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Introduction

Elevated concentrations of homocysteine (Hcy), the basis of 

hyperhomocysteinaemia (HHcy), are involved in a myriad of 

diseases, including cardiovascular disease (CVD),1,2 and various 

other conditions, such as impaired bone health,3 inflammatory 

bowel disease4 and cancer.5 The underlying causes of HHcy arise 

from the interplay of genetic, biological and environmental factors, 

which can roughly be divided into two groups: those that are 

unchangeable, such as genetics, gender and advancing age; and 

modifiable factors, including smoking, diet and physical activity. 

In addition, acquired conditions, such as diseases (renal failure, 

rheumatoid arthritis, malignancies, psoriasis and infection with the 

human immunodeficiency virus) and certain drugs (methotrexate, 

nitrous oxide, theophylline and thiazides) can also lead to elevated 

Hcy concentrations.

Since Hcy can be lowered by diet, the nutritionist and dietitian can 

play an important role in the prevention and therapeutic treatment of 

individuals at increased risk of diseases that are contingent on Hcy. 

The metabolism of Hcy and dietary determinants explored in this 

review equip these professionals with the knowledge to treat HHcy 

in ways that are simple, inexpensive and safe.

An overview of the biochemistry and metabolism of 
homocysteine

Hcy is a sulphur‑containing amino acid, i.e. a thiol (−SH), with the 

chemical formula: HSCH2CH2CH(NH2)CO2H.6 Hcy is not present in 

food, but is formed by the body as it metabolises methionine, an 

essential amino acid.7

The structures of methionine and Hcy are identical, except for  

a conversion that results in removing a one‑carbon methyl group 

(−CH3) from the former.8 While methionine is chemically stable, the 

free thiol of Hcy renders it highly reactive in cells and within the 

circulation.7 Seventy per cent to eighty per cent of Hcy is bound to 

the thiol groups of plasma proteins in human plasma.7 Only 1‑4% 

circulates as free Hcy in its reduced form, whereas the remainder 

auto‑oxidises to form homocystine dimers, or combines with 

other thiols, such as cysteine (Cys) and glutathione to form mixed 

disulphides.6,9 It is not yet clear which complexes are formed by the 

reduced Hcy molecules within cells, but it seems probable, with the 

reactivity of the thiol group of Hcy, that similar complexes will form.7

The metabolism of B vitamins, methyl groups and Hcy is inextricably 

linked (Figure 1). The clearance of Hcy from the human circulation 

depends on folate, vitamin B2, vitamin B6 and vitamin B12.

In cells there are approximately 28 enzymes that can be identified as 

methyltransferases. Methyltransferases are involved in the donation 
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(or transfer) of a methyl group from the activated form of methionine, 

namely, S‑adenosylmethionine (SAM), to the synthesis of thymine, 

choline, creatine, epinephrine, the protein 3‑methylhistidine or for 

deoxyribonucleic acid methylation.7 Methionine adenosyl‑transferase 

converts methionine to SAM by a reaction that includes the addition 

of a methyl group and the purine base, adenine (from adenosine 

triphosphate or diphosphate). When SAM donates a methyl group, it 

is converted to S‑adenosylhomocysteine (SAH). All SAM‑dependent 

methyltransferase reactions result in the production of SAH, which 

can be catabolised immediately in vivo by SAH hydrolase to produce 

the nucleotide adenosine and Hcy.7,11 While the accumulation of SAH 

might in itself impair cellular function by inhibiting methyltransferase 

enzymes, thereby preventing the repair of aged or damaged cells,12 

Hcy, with its reactive free thiol group, could also be toxic to cells in 

its own right.7

Hcy can follow three possible pathways within cellular metabolism. 

First, Hcy may be remethylated back to methionine by either 

folate‑dependent or folate‑independent mechanisms.11 During 

folate‑dependent remethylation, methionine synthase (MS) uses 

a methyl group from 5‑methyltetrahydrofolate (5‑MTHF), while 

methylcobalamin (the biologically active form of vitamin B
12) acts 

as the coenzyme. The methyl group for this reaction is produced 

by the enzyme 5,10‑MTHFR. MTHFR, in turn, uses flavin adenine 

dinucleotide (the biologically active form of vitamin B
2) as a co‑

factor.13 In an alternative folate‑independent remethylation route, 

the enzyme betaine-homocysteine methyltransferase (BHMT) 

catalyses the remethylation of Hcy using betaine (trimethylglycine, 

which is a generator of methionine and SAM), a methyl group donor 

derived from choline oxidation, to convert Hcy to methionine and 

dimethylglycine. BHMT catalyses the synthesis of methionine from 

betaine and Hcy, using a zinc ion to activate Hcy.14 Its expression 

is induced in mice on a methionine‑deficient diet.15 SAM seems to 

function as a switch between the methionine cycle and the trans‑

sulphuration pathway. When SAM concentrations become limited, 

SAH and Hcy concentrations increase, and there is an accompanying 

reduction in the methylation cycle.16 High SAM concentrations seem 

to limit Hcy remethylation by inhibiting MTHF and BHMT. Trans‑

sulphuration seems to be enhanced by the stimulatory effect of SAM 

on cystathionine by cystathionine β‑synthase (CBS) activity.16 This 

interplay is necessary for Hcy homeostasis and to prevent diseases 

contingent on HHcy.

Second, Hcy can be catabolised further to Cys by trans‑sulphuration 

using pyridoxal 5’‑phosphate (PLP) (the biologically active form of 

vitamin B
6) as a co‑factor, beginning with the irreversible conversion 

to CBS. The enzyme, cystathionine γ‑lyase (CSE or cystathionase), 

then uses CSE to form Cys, which is required for the synthesis 

of many compounds, including glutathionine, or can be further 

converted to pyruvate, which can be used for energy and sulphate, 

which is excreted through the urine.7 While the trans‑sulphuration 

pathway contributes to the maintenance of normal postprandial Hcy 

concentrations, the remethylation pathway maintains normal fasting 

Hcy concentrations.17

Third, excess Hcy can be exported from the cell into the circulation, 

thereby regulating the intracellular Hcy concentrations.7,16 Earlier 

studies have indicated that the normal reference range for total 

plasma Hcy (i.e. the sum of free and protein‑bound Hcy, Hcy and Hcy‑

Cys mixed disulphide) is 5‑15 μmol/l (to convert Hcy concentration 

to μg/ml, multiply by 0.1352), mild to moderate HHcy between 

16 µmol/l and 100 μmol/l, and severe HHcy > 100 μmol/l.18,19 In 

Figure 1:  Homocysteine and folate metabolism10

5‑MTHF: 5‑methyltetrahydrofolate, 5,10‑MTHF: 5,10‑methylenetetrahydrofolate, BBM: brush border membrane, BHMT: betaine‑homocysteine methyltransferase, BLM: basolateral membrane, CBS: cystathionine 
β‑synthase, CSE: cystathionine γ‑lyase, GCP II: glutamate carboxypeptidase II, Hcy: homocysteine, MS: methionine synthase, MTHFR: methylenetetrahydrofolate reductase, RFC I: reduced folate carrier 1, SAH: 
S‑adenosylhomocysteine, SAM: S‑adenosylmethionine, THF: tetrahydrofolate
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2007, Castañon, Lauricella, Kordich and Quintana1 calculated that 

Hcy concentrations of > 12 μmol/l significantly increased the risk 

of developing venous thrombosis. Since the definition of elevated 

circulating Hcy concentrations should ideally be based on a health 

outcome, they proposed the use of 12 μmol/l as a cut‑off value for 

HHcy, with clinical significance relating to CVD. The American Heart 

Association Nutrition Committee has recommended that basal Hcy 

should be 10 µmol/l as a therapeutic goal for subjects at increased 

risk of CVD.19 Cut‑off values for diseases associated with Hcy other 

than CVD should be established in future studies.

It is important to note that standardisation of the methods 

(chromatography, capillary electrophoresis and immunoassays) 

used to quantify Hcy is still needed, since between‑method and 

inter‑laboratory variations in total Hcy quantification are not yet 

satisfactory.20‑22 According to Ubbink,22 fluorescence polarisation 

immunoassay may become the choice method for routine diagnostic 

laboratories.

Dietary determinants of homocysteine concentrations

The previously referred to description of the metabolism of Hcy 

shows that nutrition plays a major role in Hcy concentrations.

B vitamin intake

Insufficient B vitamin intake increases Hcy concentrations, and 

induces an imbalance of SAM and SAH,23 whereas supplementation 

with B vitamins and their synthetic counterparts seems to reduce 

Hcy concentrations.24 Hcy has been proposed to be a highly sensitive 

indicator of folate and vitamin B12 status.25

Folate status

Folate is a micronutrient found in green leafy vegetables and in 

some animal products, such as egg yolk. It is an important co‑factor 

and methyl donor in converting Hcy to methionine. Reduced folate 

status inhibits the methylation cycle by failing to keep it supplied 

with methyl groups, resulting in reduced Hcy remethylation.26 Folate 

deficiency, due to problems of malabsorption or inadequate dietary 

intake (malnutrition or alcoholism), is considered to be the most 

important nutritional cause of elevated Hcy.27

Although everyone should consume sufficient folate, research 

highlights the necessity of adequate folate intake in drinkers of 

alcohol, as well as individuals who harbour the cytosine to thymine 

substitution at nucleotide position 677 (C677T) in the MTHFR 

gene, i.e. 677 TT genotype.28‑30 Chiuve et al28 reported that the 

adverse effects of moderate, but not excessive, alcohol use on Hcy 

concentrations may be overcome through adequate folate intake. 

MTHFR 677 TT homozygous individuals may require more folate for 

thermolabile MTHFR to function adequately and to ensure normal 

Hcy concentrations, than individuals who harbour the wild type 

alleles.29 The adverse effects of a low intake of the methyl‑related 

nutrients, including folate, with a high intake of alcohol, are additive 

in relation to cancer risk.30

A high intake of natural folate from food reduces plasma Hcy 

concentrations,31 but folic acid (a synthetic chemically stable form of 

folate used in supplements and fortified foods) has been reported to 

be more effective than dietary folate in this regard, probably owing 

to its high bioavailability.32 Fasting Hcy concentrations decreased 

modestly after mandatory folic acid fortification in America in 1998.33 

Supplementation with folic acid alone, and in combination with other 

B vitamins, diminishes Hcy concentration.34 It was concluded in a 

meta‑analysis of 25 randomised controlled trials34 that ≥ 0.8 mg 

folic acid per day is required to achieve the maximal reduction in 

Hcy concentration, and that 0.2 mg and 0.4 mg were associated 

with a 60% and 90%, reduction of the maximal effect, respectively. 

Vitamin B12 (0.4 mg/day) produced a further reduction of 7% [95% 

confidence interval (CI): 4‑9%] in Hcy concentrations, but vitamin B6 

had no significant effect.

Evidence suggests that folic acid supplementation has a beneficial 

effect on the vascular endothelium by reducing Hcy, and through 

other mechanisms, for instance, by reducing oxidative stress.35 In 

addition, acute administration of folic acid can restore impaired 

endothelial function induced by acute HHcy.36 Folic acid was reported 

to have antioxidant properties and direct scavenging effects in vitro,37 

and may directly improve nitric oxide production by enhancing the 

enzymatic activity of nitric oxide synthase.38 Hcy leads to increased 

cell proliferation and cell death through apoptosis and necrosis in 

vitro in smooth muscle cells,39 but adding folic acid to the culture 

medium leads to a significant reduction of Hcy concentrations in 

media. This is probably because of the increased remethylation of 

Hcy to methionine, and the reduced effects of Hcy on proliferation, 

apoptosis and necrosis.39

Mager et al40 reported that long‑term folate‑based vitamin therapy 

was independently associated with lower all‑cause mortality in 

HHcy patients with CVD, and with reduced Hcy concentrations. By 

contrast, Albert et al41 reported that long‑term supplementation with 

folic acid, and vitamins B6 and B12, did not reduce total CVD events in 

high‑risk women, despite lowering Hcy significantly.

Riboflavin status

Riboflavin, or 7,8‑dimethyl‑10‑ribityl‑isoalloxazine (vitamin B2), is 

present in a wide variety of foods. It is an essential precursor for the 

biosynthesis of the biologically active flavin adenine mononucleotide 

(FMN) and flavin adenine dinucleotide (FAD). FMN and FAD participate 

in a range of redoxication reactions, some of which are key to the 

function of aerobic cells.42 FAD is an essential co‑factor for the 

folate‑dependent enzyme, MTHFR, which metabolises folate to the 

form used in Hcy methylation, and for an enzyme that activates the 

vitamin B6 precursor, pyridoxal, to the biologically active form, PLP.7 

Thus, in theory, inadequate intake of riboflavin might give rise to 

increased plasma Hcy.7 In addition, riboflavin deficiency may exert 

some of its effects on Hcy by reducing the metabolism of other B 

vitamins, notably those of folate and vitamin B6.
42

Riboflavin intake emerged as a factor that influences Hcy in 

the Framingham Offspring cohort.43 By contrast, Verhoef and  
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De Groot27 reported that riboflavin has little influence on fasting  

Hcy concentrations. It may be relevant in individuals with the MTHFR 

677 TT genotype, as riboflavin status was reported to be a modulator 

of Hcy in healthy adults, especially in those homozygous for the 

MTHFR C677T mutation.44 Moat et al45 confirmed a folate‑riboflavin 

interaction in determining Hcy unrelated to the MTHFR genotype.

Vitamin B6 status

Reduced vitamin B6 causes an accumulation of Hcy because CBS 

and CSE, which catalyse the trans‑sulphuration of Hcy, are vitamin 

B6 dependent.46 The metabolism of vitamin B6 is flavin dependent and 

impaired synthesis of PLP in the presence of a riboflavin deficiency 

has been demonstrated in studies on humans and animals.47 

McKinley et al48 reported that low‑dose vitamin B6 supplementation 

effectively lowers Hcy in healthy elderly persons who are both folate 

and riboflavin replete.

Vitamin B6 supplementation has little influence on fasting Hcy 

concentrations, although it may improve Hcy catabolism in elderly 

individuals.27 It significantly reduces the post‑methionine load 

increase in Hcy, and also reduces cystathionine concentrations, 

probably owing to enhanced CSE activity.49

Vitamin B12 status

Folate and cobalamin (as methylcobalamin) are involved as substrate 

and coenzyme, respectively, in the remethylation pathway of Hcy to 

methionine. Plasma Hcy increases considerably when there is an 

intracellular deficiency of folate or cobalamin, and is regarded as a 

sensitive marker of suboptimal vitamin concentrations.25

Vitamin B12 deficiencies are most commonly because of problems 

of malabsorption, e.g. alcoholism47 or inadequate dietary intake, 

especially in individuals who follow a strict vegetarian diet since 

vitamin B12 is found only in animal‑source foods.50 A reduced vitamin 

B12 status prevents the proper functioning of the methylation cycle by 

directly reducing the activity of MS, one of the enzymes needed for the 

methylation cycle to turn.7 The enzyme, MS, is dependent on 5‑MTHF 

as a methyl donor, but also on vitamin B12 as methylcobalamin.7  

A low vitamin B12 status may alter Hcy by reducing its remethylation 

cycle towards methionine resynthesis in the same manner that low 

folate status alters Hcy metabolism.26

Certain rare and drastic genetic mutations, such as the one described 

by Mudd et al in 1969,51 can lead to impaired vitamin B12 activation. 

This results in reduced MS activity, with a rise in urinary and plasma 

Hcy, as well as a reduction in the activity of methylmalonyl‑CoA 

mutase (the other vitamin B12‑dependent enzyme), causing an 

accumulation of methylmalonic acid.51

Dietary lipotropics

Methionine, betaine and choline belong to a group of compounds 

called lipotropics.52 Lipotropics are compounds that have an affinity 

for lipids, and thus prevent or correct the excess accumulation of fat 

in the liver by promoting the transport of fatty acids from the liver to 

the tissues, or by accelerating the utilisation of fat in the liver itself.

Methionine

Methionine is an essential amino acid that is naturally found in dietary 

proteins. A typical Western diet contains 1.6‑2.8 g of methionine per 

day,53 which is more than that required for protein biosynthesis. Thus, 

the excess must be catabolised.7 The transamination of methionine 

only occurs at non‑physiologically high concentrations, and instead, 

methionine catabolism takes place mainly in the liver, through its 

sequential conversion to SAM and SAH, and then to Hcy, followed by 

the trans‑sulphuration pathway.7

For this reason, methionine loading tests (MLT) are often used to 

induce “stress” on Hcy metabolism, and could reveal any defect 

in Hcy metabolism (methionine intolerance) and cause a transient 

acute increase in Hcy concentrations. MLT permit the screening of 

40‑55% of persons54 who may have clinically relevant HHcy which 

fasting Hcy determination alone may fail to identify. Ubbink et al55 

reported that the rise in Hcy after methionine loading is lower in 

black Africans than in Caucasians, which points towards a more 

effective Hcy metabolism. This seems to correlate with the lower 

prevalence of CVD seen in these subjects. Caucasians with an 

elevated risk of CVD showed higher Hcy concentrations after oral 

MLT.56 It has been suggested that methionine handling capacity is 

more dependent on (genetically determined) enzyme activities, but 

fasting (basal) Hcy concentrations are more strongly influenced by 

environmental factors.57

Oral MLT is associated with a small, but significant, enhancement 

of thrombin generation,58 and is associated with impaired 

flow‑mediated, endothelium‑dependent vasodilatation.59 Even 

low‑dose methionine and animal protein intake was reported to 

increase Hcy and lead to the rapid onset of endothelial dysfunction,60 

suggesting that even diet‑related increments in Hcy may contribute 

to the development and progression of atherosclerosis.  It is unknown 

whether or not a diet that is rich in animal protein containing large 

amounts of methionine might activate platelets, increase thrombin 

production or induce endothelial dysfunction.

Betaine and choline intake

Betaine or trimethylglycine, and its precursor, choline, are major 

sources of methyl groups (one‑carbon nutrients) in the diet,61 

and thus can act as methyl donors in Hcy remethylation. Betaine 

generates methionine and SAM, then converts Hcy to methionine, 

using the enzyme, BHMT, independent of folate or vitamin B
12.

7 

Betaine can be found in food and it is estimated that a normal diet 

contains 0.5‑2 g/day or can be synthesised endogenously from 

choline, also found in food.62 Choline is derived from the diet, as well 

as from de novo synthesis.63

The consumption of betaine and choline can lower fasting Hcy 

concentrations to the same extent as folic acid, particularly in the 

setting of a high intake of methionine.27 High doses of betaine (6 g/day 

and higher) can be used as Hcy‑lowering therapy in individuals with 

HHcy because of inborn errors in their Hcy metabolism.  Betaine has 

been reported to lower plasma Hcy in vitamin B
6‑resistant patients.62 

In addition, betaine supplementation seems to lower fasting Hcy dose 
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dependently, up to 20% for a dose of 6 g/day, in healthy volunteers 

with normal Hcy concentrations. Betaine also reduces the increase 

in Hcy after MLT by up to 50%, whereas folic acid has no effect.62 

Betaine could also lower Hcy independent of folate remethylation in 

the presence of ethanol.64 In this regard, Chiuve et al65 reported that 

total choline and betaine intake was inversely associated with Hcy 

in women, and that the strongest dose response was observed in 

women with a low methyl diet (high alcohol and inadequate folate 

intake). Therefore, Chuive et al65 concluded that the remethylation 

of Hcy may be more dependent on the betaine pathway when 

methyl sources in the diet are low. Betaine and choline depletion in 

animals plays a role in the pathogenesis of homocystinuria owing to 

deficiencies of the MTHFR enzyme.66

Thus, betaine and choline can be important food components that 

attenuate Hcy rises after meals. If Hcy plays a causal role in the 

development of CVD, a diet that is rich in betaine or choline might 

benefit cardiovascular health through its Hcy‑lowering effects. 

However, betaine and choline may adversely affect serum lipid 

concentrations, which can increase the risk of CVD. It remains to be 

established whether or not the potential beneficial health effects of 

betaine and choline outweigh the possible adverse effects on serum 

lipids.

Coffee and tea consumption

The consumption of tea and coffee increases Hcy concentrations by 

up to 20%.27 Habitual coffee drinking is positively associated with Hcy 

concentration in most,43,67‑70 but not all,71‑73 observational studies. 

Intervention trials indicated that the increasing effect of coffee 

consumption on Hcy concentrations may be causal.74‑76 The vitamin 

B6 concentration was markedly lower in a randomised crossover 

trial in the period when coffee was consumed, rather than when no 

coffee was drunk, but since vitamin B6 does not seem to influence 

fasting Hcy concentrations greatly, the significance of this finding 

is uncertain.75 The constituent caffeine, which is a methyl xanthine, 

might be the culprit,43,75 because methyl xanthines are known to 

act as vitamin B6 antagonists that may inhibit the conversion of 

Hcy to Cys.75 The polyphenol, chlorogenic acid, which is present in 

coffee in the same amount as caffeine, may partly contribute to the 

increase in Hcy concentration. When polyphenols are metabolised, 

methyl groups from methionine are necessary, which results in a 

higher production of Hcy.77 Both caffeine and chlorogenic acid are 

also present in tea, although in smaller doses, which explains the 

absence of a clear association between Hcy and tea consumption.77 

The consumption of one litre of strong coffee daily may affect diet 

composition and other lifestyle factors. Therefore, it could influence 

Hcy concentrations indirectly,78 but this has not yet been explored. It 

is also possible that the Hcy response to coffee may be modulated 

by the genetic factors mentioned earlier.78 Since the habit of coffee 

drinking is widespread, consequences at population level may not 

be negligible. However, the effect of coffee consumption on Hcy 

concentration is modest and much less than the changes associated 

with a variation in B vitamin status.

Alcohol consumption

Light to moderate alcohol consumption is associated with reduced 

mortality from CVD (the French paradox).79  However, intermittent 

bouts of excessive consumption (binge drinking) and chronic 

high levels of alcohol consumption result in a sequelae of health 

problems, such as increased CVD (for example, cardiomyopathy 

and arrhythmia) morbidity, neurological disorders, certain cancers, 

chronic pancreatitis and liver cirrhosis.80  Lifelong abstainers appear 

to be at a slightly higher risk than light or moderate consumers 

who are able to control their drinking.81 Therefore, total abstinence 

is unnecessary when the consumer can enjoy alcohol sensibly, but 

abstainers are not advised to start drinking in order to gain any 

claimed health benefits.82

In a meta‑analysis, Bagnardi et al83 reported that regular heavy 

drinkers and heavy irregular binge drinkers showed significantly 

different pooled relative risks of 0.75 (95% CI: 0.64‑0.89) and 1.10 

(95% CI: 1.03‑1.17), respectively, as opposed to abstainers, for 

developing CVD. Therefore, the pattern of drinking, as well as the 

amount consumed, plays a pivotal role in CVD development.

An elevated Hcy concentration is one of the myriad negative 

consequences of chronic alcoholism.84 The Hcy concentration 

seems to be twice as high, and plasma B vitamins lower, in chronic 

alcoholics, than in healthy controls. This is probably because of 

a combination of malnourishment, the direct effects of heavy 

alcohol intake on folate status and vitamin B6 (acetaldehyde 

dislodges vitamin B6 from its protective binding protein so that it is 

destroyed, and alcohol interferes with thiamine, folate and vitamin 

B12 absorption), the decreased hepatic uptake and retention, and 

the increased urinary excretion of folate.85 A major difficulty in 

drawing conclusions about the effect of alcohol consumption on 

Hcy lies in distinguishing between the direct effects of alcohol and 

alcohol‑induced malnutrition. An association between alcohol and 

Hcy has not been detected in some studies,86,87 but it has been 

demonstrated in several that moderate consumption inversely 

relates to Hcy concentration, compared with abstaining.88,89 However, 

moderate alcohol consumption in social drinkers is associated with 

increased Hcy,90 and wine consumption, in particular, relates to Hcy 

in a J‑shaped manner, i.e. Hcy is higher when alcohol consumption 

is high, lower when alcohol consumption is low or moderate, and 

tends to be slightly increased in individuals who do not consume 

any alcohol.68 Thus, the literature on the cardioprotective effects 

of moderate alcohol consumption, compared with non‑drinking, in 

relation to Hcy, remains contentious.

It may be important to distinguish between the effects that can 

be attributed directly to alcohol, and those that may result from 

other constituents of alcoholic drinks. Different types of alcoholic 

beverages seem to influence Hcy in different ways. The results from 

studies to determine the effects of different alcoholic beverages are 

inconsistent.90,91 Beer consumption might be responsible for the 

inverse or absence of an association with alcohol consumption and 

Hcy concentration,43,68,88,91 but some studies report that it is positively 

associated with Hcy.90 Researchers have ascribed the beneficial 
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effect of beer drinking on Hcy to its folate, riboflavin and vitamin B6 

content, all of which are important for enzymatic Hcy conversion. 

Wine consumption seems to elevate Hcy concentrations.90,91 It 

was revealed that Hcy in women showed a U‑shaped curve with 

a minimum of 8.49 mmol/l at 10‑20 g alcohol/day, whereas an 

inverse association was observed in men by Burger et al92 in a large 

cross‑sectional study. Spirits, on the other hand, seem to elevate 

Hcy concentrations.90,91 In Africa, indigenous people brew traditional 

alcoholic beverages, such as sorghum, millet beers and Mbamba, 

the last of which is a concoction of water, bread, oats, pineapple 

juice, sugar and yeast. Sorghum beer has been reported to make 

positive contributions to dietary intake, particularly when the beer 

is brewed with a sorghum adjunct. Hence, the results for different 

types of alcoholic beverages are not clear.

The relationship between alcohol consumption and Hcy concentration 

is complex. Alcohol (ethanol) interferes with both the transmethy‑

lation and trans‑sulphuration pathways of Hcy metabolism, either 

directly,93 or through its metabolite, acetaldehyde,94,95 or through the 

indirect effects mediated by interactions with vitamin metabolism. 

Alcohol studies that have been conducted on humans are scarce, 

and when using chronic alcoholics, the results are often complicated 

by liver disease and/or dietary insufficiencies associated with 

alcohol consumption.

Acetaldehyde inhibits MS activity,96 which could lead to HHcy, 

independent of vitamin status. It has been indicated in animal 

studies that alcohol consumption causes a compensatory increase 

in betaine, a Hcy methyltransferase that generates methionine 

from Hcy.84 Although methionine levels seem to vary, methionine 

adenosyltransferase activity decreases in most, but not in all 

studies.84,97 The SAM to SAH ratio, an important determinant of 
methylation activity, has been reduced in most animal studies.98 
The alcohol intermediate, acetaldehyde, accelerates the intracellular 
degradation of PLP, reducing the PLP content of hepatic cells, 
despite an adequate dietary intake of vitamin B6.

99 This inhibits the 
PLP‑dependent enzymes, CBS and CSE, compromising Hcy trans‑
sulphuration. Nitric oxide production, secondary to augmented Hcy, 
inhibits MS activity, possibly by inactivating cobalamin,100 which 
further disrupts MS activity, despite cobalamin supplementation, 
as well as directly inhibiting MS, owing to acetaldehyde.96 It was 
reported in studies conducted on ethanol‑fed rats that MS inhibition 
raises the “trapping” of folate as 5‑MTHF.93,93

Folate intake, as discussed previously, seems to be inversely 
associated with Hcy concentration, but this relation seems to be 
modified by the MTHFR C677T genotype and alcohol intake. Women 
with the thermolabile variant of MTHFR 677 or moderate alcohol 
intake demonstrated a significantly higher Hcy concentration at a 
low intake of folate, but adequate folate intake minimised these 
differences.28 In addition, the elevation of Hcy in women who 
consumed low folate and drank moderate amounts of alcohol was 
greater in the presence of the variant, MTHFR 677 T allele.28

Summary and conclusion

Since numerous clinical conditions are known to be associated with 

a high Hcy count, a reduction in Hcy concentration may be clinically 

relevant to prevent disease. However, it remains to be determined 

whether or not lowering Hcy would prevent clinical disease outcomes, 

such as stroke events. Randomised controlled trials that incorporate 

the dietary strategies reviewed here should clarify whether or not the 

nature of the observed association between Hcy and these diseases 

is indeed causal. Settling this dispute of causality is necessary 

since various modifiable factors have been identified that could be 

manipulated as a strategy to prevent and treat diseases contingent 

on Hcy if they were found to be causative. As summarised in Table I, 

Hcy can be lowered by the adequate intake of folate, and vitamins B2, 

B6 and B12 (either through a diet containing lots of fruit, vegetables 

and some animal‑derived foods, or the fortification of food with B 

vitamins), as well as betaine and choline, and the proscription of 

heavy irregular (binge) alcohol drinking. Dietary changes can modify 

Hcy concentrations in ways that are relevant to public health. 

Therefore, dietitians are able to manipulate Hcy, thereby raising the 

prospect of disease prevention.
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