
South African Journal of Geomatics, Vol. 5. No. 3, November 2016 

269 

 

A Hybridized Centroid Technique for 3D Molodensky-Badekas 

Coordinate Transformation in the Ghana Geodetic Reference 

Network using Total Least Squares Approach 

 

Richard Fiifi Annan1, Yao Yevenyo Ziggah1, 2, John Ayer3 and Christian Amans Odutola2 

 

1Department of Geomatic Engineering, University of Mines and Technology, Tarkwa, Ghana. 

 
2Department of Survey and Mapping, China University of Geosciences, Wuhan, P.R China. 

 
3Department of Geomatic Engineering, Kwame Nkrumah University of Science and Technology, 

Kumasi, Ghana. 

 

*Corresponding authors email: yyziggah@umat.edu.gh; rick2hardy@yahoo.com 

 
http://dx.doi.org/10.4314/sajg.v5i3.1 

 

Abstract 

The Molodensky-Badekas model is one of the similarity transformation models used in Ghana 

for transferring Global Positioning System (GPS) coordinates from the geocentric World Geodetic 

System 1984 (WGS 84) ellipsoid to the local non-geocentric coordinate system, and vice versa. The 

objective of the Molodensky-Badekas model is to introduce a centroid to cater for the correlation 

that exists between the parameters when used over a small portion on the earth surface. However, 

the Molodensky-Badekas model performance depends on a particular centroid method adopted and 

the adjustment technique used. By virtue of literature covered, it was realised that the arithmetic 

mean centroid has been the most widely used. In view of this, the present study developed and tested 

two new hybrid centroid techniques known as the harmonic-quadratic mean and arithmetic-

quadratic mean centroids. The proposed hybrid approaches were compared with the geometric 

mean, harmonic mean, median, quadratic mean and arithmetic mean. In addition, the Total Least 

Squares (TLS) technique was used to compute the transformation parameters with varying centroid 

techniques to investigate and assess their accuracies in precise GPS datum transformation 

parameters estimation within the Ghana Geodetic Reference Network. Statistical indicators such as 

Mean Error (ME), Mean Squared Error (MSE), Standard Deviation (SD), and Mean Horizontal 

Position Error (MHPE) were used to assess the centroid techniques performance. The results 

attained show that the Harmonic-Quadratic Mean produced reliable coordinate transformation 

results within the Ghana geodetic reference network and thus could serve as practical alternative 

technique to the frequently used arithmetic mean.  

Keywords: Coordinate transformation, Molodensky-Badekas model, Centroid, Total Least Squares 

1. Introduction 

Transfer of coordinates between different reference frames is an indispensable tool in geospatial 

professions like geodesy, surveying and photogrammetry. Coordinate transformation is a 

mathematical algorithm that takes coordinates of a point in one reference frame into coordinates of 

the same point in a second reference frame (Ghilani, 2010). The transformation can result in 

changes in the position, size and shape of the network of points; this is known as an affine 

http://dx.doi.org/10.4314/sajg.v5i3.1


South African Journal of Geomatics, Vol. 5. No. 3, November 2016 

270 

 

transformation. If the transformation preserves the shapes as a result of a uniform scale factor in all 

directions but positions of points do change, then it is a conformal transformation (Constantin-

Octavian, 2006). This paper focuses on the 3D conformal transformation of Molodensky-Badekas 

model with three translations, three rotations, and a scale factor for X, Y, Z coordinates. 

The Molodensky-Badekas model is one of the commonest conformal transformations used by 

researchers in Ghana (Ayer and Tiennah, 2008; Dzidefo, 2011; Ziggah et al., 2013a) and other 

countries due to their simplicity in application. The model introduces a centroid to cater for the high 

correlation that exists between the adjusted parameters by relating the parameters to the centroid 

when applied to a network of points that cover a small portion of the earth surface (Mitsakaki, 2004; 

Constantin-Octavian, 2006; Mihalache, 2012). The arithmetic mean centroid method is the most 

widely used approach by most researchers to compute values of centroid coordinates in the 

implementation of the Molodensky-Badekas model within their respective countries (Kheloufi, 2006; 

Turgut, 2010; Dzidefo, 2011; Okwuashi and Eyoh, 2012; Stankova et al., 2012; Mihalache, 2012; 

Ziggah et al., 2013a; Solomon, 2013; Mohammed and Mohammed, 2013). The ramification of the 

choice of centroid method on the Veis model has been investigated by Ziggah et al. (2013b). The 

authors assessed a variety of centroids that best fits the Ghana Geodetic Reference Network using 

Veis transformation model. Based on analysis of their results, they concluded that the 

transformation parameters of the root mean square (quadratic mean) centroid are the most realistic 

as compared to arithmetic mean, harmonic mean and median centroids. 

The present study applies the conventional centroid methods of arithmetic mean, geometric 

mean, harmonic mean, quadratic mean and median in the implementation of the Molodensky-

Badekas model within the Ghana geodetic reference network.  The authors developed two hybrid 

centroid techniques namely arithmetic-quadratic mean and harmonic-quadratic mean to test their 

suitability compared to the conventional methods in determining parameters by the Molodensky-

Badekas model within Ghana’s geodetic reference network. This will further create the opportunity 

for geospatial professionals to know the most precise centroid approach to be applied in 

transforming points from the World Geodetic System 1984 (WGS 84) to the local War Office 

coordinate system accurately in Ghana. 

2. Study Area and Data Source 

In this study, 3D coordinate transformations were carried out in the Ghana geodetic reference 

network. Ghana’s geodetic reference network is a network of monuments erected at points whose 

coordinates are known and kept at the records section of the Survey and Mapping Division of Lands 

Commission. Historical evidence shows that in establishing the network observations were made by 

Captain Gordon Guggisberg, the Governor of the by then Gold Coast, from a pillar in Accra. This 

was subsequently involved in triangulation nets with other trigonometric points to obtain adjusted 

latitudes and longitudes of these triangulation points to form the Accra Datum. It is important to 

note that the Accra datum is based on the War Office 1926 ellipsoid with semi-major axis a = 

6378299.99899832 m, semi minor axis b = 6356751.68824042 m, flattening f = 1/296 and a Gold 

Coast feet to meter conversion factor of 0.304799706846218 (Thomas et al., 2000).  

However, with the introduction of Global Navigation Satellite System (GNSS) such as Global 

Positioning System (GPS) for geodetic surveying, the Ghana Survey and Mapping Division of 

Lands Commission, embarked on the Land Administration Project (LAP) sponsored by the World 

Bank, to establish a new geodetic reference network referred to as the golden triangle (Fig. 1). This 

new geodetic reference network adopted the WGS84 datum through the International Terrestrial 

Reference Frame 2005 (ITRF2005) coordinates specified at epoch 2007.39 (Kotzev 2013). Three 

permanently operating reference stations have been established at the vertices of this triangle with 

nineteen second-order reference stations spatially well distributed (Poku-Gyamfi and Hein, 2006). It 
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is important to note that the LAP has been divided into phases, with the first phase covering five out 

of the ten administrative regions in Ghana. These regions namely Ashanti, Greater Accra, Central, 

Western and Eastern form the first phase of the national GPS network.  

Two sets of 19 common points from the LAP in both the local War Office  OFFh,,  and global 

WGS 84  WGSh,,  system which form the golden triangle as shown in Fig. 1 were used in this 

study for the coordinate transformation. Here,  h,, is the geodetic latitude, geodetic longitude 

and ellipsoidal height respectively. 

 

Figure 1. The Study area showing the golden triangle 

3. Applied Methods 

3.1 Data Conversion 

Curvilinear geodetic coordinates  h,,  of common points in both the WGS84 and War Office 

1926 system were converted to rectangular cartesian coordinates  ZYX ,, . This was achieved 

through Equations 1, 2 and 3 (Schofield and Breach, 2007; Leick et al., 2015) expressed as 
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        coscoshNX                           [1] 

        sincoshNY                             [2] 

        sin1 2 heNZ                               [3] 

where 

 2
1

22 sin1 e

a
N



 , is the radius of curvature in the prime vertical, and 22 2 ffe  , is the 

eccentricity of the ellipsoid. a is semi-major axis of the reference ellipsoid, f is the flattening of the 

reference ellipsoid and  h,,  is the set of geodetic coordinates. 

3.2 Abridged Molodensky Model 

Ghana’s local geodetic network involved data in geodetic latitude, geodetic longitude and 

orthometric height; hence Equations 1, 2 and 3 could not be applied straightforwardly. In order to 

estimate the rectangular coordinates for the War Office 1926 ellipsoid the Abridged Molodensky 

transformation model was used. 

The Abridged Molodensky transformation model convert coordinates directly between two 

datums by relating the ellipsoidal coordinates of one datum to the other with the assumption that the 

relative position of the two ellipsoids differs only by translations (Al Marzooqi et al., 2005; Ayer 

and Tiennah, 2008). It is a model that requires three dimensional geocentric datum 

shifts  ZYX  ,, , the difference between the semi-major axes  a  of the two reference 

ellipsoids and the difference between the flattening  f of the two reference ellipsoids. The 

Abridged Molodensky transformation is given in curvilinear form by Equations 4 to 6 (Al Marzooqi 

et al., 2005; Ayer and Tiennah, 2008) as: 

  


 2sin..cossinsincossin
"1sin

1
affaZYX               [4] 

     


 cossin
"1sincos

1
YX

N
               [5] 

    aaffaZYXh   2sin..sinsincoscoscos             [6] 

with 

      
 

3 22

2

sin1

1




e

ea




 .               [7] 

Here,   is the radius of curvature in the meridian,  h ,,   is the set of corrections to transform 

 W GSh,, to  OFFh,,  and  ZYX  ,,  is the set of corrections to transform  WGSZYX ,, to 

 OFFZYX ,, . 

  The estimated Δh values were then used to compute h for the War Office 1926 ellipsoid through 

Equation 8 given by 

     hhh WGSOFF  .                [8] 

3.3 Molodensky-Badekas Model 

The mathematical expression (Equation 9) relating the two rectangular coordinate systems is 

given by:  
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where  

XC, YC and ZC are the respective centroids of points in the War Office 1926 reference frame; 

 XF, YF and ZF are the respective War Office 1926 reference frame coordinates; 

 XW, YW and ZW are the respective ITRF 2005 reference frame coordinates; 

 TX, TY and TZ are the respective translations along the X, Y and Z axes; 

 η is the scale factor; 

 R (Equation 10) is the total rotational matrix; which is given by: 

 



































 





















11

11

22

22

33

33

cossin0

sincos0

001

cos0sin

010

sin0cos

100

0cossin

0sincos













R            [10] 

 α1, α2 and α3 are the rotation angles. 

Equation 9 can be simplified to Equation 11 if the rotation parameters are considered to be small 

(not more than 10"); 
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The solution of the unknown transformation parameters is obtained by method of Total least 

squares. To achieve this, Equation 11 was expressed into matrices: the design matrix (A) (Equation 

12), observation vector (L) (Equation 13), and the solution matrix (X) (Equation 14). 
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3.4   Total Least Squares  

Total Least Squares (TLS) is an algorithm created by Golub and Van Loan (1980), which is 

based on the Errors-in-Variable model. It is a more robust estimator of the solution of a system of 

equations than the ordinary least squares. 
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Consider a system of equations in the form of Equation 11 to be solved by least squares 

(Equation 15):  

  LAX  , where A ∈ Rm×n, X ∈ Rn×d,  L ∈ Rm×d, and m ≥ n.                       [15] 

Unlike ordinary least squares that models out errors in the observation matrix only, TLS 

considers errors in both the design and observation matrices. Therefore, Equation 15 is expressed in 

Equation (16) (Akyilmaz, 2007) as 

    nmArankeLXeA LA  )(,)(             [16] 

where eA and eL are the errors in the design and observation matrices respectively. 

TLS is an iterative algorithm that minimises the errors in Equation 16 until a minimising matrix 

 LA,  is obtained such that any X which satisfies Equation 15 becomes the TLS solution 

(Akyilmaz, 2007). The functional relation that is used to compute the TLS solution is given by 

Equation 17 as 

         01,, 
TTXLA                         [17] 

The rank of  LA,  is m+1, and must be reduced to m. After the rank reduction, the TLS solution 

is obtained through (Equation 18): 

       1
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TT V
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To solve the TLS problem, the Singular Value Decomposition of the matrix  LA,  is needed. 

The SVD of  LA,  is given by Equation 19 (Markovsky and Van Huffel, 2007; Ge and Wu, 2012): 

        TUSVLA ,               [19] 

where  
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of A; hence X solves the basic TLS problem (Acar et al., 2006; Okwuashi and Eyoh, 2012). 

 

3.5 Conventional Centroid Techniques 

Let n be the number of points of War Office 1926 reference frame coordinates (XF, YF, ZF). The 

arithmetic, geometric, harmonic, quadratic and median mathematical expressions (Gleb et al., 2009) 

are given in Equations 20 to 25 respectively. 
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3.5.2 Geometric Mean Centroid (GMC) 
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3 5.3 Harmonic Mean Centroid (HMC) 
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3.5.4 Quadratic Mean Centroid (QMC) 
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3.5.5 Median Centroid (MDC) 

Arrange the coordinates in ascending order, such that  nXXXX ,....,, 21 ,  nYYYY ,....,, 21  

and  nZZZZ ,....,, 21 . The median is  
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3.6 Developed Hybrid Centroid Approaches 

The Arithmetic-Quadratic Mean developed was obtained on the principle applied in Salamin 

(1975) where Arithmetic-Geometric mean was used to compute numerically the value of π (pi). The 

proposed Harmonic-Quadratic Mean was adopted from Foster and Phillips (1984). 

3.6.1 Arithmetic-Quadratic Mean Centroid (AQMC) 

Let a and b represent set of numbers. By constructing a sequence of arithmetic means and that of 

quadratic means, gives Equations 26 as 

 

 

 
2

1
22

11

2

1
2
1

2
1

2111

2

1
2
0

2
0

1001

00

22

1

22

1

22

1













 














 














 





nn

nnnn

cb
bbaa

cb
bbaa

cb
bbaa

bbaa



 .      [26] 

The iteration continues until an+1=bn+1; this then becomes the Arithmetic-Quadratic mean of the 

data set. 

3.6.2 Harmonic-Quadratic Mean Centroid (HQMC) 

Let b and c represent set of numbers. By constructing a sequence of quadratic means and that of 

harmonic means will give Equation 27. 
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The iteration continues until bn+1=cn+1; this then becomes the Harmonic-Quadratic mean of the 

data set. 

 

4.  Model Performance Assessment 

The positional accuracies of each centroid techniques applied were assessed using the mean error 

(ME), mean squared error (MSE), Mean horizontal position error (MHPE) and standard deviation 

(SD). The various performance indices are expressed mathematically by Equations 28 to 31 (Ali 

and Abustan, 2014; Chai and Draxler, 2014) as 

      )(
1

1

ii

n

i

qp
n

ME  


,             [28] 

      2

1

)(
1

ii

n

i

qp
n

MSE  


,            [29] 

      








 

n

i i

NE
n

MHPE
1

221
,           [30] 

      






n

i

ee
n

SD
1

2)(
1

1
,            [31] 

where n is the number of points, p and q are the measured and new projected grid coordinates 

respectively. Also, e represents the error, estimated as the difference between the measured and new 

projected grid coordinates while e is the mean of the error values. 

5.  Results and Interpretation 

The centroid coordinates ),,( ccc ZYX  used in the derivation of the parameters are shown in 

Table 1. The introduction of the centroid coordinate in the Molodensky-Badekas model tends to 

eliminate the correlation of transformation parameters that exists in Bursa-Wolf model when 

applied to a network of points that cover a small portion of the Earth surface. 

Table 1. Estimated Centroid Coordinates from the War Office System 

Centroids CX (m) CY (m) CZ (m) 

AMC 6339126.3957023 -133380.2930677 689482.7337759 
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GMC 6339122.3422794 -113276.9785389 686810.0344144 

HMC 6339118.2885957 -81957.5710755 684112.3463096 

MDC 6338649.7834986 -142417.4812968 702901.3232139 

QMC 6339130.4488619 146570.1204456 692120.3051639 

AQMC 6339128.4222823 86761.2382903 690802.7782932 

HQMC 6339124.3687317 311382.8524796 688110.5010340 

Table 2 shows the parameters determined for transforming data from WGS84 to War Office 

1926 datum using the Molodensky-Badekas model and its related standard deviation values. 

Analysis of Table 2 shows a negative displacement (Tx) along the x-axes of the War office 1926 and 

WGS84 reference ellipsoids. This further signifies that the two reference ellipsoids moved in the 

opposite direction along the x-axis. The positive displacements (Ty and Tz) show that the ellipsoids 

moved in the same direction along the y- and z-axes. The negative scale factor (Table 2) signify that 

the area of the different geometric shapes of the two reference systems will be reduced or inverted if 

the scale factor is applied in the model during coordinate transformation. Therefore, this 

corroborates the fact that, similarity transformation preserves shapes and angles but the lengths of 

lines and the position of points may change. The rotational parameters (Rx, Ry, Rz) on the other 

hand caused the change in positions.  

Table 2. Summary of Derived Transformation Parameters from the Centroid methods  
3D Molodensky-Badekas Model 

Parameter AMC GMC HMC MDC 

Tx (m) -196.62110±0.25709 -196.61890±0.27367 -196.61578±0.35389 -196.61844±0.26346 

Ty (m) 33.36129±0.25709 33.21142±0.26415 32.98111±0.30003 33.455074±0.26165 

Tz (m) 322.34374±0.25709 322.31953±0.26433 322.27129±0.30109 322.26706±0.26162 

Rx (sec) 0.44514±3.03178E-06 0.44511±3.03178E-06 0.44512±3.03178E-06 0.445153±3.03178E-06 

Ry (sec) -0.00582±5.01208E-06 -0.00579±5.01208E-06 -0.005812±5.01208E-06 -0.00583±5.01208E-06 

Rz (sec) 0.02199±4.98865E-06 0.02199±4.98865E-06 0.021989±4.98865E-06 0.021999±4.98865E-06 

Scale -7.16775±2.99101E-06 -7.16775±2.99101E-06 -7.167817±2.99101E-06 -7.16771±2.99101E-06 

3D Molodensky-Badekas Model 

Parameter QMC AQMC HQMC 

Tx (m) -196.59116±1.42704 -196.59756±1.13136 -196.57466±2.22997 

Ty (m) 31.36031±0.87595 31.786261±0.70687 30.170516±1.35491 

Tz (m) 321.72067±0.88686 321.85918±0.71523 321.3936±1.37272 

Rx (sec) 0.44513±3.03178E-06 0.44515±3.03178E-06 0.44516±3.03178E-06 

Ry (sec) -0.00569±5.01208E-06 -0.00586±5.01208E-06 -0.00580±5.01208E-06 

Rz (sec) 0.02194±4.98865E-06 0.02200±4.98865E-06 0.02193±4.98865E-06 

Scale -7.16807±2.99101E-06 -7.167624±2.99101E-06 -7.167406±2.99101E-06 

The residuals between the measured and new projected grid coordinates in Eastings and Northings 

for each centroid technique is shown in Table 3. The Molodensky-Badekas model, like all 

mathematical models is an approximation of reality, hence it is worth noting that the different 

centroid techniques applied could not completely absorb and model out distortions in data related to 

Ghana’s local geodetic network. These distortions (Table 3) could be attributed to the 

heterogeneous nature of local geodetic networks due to the observational procedures used for its 

establishment and methods of adjustment used in unifying different smaller networks into a single 

network. It is important to know that the Ghana War Office 1926 reference frame is no exception. 
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This is because triangulation was done in the mountainous southern regions whereas traversing was 

done in the northern territories and other low lying regions from 1922 to 1923 (Kotzev, 2013). The 

network was then adjusted in smallish figures before combining them together. This resulted in lack 

of homogeneity between some primary traverses (Kotzev, 2013). In line with this, it can fairly be 

stated that the Molodensky-Badekas could not effectively model out the distortions in the War 

Office 1926 reference frame. This has therefore contributed to the large range of differences in ∆E 

and ∆N. In addition, random errors in both observation data applied in the determination of 

parameters also contributed to the discrepancies between the measured and new projected grid 

coordinates. To this effect, the rigorousness of TLS was not fully realised. It is therefore imperative 

that future studies should consider more consistent and advanced robust techniques in the area of 

artificial intelligence. Conversely, the overall analysis with reference to Table 3 revealed closely 

identical values by the various centroid methods. 

Table 3. Residuals of Transformed Points (units in metres) 

Point 
AMC GMC HMC MDC 

∆E(m) ∆N(m) ∆E(m) ∆N(m) ∆E(m) ∆N(m) ∆E(m) ∆N(m) 

P1 -0.55249 1.03022 -0.55242 1.02926 -0.55248 1.02933 -0.55253 1.02926 

P2 -0.29423 0.81368 -0.29421 0.81370 -0.29423 0.81370 -0.29421 0.81370 

P3 0.27190 -1.55011 0.27187 -1.55013 0.27191 -1.55010 0.27187 -1.55013 

P4 0.10175 1.80298 0.10173 1.80300 0.10176 1.80300 0.10173 1.80300 

P5 -0.70927 -0.87679 -0.70924 -0.87677 -0.70928 -0.87677 -0.70924 -0.87677 

P6 0.09827 -0.87659 0.09831 -0.87664 0.09826 -0.87658 0.09831 -0.87664 

P7 0.91940 -0.66448 0.91939 -0.66450 0.91941 -0.66448 0.91939 -0.66450 

P8 0.18855 0.51312 0.18854 0.51313 0.18856 0.51314 0.18854 0.51313 

P9 0.48216 -0.14261 0.48220 -0.14268 0.48216 -0.14260 0.48220 -0.14268 

P10 0.37959 -0.42533 0.37957 -0.42537 0.37959 -0.42532 0.37957 -0.42537 

P11 -0.33588 -0.38148 -0.33587 -0.38151 -0.33589 -0.38148 -0.33587 -0.38151 

P12 -0.39691 -0.50887 -0.39691 -0.50894 -0.39690 -0.50888 -0.39691 -0.50894 

P13 0.54613 1.01654 0.54612 1.01653 0.54612 1.01653 0.54612 1.01653 

P14 -0.25305 0.88537 -0.25304 0.88537 -0.25304 0.88536 -0.25304 0.88537 

P15 0.80541 0.19197 0.80538 0.19195 0.80540 0.19196 0.80538 0.19195 

P16 -0.27828 0.63592 -0.27833 0.63594 -0.27828 0.63592 -0.27833 0.63594 

P17 -0.40010 -0.58672 -0.40011 -0.58672 -0.40010 -0.58672 -0.40011 -0.58672 

P18 -0.12609 -0.08579 -0.12610 -0.08585 -0.12609 -0.08579 -0.12610 -0.08585 

P19 -0.61110 -0.73179 -0.61105 -0.73184 -0.61109 -0.73179 -0.61116 -0.73184 

Point 
QMC AQMC HQMC 

∆E(m) ∆N(m) ∆E(m) ∆N(m) ∆E(m) ∆N(m) 

P1 -0.55253 1.02926 -0.55247 1.02926 -0.55253 1.02926 

P2 -0.29421 0.81370 -0.29421 0.81364 -0.29421 0.81359 

P3 0.27198 -1.55013 0.27191 -1.55014 0.27187 -1.55013 

P4 0.10173 1.80300 0.10177 1.80294 0.10173 1.80289 

P5 -0.70924 -0.87677 -0.70924 -0.87683 -0.70924 -0.87688 

P6 0.09831 -0.87664 0.09829 -0.87661 0.09820 -0.87664 

P7 0.91939 -0.66450 0.91942 -0.66451 0.91939 -0.66450 

P8 0.18854 0.51313 0.18858 0.51309 0.18854 0.51313 

P9 0.48220 -0.14268 0.48219 -0.14264 0.48220 -0.14256 

P10 0.37957 -0.42537 0.37962 -0.42537 0.37957 -0.42537 

P11 -0.33587 -0.38151 -0.33586 -0.38150 -0.33587 -0.38151 

P12 -0.39680 -0.50894 -0.39689 -0.50889 -0.39702 -0.50883 

P13 0.54612 1.01642 0.54615 1.01652 0.54612 1.01653 
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P14 -0.25304 0.88526 -0.25303 0.88535 -0.25315 0.88537 

P15 0.80549 0.19184 0.80543 0.19195 0.80538 0.19195 

P16 -0.27822 0.63583 -0.27827 0.63591 -0.27833 0.63594 

P17 -0.40011 -0.58684 -0.40008 -0.58674 -0.40011 -0.58672 

P18 -0.12599 -0.08585 -0.12607 -0.08581 -0.12610 -0.08574 

P19 -0.61105 -0.73184 -0.61109 -0.73181 -0.61116 -0.73184 

Figure 2 shows a graphical representation of the use of the mean error to assess the performance 

of the different centroid methods.  
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Figure 2. Performance Assessments by Mean Error: (a) Mean Errors in the Eastings, (b) Mean 

Errors in the Northings. Easting values are depicted by circles; northing values are depicted by 

circles with crossed centres. AMC values are red, GMC values are green, HMC values are dark 

green, MDC values are blue, QMC values are dark red, AQMC values are pink and HQMC values 

are black. 

The negative ME values in the Eastings (Figure 2a) signify under fitting. Thus, most of the 

results attained for new projected grid coordinates are less than their corresponding measured 

coordinates. The minimum ME of -0.00867 m was realised in the HQMC; while the maximum ME 

of -0.00862 m was realised in the QM and AQM centroids. In the Northings (Figure 2b), it was 

observed that a maximum ME of 0.00312 m is incurred if the AMC is applied to the study area. The 

QMC on the other hand slightly outperformed the AQMC to yield the minimum ME of 0.00302 m. 

On the basis of the mean error for the Northing coordinates, though the proposed hybrid centroids 

performed well in the northings, the AQMC was slightly better. However, a general assessment of 

Figure 2 indicates that the HQMC performed better. 

In order to interpret the differences between the measured and new projected grid coordinates, 

the mean squared errors of each centroid technique was calculated. The MSE as a performance 

assessment index measures how near the new projected grid coordinates are to their corresponding 

measured coordinates. The smaller the MSE, the better the centroid technique applied. The 

performance evaluation of the various centroids by the MSE is shown graphically in Figure 3.  
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Figure 3. Performance Assessments by Mean Squared Error: (a) Mean Squared Errors in the 

Eastings, (b) Mean Squared Errors in the Northings. Easting values are depicted by squares; 

northing values are depicted by squares with crossed centres. AMC values are red, GMC values are 

green, HMC values are dark green, MDC values are blue, QMC values are dark red, AQMC values 

are pink and HQMC values are black. 

The MSE was used as a criterion to measure the efficiency of the centroid techniques. It is well 

known that the closer the MSE value to zero the better the performance of the centroid method. In 

this study, it was observed that the MSE values in the Eastings (Figure 3a) for the centroids were 

closely related. However, in comparison, the GMC conspicuously attained a minimum MSE of 

0.21864 m. A maximum MSE of 0.21866 m in the Eastings was observed from the MDC and 

HQMC results. With reference to Figure 3b, the HQMC performed slightly better than the other 

centroid techniques with MSE of 0.70359 m. The AQMC, QMC and HMC produced identical MSE 

values in the Northings. Evidence from Figure 3b showed that the AMC yielded the maximum MSE 

of 0.70370 m.  

The standard deviation was also calculated for each centroid technique, as shown in Figure 4. 

This was carried out in order to know the extent of variation of the mean error of each centroid 

technique from the most probable value.  

Considering Figure 4a, a minimum SD in the Eastings was observed from the GMC. It is worth 

stating that comparable SD values were obtained from the AMC, MDC and the two proposed 

hybrid centroids. Considering the Northing coordinate, the HQMC outperformed the other centroid 

techniques with a minimum SD of 0.86178 m as shown in Figure 4b. The AQMC, QMC and HMC 

produced identical SD values in the Northings. The AMC on the other hand yielded a maximum SD 

value of 0.86185 m.  
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Figure 4. Performance Assessments by Standard Deviation of Error: (a) Standard Deviation of 

Errors in the Eastings, (b) Standard Deviation of Errors in the Northings. Easting values are 

depicted by triangles; northing values are depicted by triangles with crossed centres. AMC values 

are red, GMC values are green, HMC values are dark green, MDC values are blue, QMC values are 

dark red, AQMC values are pink and HQMC values are black. 

Figure 5 is a summary of MHPE of each centroid technique. It measures the average magnitude 

of horizontal displacement of the new projected grid coordinates from their measured values. The 

minimum MHPE of 0.88123 m was obtained by the HQM, QM and HM centroids. Again, the 

weakness of the most frequently used AMC was evident, with a slightly higher value of 0.88128 m. 
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Figure 5. Performance Assessment by Standard Deviation of Error. AMC values are red, GMC 

values are green, HMC values are dark green, MDC values are blue, QMC values are dark red, 

AQMC values are pink and HQMC values are black. 

The results of the performance assessment indices utilized in this study have been further 

summarised in Table 4. 
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Table 4. Results of Performance Assessment of the Centroid Techniques (units in metres) 

Centroids ME MSE SD MHPE 

AMC 
Eastings -0.00864 0.21865 0.48034 

0.88128 
Northings 0.00312 0.70370 0.86185 

GMC 
Eastings -0.00864 0.21864 0.48032 

0.88124 
Northings 0.00305 0.70362 0.86180 

HMC 
Eastings -0.00864 0.21865 0.48033 

0.88123 
Northings 0.00308 0.70360 0.86179 

MDC 
Eastings -0.00865 0.21866 0.48034 

0.88125 
Northings 0.00305 0.70362 0.86180 

QMC 
Eastings -0.00862 0.21865 0.48033 

0.88123 
Northings 0.00302 0.70360 0.86179 

AQMC 
Eastings -0.00862 0.21865 0.48034 

0.88124 
Northings 0.00304 0.70360 0.86179 

HQMC 
Eastings -0.00867 0.21866 0.48034 

0.88123 
Northings 0.00305 0.70359 0.86178 

The conclusion from the above analysis showed that all the methods applied could produce 

identical results and thus is applicable for surveying and mapping related works. Hence, the two 

proposed approaches could serve as an alternative to the existing approaches. 

6.  Conclusion 

The generic mean centroid (arithmetic mean) applied in the Molodensky-Badekas model has 

been varied by applying the geometric mean, harmonic mean, quadratic mean, median and two 

proposed hybrid centroids (arithmetic-quadratic mean and harmonic-quadratic mean). Although 

good coordinate transformation results have been obtained from the Molodensky-Badekas model 

for years with the arithmetic mean, the field of geodetic engineering demands accuracies to the 

maximum. In the light of this, the present study objective is to test the suitability of the new 

proposed hybrid centroid technique to the conventional centroid methods. The analyses conducted 

in this study based on the statistic performance indicators revealed closely identical results among 

the centroid methods applied. However, the obtained results in decreasing order show that, the 

Harmonic-Quadratic Mean, Quadratic Mean, Geometric Mean and Harmonic Mean yielded slightly 

better results than the more frequently used Arithmetic Mean centroid. On the basis of the results 

attained, it could be concluded that the proposed Harmonic-Quadratic mean centroid could serve as 

a practical alternative technique to the frequently used arithmetic mean approach. Finally, this study 

has established that the Molodensky-Badekas model could not absorb more of the distortions in the 

Ghana local geodetic datum and thus, its accuracy is also dependent upon the centroid method 

utilized in the transformation process. In view of this, the authors recommend that for future 

research work, artificial neural network technology should be applied to test its efficacy within the 

Ghana geodetic reference network. 
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