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The teaching of mathematics does not only require the teacher to have knowledge about the subject, but the teacher also 

needs mathematical knowledge that is useful for the teaching and explaining thereof, as the teacher’s knowledge effects the 

students’ knowledge. A teacher should use appropriate mathematical explanation to be understood well by her/his students. 

In the study reported on here we investigated how prospective mathematics teachers defined the concept of prime number 

and which strategies they employed to explain the concept. The study was a descriptive survey within qualitative research. 

Forty-eight participants took part in the study and all completed the abstract algebra courses where they learned about the 

concept in question. The data collection tool was a form comprising 3 open-ended questions challenging what the concept of 

prime number was and how this concept could be explained to secondary/high school students. The data were analysed and 

the results show that the preservice teachers experienced great difficulty in defining the concept of prime number and that 

they used rules to explain prime numbers. 

 

Keywords: explanatory strategies; prime number; prospective mathematics teachers 

 

Introduction 

The National Council of Teachers of Mathematics (NCTM, 2000) states that, for all class levels, it is important 

to understand numbers, the ways of in which they are represented and the relations between them. Understanding 

numbers and the multiplicative relation between them requires the comprehension of prime numbers (PNs) 

(Zazkis & Liljedahl, 2004). PNs is a very important concept encountered by students in all class levels from 6th 

grade and in numerous learning domains. NCTM (2000:214) asserts that students use PNs to find denominators, 

factors, prime factors and to solve problems. Even at the university level PNs are related to various domains of 

mathematics such as the principal theorem of arithmetic, modular arithmetic, group theory, Galois Theory and 

the theory of numbers, and has particular importance for prospective mathematics teachers (PMTs). However, 

studies indicate that prospective teachers (PTs) find the use of PNs and prime factorisation in operations difficult 

(Lenstra, 2000; Zazkis, 1999) and even more PTs struggle with multifarious conceptual mistakes (Özdeş, 2013; 

Zazkis & Campbell, 1996a). Zazkis and Liljedahl (2004) show that prospective teachers could define what a PN 

was, however, they struggled to put this knowledge into practice. We also assert that PMTs find this topic 

difficult since it lacks a clear representation, i.e. PNs could not be represented as a product. The incomplete 

comprehension of this topic by PMTs, who would explain it to their students in the future, will hinder the correct 

conveyance of the topic to the students. The teachers’ knowledge and the manner in which they explain the topic 

to their students are significant. Literature reveals that PMTs make conceptual mistakes such as accepting 0 and 

1, the multiples of the factors in prime factoring, the negatives of the PNs as PNs, and thinking that 2 and odd 

numbers are not PNs (Özdeş, 2013); thinking that greater numbers have greater factors and that PNs are small 

(Zazkis & Campbell, 1996b; Zazkis & Gadowsky, 2001). In this study we aimed to reveal how PMTs defined 

PNs and how they explained the concept. 

Although certain studies focus on PNs (Zazkis, 2005; Zazkis & Campbell, 2006), others address PMTs’ 

understanding of prime factoring (Zazkis & Campbell, 1996a, 1996b) and PNs (Zazkis & Liljedahl, 2004); 

designate PMTs’ conceptual mistakes about PNs and factors (Zazkis & Campbell, 1996b; Zazkis & Gadowsky, 

2001); reveal PMTs’ understandings about 20 concepts, such as PNs, factors, denominators, etc. via conceptual 

maps (Bolte, 1999); and investigating the potential definitions of PNs by the students (Cavey, Kinzel, Walen & 

Rohrig, 2015). In addition, some studies propose various methods on how PNs should be taught. Burkhart (2009) 

used real building blocks to form visual representations of prime factorisations, and enabled the students to 

explore the concept of prime factors physically. Kurz, Garcia, Breyfogle and Wallace (2010) exploited tiles to 

prime factorisation and Griffiths (2010) used prime factor trees to teach prime factorisation, while Baştürk Şahin, 

Şahin and Tapan Broutin (2017) used didactic theories. We could not find any studies on what PMTs know 

about PNs and how they would explain this topic to the students. We thus sought to fill this gap by studying 

PMTs’ knowledge of the concept of PNs, and how they would teach this to students (explanatory strategies). The 

teaching of mathematics does not only require of the teacher to have knowledge about the subject, but also to 

have useful mathematical knowledge for teaching and explaining the subject. A teacher should be able to select 

and clarify appropriate mathematical explanations for the teaching of any concept and link these with the 

approach used to teach the concept (Kazima, Pillay & Adler, 2008). 
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Theoretical Framework 
Explanatory strategies 

Mathematical explanations do not always consist of 

formal proofs in school mathematics. Individuals 

sometimes use abstract mathematical argument 

(AMA), analogy, and rules strategies to explain 

mathematical concepts (Cofer, 2015). AMA is the 

use of abstract mathematical thought and formal 

reasoning techniques to explain a definition (Cofer, 

2015). In this strategy, the use of mathematical 

definitions, theorems, axioms and formulas is rele-

vant. In the undergraduate mathematics courses 

such as abstract algebra, PMTs are taught formal 

justification and explanatory techniques, which 

apply to mathematical formulas and definitions. 

For example, any conceptual and abstract explana-

tion that might be given by a lecturer or a teacher at 

university or school is AMA (Cofer, 2015). Analo-

gy is a strategy in which concrete contexts or con-

crete materials are used to explain mathematical 

concepts, and it is expressed as concrete mathemat-

ical representation to build reasoning (Cofer, 

2015). The context can be a palpable representa-

tion. That is, using concrete materials such as ap-

ples, pencils, etc. in explaining a mathematical 

concept. For example, PMTs in this study used 

flowers and their petals to express PN. The concept 

may also be an explanation that depends entirely 

and fundamentally on a specific mathematical 

context or representation such as the use of a num-

ber table. Rules are strategies that individuals use 

to form alternative rules and explanations of the 

correct statements using expressions such as “they 

are already defined in the book like this.” Howev-

er, these rules refer to what the individual believes, 

i.e. they are mathematical definitions remembered 

and acknowledged by the individual (Cofer, 2015). 

For example, PMTs used especially false explana-

tions or expressions such as “I remembered …” 

when they were asked how they would explain the 

concept of PN to secondary school or high school 

students. 

 
Method 
Research Model 

This study was a qualitative research study, and a 

descriptive survey model was adopted as the design 

since we aimed at determining the concept explana-

tions of PMTs about PNs and their explanatory 

strategies. 

 
Participants 

The participants were selected PMTs who had 

completed the abstract algebra courses and had 

learned the concepts in question in these courses. 

The participants comprised of 48 fourth-year PMTs 

(the PMTs were educated in the same class) in the 

Department of Mathematics Teaching and gradu-

ates of the Department of Mathematics (the PMTs 

were educated in the same class of the pedagogical 

formation training) receiving teacher’s training. 

The students in the Department of Mathematics 

Teaching will become secondary school mathemat-

ics teachers and the students in the Department of 

Mathematics will become high school mathematics 

teachers. 

 
Data Collection 

A survey comprising of three open-ended questions 

was used. The questions were: 1) “What is a PN?,” 

2) “Are there any other alternative definitions for 

PNs? If so, please explain these definitions” and 

3) “How would you explain the concept of PN to 

secondary school or high school students?” The 

opinions from two faculty members, one of which 

taught the abstract algebra course, were taken into 

consideration in creating the survey form. The 

open-ended questions were printed out and distrib-

uted to the participants, and the prospective math-

ematics teachers were given 50 minutes in which to 

answer the questions. 

 
Data Analysis 

Content analysis was used in the analysis of the 

data. The degree of correctness of the PMTs’ defi-

nitions of PNs were categorized into two catego-

ries, namely appropriate (essential and adequate) 

and inappropriate (essential and inadequate, partly 

essential and inadequate, neither essential nor ade-

quate). The explanatory strategies introduced to the 

literature by Cofer (2015) were used as a basis on 

how they would explain PNs. 

In order to determine the correct definition, 

training books, course books and mathematics 

dictionaries were scanned and the Wolfram Math-

World Dictionary (Weisstein, 2017) and the study 

by Arıkan and Halıcıoğlu, which were thought to 

have had the most appropriate definitions, were 

used as reference. Arıkan and Halıcıoğlu (2012) 

define PN such as let p ≥ 2 an integer. If the de-

nominators are only ±1 and ±p, then p is a PN. 

Weisstein (2005) defines PN as a positive number, 

which does not have positive denominators other 

than 1 and itself, and is greater than 1. According 

to these definitions, the key features that provide 

the definition of PN are determined as not having a 

positive denominator other than 1 and itself, 2 and 

the positive integer of a natural number greater 

than 2, not having any denominator other than ±1 

and ±1 itself. The explanations that provided all 

these features were evaluated in the essential and 

adequate category; those that provided two of the 

features in the essential and inadequate category; 

those that provided only one feature in the partly 

essential and inadequate category, and those that 

provided none of the features in the neither essen-

tial nor adequate category. 

In the data analysis, one of the researchers 

conducted the analysis after which another re-

searcher re-analysed the data at a different time to 

ensure the reliability of the encoding. The encoding 

consistency was found to be 90%. The controver-
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sial codes were discussed in detail and consensus 

was achieved between the researchers. 

 
Findings 

In this section, the definition and the alternative 

definition of PNs and the strategies used to explain 

this concept to the students are addressed. 

 

Findings Concerning the First and the Second 
Questions 

The PMTs were asked 1) “What is a PN?” and 

2) “Are there any other alternative definitions for 

PNs? If so, please explain these definitions.” The 

accuracy of the PMTs’ answers to the second ques-

tion were analysed (Table 1). The total frequencies 

in Table 1 are greater than the number of the partic-

ipants. The reason for this is that some participants 

provided answers that could be placed in more than 

one category. 

 

Table 1 The accuracy of the definitions for PN 

Accuracy of the definition Criteria 

Frequency 

First question Second question 

Accuracy Appropriate Essential and adequate 3 0 

Inappropriate Essential but inadequate 45 24 

Partly essential but inadequate 0 7 

Neither essential nor adequate 

Empty 

0 

0 

12 

11 

 

The findings presented in Table 1 show that 

the accuracy conditions of the PN definitions sup-

plied by the PMTs comprised of appropriate and 

inappropriate definitions; while appropriate defini-

tions have the essential and adequate criteria, inap-

propriate definitions were categorised as essential 

but inadequate, partly essential but inadequate and 

neither essential nor adequate. However, it was 

seen that the definitions for PN fall into the catego-

ries essential and adequate and essential but inade-

quate. A great majority of PMTs gave definitions 

of PN, which were essential but inadequate (45 

responses placed the definition within to this cate-

gory). The definitions presented by the PMTs are 

presented in Table 2. The alphabet letters (a), (b), 

etc. used in the following discussion refer to the 

corresponding entries in Table 2. 

 

Table 2 PN definitions 

PN Essential and adequate Essential but inadequate 

Partly 

essential but 

inadequate 

Neither 

essential 

nor 

adequate 

Number  b) which does not have any denominator other than 

1 and itself (n = 33) 

c) which cannot be divided by any number other 

than 1 and itself under the 

condition 0a +   (n = 1) 

  

Natural 

number 

a) equal to or greater 

than 2, which does 

not have any 

positive 

denominators other 

than 1 and itself (n 

= 3) 

d) natural numbers that can only be divided by 1 

and itself (n = 2) 

e) natural numbers, except for 1, that can only be 

divided by 1 and itself (n = 1) 

f) natural numbers that have only two positive 

denominators (n = 1) 

g) natural numbers equal to or greater than 2, that 

can only be divided by 1 and itself (n = 1) 

  

Positive 

integer 

 h) positive integers greater than 1, that do not have 

any denominators other than 1 and itself (n = 2) 

i) positive integers that do not have any 

denominators other than 1 and itself (n = 2) 

  

Integer  j) integers that do not have any denominators other 

than 1 and itself (n = 2) 

  

 

In none of the explanations by PMTs, -1 and 

the negative counterpart of the numbers were taken 

as the denominators of the number; all explanations 

focused on positive integers as denominators. In 

the definition provided in the Wolfram MathWorld 

dictionary, the positive denominators were taken 

into consideration. From this definition, it is under-

stood that a PN has only 1 and itself as the positive 

denominators, but that it may have negative de-

nominators, and the definition directs us to the 

statement that a PN is a positive integer greater 

than 2 with ±1 and ±p as the only denominators 

(Arıkan & Halıcıoğlu, 2012). When the PMTs used 

these definitions as reference in the assessment of 
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the explanations, the explanation in (a) by the 

PMTs were a valid one, and this definition was 

assessed as essential and adequate. It was found 

that the explanations other than (a) used the divi-

sion definition for PNs, and they were assessed in 

the essential but inadequate category. In (b), all 

numbers that do not have any denominators other 

than 1 and itself were acknowledged as PNs. This 

definition allows negative numbers, zero and even 

all rational and irrational numbers to be PNs. The 

majority of the students (n = 33) defined PNs as 

such. In (d) and (e) the set of natural numbers, with 

only 1 and themselves as the denominators, was 

defined as the PNs. While 1 was left out of the set 

of numbers in (e), it was included in (d). These 

definitions even allow zero to be a PN. The PNs, 

which were only positive integers, were expanded 

to the set of all integers (with 1 and themselves as 

denominators) in (j). According to this definition, 

negative numbers with 1 and themselves as the 

only denominators were acknowledged as PNs. The 

statement “positive integers, which do not have any 

denominators other than 1 and themselves” was 

expressed verbally in (i) and with the 0a +   

condition in (c), and it was stated that positive 

integers were greater than 1. In (f) it was stated that 

“natural numbers, which only have two positive 

integers as denominators” were PNs. It was stated 

that the denominator set of PNs was a two-element 

set, but it was not stated what these elements were, 

and the set of natural numbers was greater than 1. 

If the negative counterparts of the denominators 

had been stated in definitions (h) and (g), the defi-

nitions would have been complete. It would have 

been sufficient if it were stated that the denomina-

tors were only positive denominators. 

In response to the second question, the PMTs 

should have provided an alternative definition for 

PNs. The responses were examined and in the 

answers to this second question, the explanations 

other than the ones in the first question were in-

cluded (Table 3). Once again, the alphabet letters 

(a), (b), etc. used in the following discussion refer 

to the corresponding entries in Table 3. 

When the alternative definitions for the PNs 

were examined (Table 3), definitions did not resort 

in the essential and adequate category, 14 in the 

essential but inadequate category, seven in the 

partly essential but inadequate category and 12 in 

neither the essential nor the adequate category. 

Eleven participants left this question unanswered. 

The findings indicate that the PMTs were unsuc-

cessful in inadequately defining PN. It was also 

clear that participants who defined PNs generally 

with negative expressions such as “… which cannot 

be divided …” in the first question, made their own 

definitions with positive expressions such as “… 

which has denominators …” or “… which has fac-

tors … .” It was also interesting to note that the 

PMTs’ first statements referred to the negative, 

while the alternative statements referred to the 

positive. While the majority of the participants 

mentioned 1 and the number itself as the denomi-

nators, one participant (in category j) mentioned -1 

and the negative counterpart of the number itself as 

the denominators. In fact, this definition would 

have been in the essential and adequate category, 

but the definition of PNs was explained as negative 

integers and the fact that a PN is a positive integer 
was overlooked. Thus, this definition was included 

in the essential but inadequate category. In Table 3, 

the explanations in (b) and (c) appear to be closed 

statements. It is stated that the number is the prime 

number if the sum of the divisors, divisors in 

(b) are positive and divisors in (c) are positive and 

negative, is equal to 1 surplus. The statement in 

(b) leads us to the definition that a PN is a number, 

which has only 1 and itself as the denominators. In 

statement (c) the negative numbers were also in-

cluded in the denominators. Let us accept -1 and -5 

as denominators of 5. The sum of these denomina-

tors is -6 and one more of this number is -5. How-

ever, the number in question was 5. Since -5 is not 

equal to 5, the definition in (c) is categorised as 

essential but inadequate. The definition in (h) is the 

same as the (b) definition in Table 2. While defini-

tion (b) in Table 2 is a verbal statement, definition 

(h) in Table 3 uses more complex notation. In (g) it 

is stated that a PN is a number, which has only two 

positive integer denominators, but it was not stated 

what these numbers were, and whether these were 

different from each other. In (d), (e), (f) and (i), the 

factors of the PN were mentioned, and in (e), dif-

ferent from others, more complex symbols were 

used. The definition set or the number of the de-

nominators were not defined correctly in the expla-

nations provided. The statements in the partly es-

sential but inadequate category were rather inade-

quate and they were in fact not essential either. For 

instance, in (l) it is stated that 2n-1 is prime while n 

is prime. In (l), which tries to determine which 

numbers were prime in the condition of a given 

PN, inadequate definitions were seen. The partici-

pants’ answers in the neither essential nor adequate 

category were not even remotely close to the defi-

nition and were completely inaccurate. For in-

stance, responses (v) and (q) mentioned being rela-

tively prime, instead of defining PNs. 
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Table 3 Alternative PN definitions 

PN 

Essential and 

adequate Essential but inadequate 

Partly essential but 

inadequate 

Neither essential nor 

adequate 

Number  a) which does not have any 

other positive 

denominators than 1 and 

itself (n = 2) 

b) with the sum of its 

positive integer 

denominators is one 

more than itself (n = 1) 

c) a number p if the sum of 

the denominators of p 

equals p + 1 (n = 1) 

d) which cannot be written 

as the multiplication of 

numbers other than 1 and 

itself, ab≠p, p I a and 

p I b (n = 2) 

e) which has two 

denominators at most (1 

and itself) (n = 2) 

f) which can be written as 

the multiplication of 1 

and itself (n = 2) 

g) which only has two 

positive denominators (n 

= 1) 

h) If we call the set of PNs 

p, then 1p. The reason 

for this is that 1 has only 

one denominator, which 

is 1, equals itself and 

thus has an infinite 

number of denominators. 

P={x: 1Ix, xIx, b I x, 

bЄN  b≠x   b≠1} 

(n = 1) 

k) that is expressed as 

p≥2 (n=4) 

l) the number 2n-1, while 

n is prime (n = 1) 

m) that is not a multiplier 

of any number other 

than 1 (n = 1) 

n) the remaining numbers 

when we remove the 

numbers, which can be 

written as a multiple of 

a number in the real 

number set (n = 1) 

p)  infinite (n = 2) 

r) that enables the 

formation of all 

numbers present 

(n = 1) 

s) Odd numbers (n 

= 1) 

t) numbers other 

than odd 

number, which 

can be written as 

perfect square 

numbers (n = 1) 

u) the number of 

positive integers 

(n = 1) 

v) which has 1 and 

itself as the 

greatest 

common 

denominators 

with any number 

(n = 1) 

y) which does not 

have any prime 

factor other than 

itself (n = 1) 

z) the remaining 

numbers greater 

than 1, after 

removing the 

multiples of the 

number other 

than itself, (n = 

1) 

Natural 

number 

 i) greater than 1, which has 

1 and itself as the only 

denominators (n = 1) 

 x) let nЄN, the 

numbers except 

for the multiples 

of 2, 3 and 5, 

except for 2, 

which are 

between n and 

n2+1 (n = 1) 

Integer  j) that can be divided by ±1 

and ± itself (n = 1) 

 q) let a, b Є Z. 

GCD(a, b) = 1. 

The greatest of 

the common 

denominators is 

(n = 2) 

 
Findings Concerning the Third Questions 

Responses to the third question, “How would you 

explain the concept of PN to secondary school or 

high school students?,” were categorised according 

to the explanatory strategies proposed by Cofer 

(2015), the AMA, and Analogy and Rules (Table 

4). In this question, one of the participants used 

AMA, two used analogy and 25 used rules. The 

answers of the other 14 participants were included 

in the other category. 
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Table 4 PN explanatory strategies 
Strategies Examples f 

AMA • With the definition “a positive integer, which does not have a positive denominator other than 1 and 

itself (except for 1) (n = 1) 

1 

Analogy • I would bring to the classroom, two large daisies or I would prepare them from cardboard (He/she 

drew a flower on the survey form). One of the flowers has all petals, and the other one has only two, 

but let those two petals be enough to form a flower. I would tell the students that the flower with many 

petals is a non-PN, formed out of many petals, while the other one with two petals is a PN and has two 

factors (1 and itself). The number on the flowers is the multiplication of the numbers on their petals. 

(for secondary school) (n = 1) 

• … first I would start by teaching them the divisibility rules. I would bring a number table from 1 to 

100, and I would ask them to mark the divisibility rule I had taught, on the table (n = 1) 

2 

Rules • With the definition “only the number which can only be divided by 1 and itself is a PN” (n = 16) 

• “I remember that there is a sieve of Eratosthenes. If this method is to be explained, we write the 

positive integers until the number we wish (except for 1). Then we circle two and cross out the 

multiples of 3. If we continue like this, the circled numbers (2, 3, 5) give us the PNs” (n = 2) 

• With the definition “a number, which does not have any factors other than 1 and itself” (n = 2) 

• With the definition “a positive integer, which can be divided by 1 and itself” (n = 2) 

• With the definition “numbers, which do not have any positive denominators other than 1 and 

themselves” (n = 2) 

• With the definition “an integer, which does not have any denominators other than 1 and itself” (n = 1) 

25 

Other • Definition-example, example numbers, directly mentioning PNs, memorising, direct instruction, 

brainstorming-game 

14 

 

The use of rules was the strategy most fre-

quently used by PMTs to explain PNs (Table 4). 

The answers of the majority of the participants (n = 

16) indicated that they would explain PN to the 

students using a definition, “Numbers, which are 

divisible by 1 and itself only, are PNs.” This defini-

tion is a rule. Because, the definition taught in 

abstract mathematics courses is that PNs were 

positive integers and greater than 1, and their posi-

tive denominators were 1 and themselves and the 

negative denominators were -1 and the negative 

counterparts of themselves; and this definition is an 

AMA. However, most of the participants remem-

bered and acknowledged that the denominators 

were 1 and the numbers themselves. Therefore, the 

definition adopted by the participants was consid-

ered as a rule. Student’s use of rules reflects the 

incomplete comprehension of the PMTs with re-

gard to the concept in question. In addition, rules 

contain expressions such as “it was like this in the 

course books,” “the teacher said so,” “since it is 

the definition.” One of the participant’s explana-

tions revealed this feature of the rule. The partici-

pant commented: “I remember that there is a sieve 

of Eratosthenes. If this method is to be explained, 

we write the positive integers until the number we 

wish (except for 1) ... .” From the explanation it 

was clear that a previously learned method was 

active in the participant’s memory, but the explana-

tion was rather inadequate, as the explanation pro-

vided more questions than answers. 

Only two participants used analogy. One of 

the participants indicated that they would use 

handmade cardboard daises to explain PN (Ta-

ble 4). This definition limited the set of PNs to ±1 

and ± themselves as denominators to a set of num-

bers, which have only positive denominators, be-

cause it is not possible to explain negative denomi-

nators with the petals of the flower. In fact, use of 

analogy occurs independently from common math-

ematical thought. 

Only one of the participants used AMA. The 

participant stated that he/she would explain PN to 

the student by giving the definition, “With the defi-

nition a positive integer, which does not have a 

positive denominator other than 1 and itself (except 

for 1).” This definition corresponds to the defini-

tion in the Wolfram MathWorld dictionary, and it 

is based on abstract and theoretical mathematical 

techniques. The participant determined the defini-

tion domain of PNs as positive integers greater than 

1 (with 1 and the number itself as the only denomi-

nators), and this definition corresponds to the 

common and appropriate mathematical definition. 

 
Conclusion and Implications 

We found that PMTs provided accurate and inaccu-

rate explanations in defining the concept of PN. 

The majority of definitions were found to be inac-

curate. Only three of the PMTs emphasised that the 

positive denominators of PNs were 1 and the num-

ber itself, and used the definition in the Wolfram 

MathWorld dictionary, and thus gave an accurate 

explanation. However, apart from these explana-

tions, all other included inadequate or unrelated 

explanations and were thus categorised as inaccu-

rate explanation, which revealed that the PMTs 

were rather uncertain about this topic. The follow-

ing errors occurred in their reasoning: the definition 

of PNs in wider definition sets such as “number,” 

“integer” or “natural number,” without thinking 

that they were positive integers; acknowledging 

zero, 1 and negative integers as PNs; failing to 

acknowledge the existence of negative denomina-

tors among the denominators of the number; trying 

to explain relative PNs or which numbers would be 
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PNs under the condition of one PN. Cavey et al. 

(2015) indicate that students displayed similar 

errors in their study in which they investigated the 

usability and openness preferences in explaining 

PNs. In addition, they found that most of the defini-

tions by PMTs included negative expressions such 

as “… which does not have denominators … .” 

When the PN definition in Wolfram MathWorld 

dictionary is considered, it is seen that “a positive 

number, which is greater than 1 and does not have 

positive denominators other than 1 and itself” is 

defined as PN and thus the definition includes a 

negative expression. Zazkis (2005), too, indicates 

that PMTs use negative expressions in defining the 

PN. However, Zazkis and Campbell (1996a, 

1996b) acknowledge the use of negative expression 

in the definition as an obstacle before the compre-

hension of the concept of PN. In addition, Zandieh 

and Rasmussen (2010) mention the significance of 

handling familiar concepts in an unfamiliar context. 

As many individuals were familiar with the concept 

of PN, they were not familiar with alternative defi-

nitions (Cavey et al., 2015). When asked for alter-

native definitions, the PMTs answered the question 

with positive expressions such as “… which has 

denominators …” or “… which has factors …” 

concordantly. It was also interesting that the PMTs’ 

first statements referred to the negative, while the 

alternative statements referred to the positive. 

However, except for one PT, in none of the expla-

nations by PMTs, -1 and the negative counterpart 

of the numbers were taken as the denominators of 

the number, and all explanations focused on posi-

tive integers as denominators. 

The use of rules was the explanatory strategy 

used most frequently by PMTs (25 individuals) to 

explain PNs. Some of the answers in this category 

contained inappropriate or inadequate explanations, 

which had been formed based on the experiences or 

emotions of the individuals. For instance, answers 

such as “I remember that there is a sieve of Eratos-

thenes. If this method is to be explained, we write 

the positive integers until the number we wish (ex-

cept for 1). Then we circle two and cross out the 

multiples of 3. If we continue like this, the circled 

numbers (2, 3, 5) give us the PNs” were in the form 

of PMTs remembering some previous topics. How-

ever, PMTs remembered their previous knowledge 

incompletely; they expressed themselves in an 

incomplete manner and thus they made incorrect 

explanations. They said that they would circle 2 but 

they forget to express that they should cross out 

multiples of 2 and that they should also cross out 

the multiples of the numbers greater than 5; they 

reached an early generalisation and thus their ex-

planations were incomplete. In addition, the ma-

jority of the participants who used the rules to 

explain (n = 16) expressed that they would explain 

PNs to the students with a definition such as “num-

bers that can only be divided by 1 and itself were 

PNs.” In fact, PMTs learn the correct definition in 

the abstract algebra courses. However, the latter 

learning, much as they were correct, might not 

have positively affected the previous learning since 

PMTs began these courses with concept images 

they had obtained during their previous experiences 

(Tall & Vinner, 1981). In fact, courses like abstract 

mathematics should reduce the gap between the 

algebra concept images of individuals and the real 

concept images (Cofer, 2015). Thus, the instructor 

should be so careful in forming definitions of con-

cepts and their real images in the courses at the 

university so that the PMTs are able to transfer the 

concept to the students accurately in the future. 

Among the explanatory strategies, analogy was 

used by only two participants. The participants 

wanted to convey the PNs via a concrete represen-

tation; however, the explanation of one participant 

(the daisy example) was not appropriate due the 

physical properties of the example given. The ex-

planation was inadequate to explain the concept; 

because the PT, who thought of the daisy as the PN 

and its petals as the denominators, resorted to 

memorisation by saying that the petals of the daisy 

were represented by 1 and the number itself. Here, 

the representation of the PN denominators by the 

petals was an inappropriate example. Another PT 

stated that he or she would show the PN via a 100s 

of blocks and provided an explanation. Only one 

PT used the AMA and provided an accurate expla-

nation. Cofer (2015) found that PMTs gave inap-

propriate examples while explaining what 0/0 was. 

Explanatory strategies provide information about 

the inadequate and inappropriate concept images of 

the PMTs (Cofer, 2015). When considered holisti-

cally, the explanatory strategies used by the PMTs 

provided us with information about their incorrect 

concept images. In addition, the results obtained 

reveal that the assessment in the mathematics 

courses was not done appropriately and that the 

PMTs fell short of developing effective strategies 

to teach. Under these circumstances it can be sug-

gested that the syllabi of the courses at  university 

should be planned and conducted to ensure that the 

PMTs make the connection between the concepts 

in the abstract mathematics courses and the con-

cepts in school mathematics. In addition, the PMTs 

need to develop their skills with regard to peda-

gogy to reflect their conceptual comprehension. 

The university curriculum contains courses 

such as abstract mathematics, which includes prime 

numbers that enables us to cope with structurally 

presented concepts (Dubinsky, Schwingendorf & 

Mathews, 1995). As we know, the concepts in 

abstract mathematics are associated with the con-

cepts in the secondary school mathematics curricu-

lum (Conference Board of the Mathematical Sci-

ences, 2001). 

In this study we focused on how PMTs 

formed the relationship between the two curricula 
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and the results revealed that PMTs were found to 

have difficulty in establishing this relationship, as 

the PMTs were more rule-oriented in explaining 

the concept. AMA strategy show theoretical math-

ematics experience. This experience occurs from 

the explanation of mathematical fundamental con-

cepts. The analogy strategy shows use of concrete 

materials. 

The results of this study reveal that a few 

PMTs applied these two strategies. This situation 

proved that PMTs couldn’t explain PNs using 

mathematical definitions and concrete materials. 

However, it is expected that teachers who will 

teach in secondary schools will have an in-depth 

understanding of the concept rather than memorisa-

tion. It will also be in the students’ best interests to 

explain the concepts by going the concrete way. 

Therefore, teaching at university should result in 

meaningful learning rather than memorisation in 

courses such as abstract mathematics. 
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