions.  

No suitable certified reference material is available for the converter matte, therefore, 

the results obtained using the standard additions method were assumed to be ‘true’ 

concentrations of Au, Pt, Pd, Ru and Rh in a converter matte sample.  Both 

methods, i.e. when no internal standard used and when using Y and Sc as internal 

standards, were validated for accuracy using the student t-test.  The results obtained 

when no internal standard was used, were lower by 5% for Pt, 7% for Ru, 11% for 

Rh and 5% for Au when compared to results obtained using the standard additions 

method, as well as when using Y and Sc as internal standards.  The last two 

methods mentioned yielded comparable results (P>0.5).  The tendency to 

overcompensate for Pd was observed with both Y and Sc as internal standards.   

The results reported using Y and Sc as internal standards in Table 4 were 

obtained at a concentration of 5 µg ml-1.  The concentration was found to be 

sufficient for adequate improvement of accuracy during the analysis of Au and the 

PGMs in a converter matte sample.  The fact that no improvement in precision was 
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found with the use of an internal standard, and which have been expected, may not 

be significant.  The RSDs reported in all cases are those given by the instrument and 

reflect the computations of the software.  The stable plasmas supplied by modern 

instruments yield RSD values which are not easily improved by internal 

standardization. 

 

Table 4 Comparison of analytical results (µg ml-1) for Au and PGMs in a converter 
matte sample using Y or Sc as internal standard. 

 

  Standard 
Addition 

 No Internal 
standard 

Y(II) 
371.030 nm 

 Sc(II) 
361.384 nm 

Element Mean RSD Mean RSD Mean RSD Mean RSD 

  Pt 
  Pd 
  Ru 
  Rh 
  Au 

116 
  50.8 
  27.6 
  18.3 
    2.86 

0.84 
0.11 
0.83 
0.41 
0.24 

110 
  50.1 
  25.6 
  16.0 
    2.73  

0.87 
0.11 
0.53 
0.43 
0.50 

116 
  51.2 
  27.7 
  17.8 
    2.85 

0.87 
0.14 
0.70 
0.68 
0.31 

115 
  51.3 
  27.5 
  17.8 
    2.88 

0.86 
0.11 
0.75 
0.60 
0.33 

 

3.2. Change in the Efficiency of Aerosol Formation and Transport 
Changes in the amount of aerosol reaching the plasma and analyte residence time 

were studied to verify the effect they have on the behaviour of the PGMs and the 

element used as internal standard in the plasma.  This was achieved by calibrating 

the instrument at conditions given in Table 1 and then varying the aerosol carrier gas 

flow rate from 0.50 to 0.90 l min-1, while keeping other operating parameters 

constant.  It can be seen (Fig. 1) that with axial viewing of the plasma, the use of 

neither Y(II) 371.030 nm or Sc(II) 361.384 nm lines were necessarily adequate for 

efficient compensation of changes in the amount of aerosol formed and analyte 

residence time within the range of flow rates studied.  This was particularly true for 

Pt(I) 265.945 nm, Pt(II) 214.423 nm, Ru(II) 240.272 nm and Rh(I) 343.489 nm lines.  

Both Y and Sc could be applied as internal standards to compensate for Pd(I) 

340.458 nm at aerosol carrier gas flow rates between 0.60 and 0.80 l min-1, 0.70 and 

0.80 l min-1 for Au(I) 267.595 and Au(I) 242.795 nm respectively. 
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Figure 1 Effect of aerosol gas flow rate on emission intensities: Axial viewing. 

 

Similar observations were obtained when viewing the plasma radially (Fig. 2): both Y 

and Sc could only be applied as internal standards to compensate for Pt(I) 265.945, 

Pt(II) 214.423 and Ru(II) 240.272 at flow rates below 0.70 l min-1.  In contrast, Rh(I) 

343.489 nm could be compensated for at flow rates between 0.70 and 0.80 l min-1, 

while the internal standardization using either Y or Sc couldn’t be applied to the Au(I) 

267.595 and Au(I) 242.795 nm lines. 

Figure 2 Effect of aerosol gas flow rate on emission intensities: Radial viewing. 

 

 Since an increase in the aerosol carrier gas flow rate corresponds not only to 

changes in the amount of aerosol and analyte residence time,19,20 but also to a shift 
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in the spatial distribution in the plasma,19 the behaviour of some of the PGMs lines 

depends on the observation height used for the experiment.  When the plasma was 

viewed radially (Fig. 2), the observation height of 15 mm above the load coil was 

selected as a compromise between the various atomic and ionic lines. 

 

3.3. Change in Forward Power 
In order to study the effect of possible energy transfer variation during analysis, the 

forward power was varied from 1100 to 1500 W, while keeping other operating 

parameters constant. 

Figure 3 Effect of power on emission intensities: Axial viewing. 

 

When the plasma was viewed both axially and radially (Figs. 3 to 6), an increase in 

the power led to a corresponding increase in the emission intensities of the PGMs 

and the internal standards lines.  The overall change (of the intensity ratio of the 

analyte to the internal standard) was between 0.93 and 1.20, when Y(II) 371.030 nm, 

Sc(II) 361.384 nm, Ar(I) 363.268 nm and Ar(I) 420.069 nm were used as internal  

standards. 
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Figure 4 Effect of power on emission intensities: Radial viewing. 

 

Figure 5 Effect of power on emission intensities: Axial viewing. 

 

In contrast, both Ar lines could not be used as internal standards in the radial mode 

of viewing (Fig. 6) to compensate for variations in the forward power.  Since small 

variations of the intensity ratio were observed over the whole range of atomic and 

ionic PGMs lines, a single internal standard, i.e. either Y(II) 371.030 nm or Sc(II) 

361.384 nm in both axial and radial plasmas, Ar(I) 363.268 nm or Ar(I) 420.069 nm 

only with axial viewing, may be used to compensate for variations in energy transfer 

during analysis. 
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Figure 6 Effect of power on emission intensities: Radial viewing. 

 

3.4. Effect of Sodium 
The effect of increasing the Na concentration, on the emission intensities of Au and 

the PGMs is illustrated for the axial view in Fig. 7 and for the radial observation in 

Fig. 8.  Relative intensities (expressed as the ratio of the emission intensities 

obtained from a solution with no sodium to those obtained from a solution containing 

sodium)11 can be used as a measure of the Na interference.  It can be seen in Fig. 7 

and Fig. 8 that increasing Na concentration suppressed the emission signals of the 

analytes, with the exception of Au, which was initially suppressed and thereafter 

showed an enhancement in emission intensity.  Initial enhancement of emission 

intensity was observed in Pd (Fig. 7) and Pt (Fig. 8) at low Na concentrations, further 

signal depression was observed with increasing Na concentration of up to 10 g l-1.  

This apparent signal enhancement was found to be statistically insignificant (P>0.1).  

The magnitude of the initial signal enhancement can be related to the ionization 

potential of the elements and a possibility of a shift in the ionization equilibrium.15  

Increased vaporization effect or possible shifts in ionization equilibrium may be 

responsible for the decrease in emission intensities of the PGMs in both axial and 

radial viewed plasmas. 
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Figure 7 Effect of Na on emission intensities: Axial viewing. 

 

Figure 8 Effect of Na on emission intensities: Radial viewing. 

 

The potential of Sc(II) 361.384 and Y(II) 371.030 nm as internal standard to 

compensate for Na matrix effects on accuracy was evaluated.  Sample solutions 

containing 1, 5 and 10 g l-1 Na and 5 µg l-1 Sc or Y were analyzed using water based 

standard solutions as calibration standards.  The extent of compensation, using 

internal standard concentration of 5 µg ml-1, is illustrated in Tables 5 and 6 for axial 

and radial modes of viewing, respectively.  When no internal standard was used, the 

addition of Na resulted in a depressive effect of the analyte concentrations.  The 

effect was more pronounced at 5 and 10 g l-1 than at 1 g l-1 Na.  The use of Sc as an 
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internal standard with radial viewing was more effective, because Sc was able to 

compensate for Pt, Ru and Rh up to 5 g l-1 Na.  Y could, however, only compensate 

for Pt, Ru and Rh up to 1 g l-1 Na for both modes of viewing.  Over compensation for 

Pd and Au was observed in both modes of viewing when using either Y or Sc as 

internal standard. 

 

Table 5 Compensation of interference effects on the concentrations (µg ml-1) of Au 
and the PGMs due to 1, 5 and 10 g l-1 Na using Y or Sc as internal 
standard. Axial viewing. 

 

Element   No Internal 
standard 

  Y(II) 
371.030 nm 

  Sc(II) 
361.384 nm 

 

 True Conc 
(µg ml-1) 

Na 
(1 g l-1) 

Na 
(5 g l-1) 

Na 
(10 g l-1) 

Na 
(1 g l-1) 

Na 
(5 g l-1) 

Na 
(10 g l-1) 

Na 
(1 g l-1) 

Na 
(5 g l-1) 

Na 
(10 g l-1) 

Pt 
Pd 
Ru 
Rh 
Au 

110 
  50.1 
  25.6 
  16.5 
    2.73 

110 
  51.4 
  23.4 
  17.2 
    2.67 

102 
  50.6 
  20.5 
  17.6 
    2.56 

 87.9 
 47.0 
 17.3 
 16.0 
   2.62 

115 
  57.4 
  26.8 
  19.9 
    3.07 

132 
  73.4 
  30.2 
  25.8 
    3.75 

 94.5 
 47.0 
 21.4 
 19.6 
   3.21 

117 
  59.6 
  28.1 
  20.6 
    3.07 

111 
  63.1 
  26.2 
  22.4 
    3.14 

 93.4 
 58.1 
 22.0 
 20.3 
   3.24 

 

Table 6 Compensation of interference effects on the concentrations (µg ml-1) of Au 
and the PGMs due to 1, 5 and 10 g l-1 Na using Y or Sc as internal standard. 
Radial viewing. 

 

Element   No Internal 
standard 

  Y(II) 
371.030 nm 

  Sc(II) 
361.384 nm 

 

 True Conc 
(µg ml-1) 

Na 
(1 g l-1) 

Na 
(5 g l-1) 

Na 
(10 g l-1) 

Na 
(1 g l-1) 

Na 
(5 g l-1) 

Na 
(10 g l-1) 

Na 
(1 g l-1) 

Na 
(5 g l-1) 

Na 
(10 g l-1) 

Pt 
Pd 
Ru 
Rh 
Au 

111 
  49.6 
  25.9 
  16.0 
    2.78 

115 
  49.0 
  26.5 
  16.6 
    2.97 

111 
  47.5 
  25.6 
  16.3 
    2.93 

 94.6 
 42.7 
 22.1 
 14.5 
   2.95 

117 
  51.5 
  26.9 
  17.2 
    3.03 

142 
  59.0 
  32.1 
  20.7 
    3.60 

102 
  44.4 
  22.9 
  15.1 
    2.90 

119 
  53.7 
  29.0 
  18.2 
    3.06 

120 
  52.7 
  27.8 
  17.9 
    3.02 

106 
  46.8 
  23.1 
  15.3 
    2.94 
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4. Conclusions 
Conditions for effective use of Sc, Y and Ar lines as internal standards in the 

determination of Pt, Pd, Ru, Rh and Au were established.  The internal standards, Y, 

Sc and Ar lines compensated for changes in forward power of the instrument.  The 

best compensation, (using Y and Sc as internal standards), for variations in aerosol 

gas flow rate was obtained at flow rates of the aerosol carrier gas of 0.80 l min-1 and 

below.  Since statistically improved results were obtained for this work using the 

internal standardization method (Table 4), Sc(II) 361.384 and Y(II) 371.030 nm can 

be used to improve accuracy during the analysis of the Pt, Ru, Rh and Au in a 

converter matte sample.  Due to the over compensation for Pd, internal 

standardization seems to be inadequate in this case. It can be concluded that, the 

variable effects of EIE-induced processes in the plasma were only partly compen-

sated using Sc(II) 361.384 and Y(II) 371.030 nm as internal standards.  Sc was the 

better internal standard for samples containing up to 5 g l-1 Na, and for radial viewing 

of the plasma (Tables 5 and 6).  Y can only be used to correct for low sodium 

matrices below 1 g l-1 in both modes of viewing.  It would seem that the use of an 

internal standard is limited in compensating for very high sodium matrices. 

 To adequately improve accuracy during the analysis of Au and the PGMs the 

concentration of the internal standard need not exceed 10 µg ml-1.  The 

concentration of 10 µg ml-1 (and even lower) of the internal standard is sufficient for 

computing the ratio of the emission intensity of the analyte to the internal standard, 

which is incorporated during compensation calculations.  It was found that in most 

cases it is not necessary to use high concentrations of an expensive internal 

standard such as Sc. 
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