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Abstract 

Soil moisture, surface temperature, and vegetation are variables that play an important role in 

our environment which in turn increases the demand for accurate estimation of certain geophysical 

parameters such as weather, flooding, and land classification. However, for accurate Land Surface 

Temperature (LST) estimation, remotely sensed data of key environmental forms were considered 

and applied in this research. The goal of this study was to apply a suitable algorithm for LST 

estimation from the Landsat-8 dataset that gives a great accuracy when compared with in-situ 

observations. 

Spatial and temporal Landsat-8 data were acquired which provided the analytical structure for 

linking specific data successfully due to fine resolutions. The data were then applied to determine 

brightness temperatures, vegetation cover, and surface emissivity which demonstrated the 

effectiveness of the Split-Window Algorithm as an optimum method for LST retrieval from satellite. 

The results show temperature variation over a long period of time can be used in observing varying 

temperature values based on terrain i.e. High temperatures in fully built up areas and low 

temperatures in the well-vegetated regions. Finally, accurate LST estimation is important for land 

classification, energy budget estimations as well as agricultural production. 
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1. Introduction 

Remote Sensing which is the science of using instrument-based techniques in obtaining, analysis 

and interpreting data about objects or areas from a considerable distance without being in direct 

contact as against on-site observations (Lillesand et al., 2014). These techniques can vary from 

manual interpretation of aerial photos to the computer-based analysis of non-visible radiation 

collected by satellite-based sensors. Optical sensors can be broken down into three basic types: 

panchromatic, multispectral and hyperspectral. According to (Li et al., 2013, Qin and Karnieli, 1999), 

the extensive requirement of temperature data on a large scale for environmental studies and 

management activities of the Earth's resources by Environmentalists, Geologists and Health 

Practitioners has made the remote sensing of LST an important issue in recent decades and as such, 

many efforts have been devoted to the establishment of methodology for its retrieval. 

http://dx.doi.org/10.4314/sajg.v6i2.10
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Remote sensing of LST using infrared radiation gives the average surface temperature of the scene 

covered by the radiometer’s Field Of View (FOV). The spatial variation in LST acquisition causes a 

decrease in a measurement accuracy which in turn makes it difficult to validate LST from space using 

in-situ measurements (Minnett and Barton, 2010). To, therefore, retrieve LST from satellite Thermal 

Infrared (TIR) data, factors such as radiometric and atmospheric calibrations, surface emissivity 

correction as well as the characterization of spatial variability over land cover for vegetation has to 

be quantified. These factors are dependent on atmospheric conditions and emissivity of the land 

surface materials. Therefore, the effects of both atmosphere and Emissivity must be corrected through 

an algorithm for accurate LST estimation (Sobrino and Raissouni, 2000). 

According to Ustin et al., (2004), there is a growing awareness among environmental scientists 

that remote sensing can and must play a role in providing the data needed to assess ecosystems 

conditions and to monitor change at all spatial scales. Thus, acquiring LST from remotely sensed data 

becomes one of the significant factors in this study. As a key parameter of the surface energy budget, 

LST is directly related to surface energy fluxes and to the latent heat flux, evapotranspiration and 

water stress Torrion et al., (2014), surface longwave emission and computing soil moisture 

Cammalleri and Vogt, (2015) and for understanding meteorological and hydrological processes in a 

changing climate (Duan et al., 2014). 

This paper attempts to apply a Split Window (SW) algorithm, which requires two essential 

parameters (emissivity and transmittance) by using the Landsat-8 dataset. Keeping the accuracy of 

the LST estimate, we avoid the complicated expression of the algorithm and the difficult calculation 

of its parameters. A complete and detailed description is given to the derivation of the algorithm, 

which includes the theoretical basis for remote sensing of LST. 

 

2. Review of Landsat for LST Retrieval  

The Landsat Programme, launched in the early 1970s had its capacity innovatively expanded over 

time which in turn increased the quality and size of captured data by onboard sensors. So far, there 

have been eight Landsat satellites launched successfully with the commencement of the Landsat-1 in 

1972. The Landsat satellites have a near-earth orbit operation, scanning a ground area with 705km 

altitude. Landsat 1-3 with both the infrared and visible bands had an 80m resolution for the 

185x185km imagery. Landsat 4-5 were equipped with double multispectral sensors; Thematic 

Mapper and Multispectral Scanner, with seven high-resolution spectral bands. Landsat 6 encountered 

a failure due to its immediate loss after launching while the Landsat 7 ETM+ was simply an advanced 

variant of the TM with a panchromatic band with high resolutions. Landsat-8 has two major 

instruments (TIRS and OLI), at the 30m spatial resolution for the SWIR, visible and NIR; 100m for 

the TIR and 15m for the panchromatic bands (Markham et al., 2013). The presence of double TIR 

bands in the Landsat-8 OLI/TIRS satellite in the atmospheric window (10-12µm) is the main 

advantage over previous Landsat series. 
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In the research by Mallick et al., (2008), the potential of remote sensing to study the urban 

morphology is presented by estimating the spatial distribution and intensities of geophysical 

parameters using Landsat 7 ETM+. Their results show that the satellite derived emissivity values are 

in the acceptable range and the NDVI and fractional vegetation cover are effective in deriving surface 

emissivity. Sobrino et al., (2004) used Landsat TM 5 data to compare the proposed algorithms of 

Jiménez‐ Muñoz and Sobrino, (2003) and Qin et al., (2001) for LST estimation. Their results showed 

RMSD values of 2K and 0.9K respectively when 9x9 pixel samples are considered. Using Landsat 

TM/ETM+ data with a radiative transfer model, Li et al., (2004) suggested that the average difference 

is 0.98℃ for Landsat 7 and 1.47℃ for Landsat 5 when compared. However, all these studies used data 

providing daily to half-hourly coverage. They are appropriate for operational monitoring, but their 

low spatial resolution limits their use for detailed spatial analysis of land cover changes and 

intensively fragmented areas. 

 

3. Split Window Algorithm 

LST estimation from satellite TIR radiometers has been achievable through different systems; 

Single-Channel (SC), SW and Dual-Angle (DA) algorithms. Various studies concentrate on the 

utilization of sensors onboard the polar-orbiting satellites on account of their high spatial resolutions 

(Pandya et al., 2014). Accurate LST estimation by utilizing the SC algorithm require high-quality air 

transmittance codes in estimating air quantities, Land Surface Emissivity data, precise air profile and 

topographic impacts Sobrino et al., (2004) while involving the inversion of the Radiative Transfer 

Equation as shown in Equation [1]. A substitute methodology utilized over ocean uses the differential 

climatic absorption of both adjoining channels at 10-12μm in the SW algorithm initially developed 

by McMillin, (1975) which does not need air profile data at acquisition time. The SW algorithm 

predicts that LSE in the TIR regions of the 10-12μm region is established (Atitar and Sobrino, 2009, 

Sobrino and Raissouni, 2000). The DA algorithm as proposed by Sobrino et al., (2004) consolidates 

both the emissivity at forward and nadir perspective as it incorporates just emissivity reliance with 

no unequivocal WV reliance. This method requires that estimations are made for a fundamentally 

lengthy path; if not, the calculation becomes uncertain. 

𝐿𝑠𝑒𝑛𝑠𝑜𝑟 = 𝜏𝜀𝐿𝛵𝑠
+ 𝐿𝑢 +   𝜏(1 − 𝜀)𝐿𝑑        [1] 

where Lsensor is the radiance registered by the sensor, also referred to as Top of Atmosphere (TOA) 

radiance, 𝐿𝛵𝑠
 is the black body radiance related to the surface temperature by Planck’s law and 𝛵𝑠 is 

the LST, 𝐿𝑢and 𝐿𝑑 are the upwelling and down-welling atmospheric radiances respectively in Wsr-

1m-2μm-1, 𝜏 is the atmospheric transmissivity and 𝜀 is the LSE. The selection of the LST algorithm for 

Landsat-8 data is based on a literature review from Markham et al., (2013) and Tang and Li, (2014) 

and the characteristics of the Landsat-8 satellite data. The single-window method requires a high-

quality atmospheric profile and is sensitive to uncertainties in the atmospheric corrections. 

Considering the simultaneous retrieval of the LST and the LSE, the Temperature and Emissivity 

Separation (TES) method may be a candidate. However, significant errors in the LST and LSE for 
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the surfaces with low spectral contrast emissivity such as water, snow, vegetation can be caused by 

the TES (Gillespie et al., 2011). Since the Landsat-8 satellite observes the land almost at-nadir, the 

dual-angle algorithm was discarded. Among the various methods proposed for LST determination, 

the quadratic SW algorithm as shown in Equation [2] from Coll et al., (1994) and Sobrino et al., 

(1993) has received considerable attention because of its simplicity. 

𝑇𝑠 =  𝑇𝑖 + 𝐴 (𝑇𝑖 − 𝑇𝑗)
2

+ 𝐵 (𝑇𝑖 − 𝑇𝑗) + 𝐶       [2] 

Where 𝑇𝑠 is the LST, 𝑇𝑖 and 𝑇𝑗 are the at-sensor brightness temperatures for two TIR channels, 𝐴 

and 𝐵 are coefficients and 𝐶 is a constant. To make Equation [2] applicable, various research has 

been carried out. Such include Sobrino and Raissouni, (2000) that proposed modifying constant 𝐶 as 

the linear combination of 𝜀, ∆𝜀 and atmospheric water vapour content. François and Ottlé, (1996) 

presented different coefficients for different 𝜀 values. Sun and Pinker, (2003) addressed the SW 

coefficients according to different surface types to account for LSE effect. However, it is observed 

that the constant 𝐶 is a combination of the Mean: 

Mean,   𝜀 =
(𝜀𝑖 +  𝜀𝑗)

2
⁄ )                   [2a] 

and difference; 

 ∆𝜀 =  (𝜀𝑖 +  𝜀𝑗)                    [2b] 

from the LSE of the TIRs channels, thereby keeping the other coefficients independent of LSE. It 

should be noted that the land surface is complex and that the LSE may be quite different from unity 

and depends on the channel as stated in (Coll and Caselles, 1997). Considering the effect of the 

emissivity, the quadratic SW algorithm may not work well. As François and Ottlé, (1996) noted in 

their work, when ε is greater than 0.95, good accuracy can be obtained using the quadratic method 

with the emissivity-dependent coefficients. That means, when ε is low, the quadratic relationship no 

longer performs well or is changed. Therefore, the quadratic method has to be re-examined closely, 

especially for low emissivity. 

An efficient and convenient method for LST retrieval must be explored and investigated as it is 

influenced by numerous elements such as surface layout, land cover, and aerosol. Though different 

SWAs such as Jimenez-Munoz et al., (2014), Rozenstein et al., (2014) and Yu et al., (2014) for LST 

retrieval theoretically has been produced, it remains a complex procedure to get from satellite 

imagery. A systematic and direct framework is, therefore, important to streamline the operating 

procedures which are shown in Figure [1]. For this research, an imagery processing framework 

utilizing the Spatial Model Maker and ATCOR module of ERDAS Imagine in deriving LST 

specifically from Landsat-8 dataset was applied, which can also be used for determining Urban Heat 

Island (UHI) through LST estimation. Radiometric and geometric rectifications were done on the 

inputting imagery to ensure comparative imagery have the same resolutions. A simplified LST 

computation directly with this model is described in Qin and Karnieli, (1999) which shows the 

detailed processes. 
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Using Equation [1], 𝜀 and ∆𝜀 can be examined in terms of 𝑇𝑖 − 𝑇𝑗. For this reason, the Top of 

Atmosphere in the Landsat-8 thermal bands 𝑇10 and 𝑇12 (where 10 and 12 represent respective 

wavelengths) were then simulated. By assuming that 𝜀10 =  𝜀12 = 1, Equation [2] therefore gives a 

result of 0.29 (𝐴), 1.45 (𝐵) and 0.17(𝐶) with a 0.67 RMSE (Coll et al., 1994, Sobrino et al., 1993). 

This result is further verified from Jin et al., (2015) which shows that SWA coefficients for Sea 

Surface Temperature estimation can be utilized for LST retrieval if there is an estimation of the ε 

effect. A modified C is therefore combined with the results of A and B in developing the LST 

algorithm. 

A major factor to be considered is, however, the ambient temperature of the study area through the 

Atmospheric Transmittance (AT). This is important as the saturated water vapour content affects the 

satellite imagery in the form of cloud cover. Hence, an estimation of the AT values becomes a 

necessity. To derive the AT, two main calculations are done namely Water Vapour Content and Mean 

Atmospheric Temperature. Relative Humidity (RH), as well as the temperature of upper-air 

estimation, are two fundamental estimations utilized as a part of the numerical climate model analysis 

for operational climatic forecasts. Equations [3] – [6] as described in (Jarraud, 2008, McRae, 1980, 

Wagner and Pruß, 2002) were applied in showing the relationship between saturation water vapour 

pressure and water vapour at a specific temperature. 

𝑒𝑤(𝑝, 𝑡) = 𝑓(𝑝) ∗  𝑒𝑤(𝑡)         [3] 

𝑓(𝑝) = 1.0016 +(3.15 ∗ 10−6 ∗ 𝑝)−(0.074 ∗ 𝑝−1)      [4] 

𝑒𝑤(𝑡) = 6.112Exp [
(17.62 ∗ 𝑡)

(243.12 + 𝑡)⁄ ]       [5] 

𝑊 =104∗ 𝑅𝐻 ∗ (
𝑒𝑤(𝑝,𝑡)

𝑃𝑎
)          [6] 

Where 𝑒𝑤(𝑝, 𝑡) is the saturation vapour pressure of moist air; 𝑓(𝑝) is the pressure function; 𝑒𝑤(𝑡) 

is the saturation vapour pressure in pure phase; 𝑡 is the ambient temperature; 𝑝 is the atmospheric 

pressure; 𝑊 is the water vapour content and 𝑃𝑎 is the standard atmospheric pressure of 1013.25ℎ𝑃𝑎. 
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Figure 1: LST retrieval flowchart 

4. Application of algorithm 

For the application and validation of the SWA, Landsat-8 data were downloaded from 

EarthExplorer as well as observational data (atmospheric pressure, relative humidity, and 

temperature) were obtained from the South African Weather Station (SAWS) for the corresponding 

dates for which the satellite imagery was acquired. Data from the satellite imagery were 

radiometrically normalized, converted to surface reflectance, and quantitatively analysed to enable 

the establishment of generic and consistent classification rules after which the main processing began 

accurate LST retrieval through the SWA. 

As shown in Figure [1], the following processing was then done in deriving the LST: 

4.1 TOA spectral transmittance 

The purpose of this was to calibrate the produced noise by the sensors which measure reflectance 

from the Earth surface in the form of Digital Numbers (DN) representing each pixel. The calibration 

as used by (Vicente-Serrano et al., 2008) was implemented for the TIR bands as shown in Equation 

[7]: 

𝐿𝜆 =  (
𝐿𝑚𝑎𝑥− 𝐿𝑚𝑖𝑛

𝐷𝑁𝑚𝑎𝑥
) ∗ 𝐵𝑎𝑛𝑑 + 𝐿𝑚𝑖𝑛                  [7] 

Where 𝐿𝑚𝑖𝑛and 𝐿𝑚𝑎𝑥are spectral radiances, 𝐷𝑁𝑚𝑎𝑥is the maximum DN and 𝐿𝜆is the TOA. 

4.2 Brightness Temperature 

After the conversion of DNs to reflection, the TIR data were then converted to Brightness 

Temperatures (𝑇𝐵) which “is the microwave radiance traveling upward from the top of Earth’s 

atmosphere” Yang et al., (2014) using the thermal constants provided in the metadata file. In order 

to achieve accuracy for the 𝑇𝐵 conversion, equation [8] was implemented through the ATCOR module 

of ERDAS Imagine. The result is converted to Celsius from Kelvin by adding the absolute zero. 
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𝑇𝐵 =
𝐾2

ln(
𝐾1
𝐿𝜆

+1)
           [8] 

Where 𝐾1and 𝐾2are band-specific constants 

4.3 Normalized Difference Vegetation Index 

The NDVI is an indicator used to analyse the biomass or greenness of the observed area. As Weng 

et al., (2014) stated, estimating NDVI is essential since the amount of vegetation present is a factor 

for LST retrieval. Equation [9] was used in deriving the NDVI. 

𝑁𝐷𝑉𝐼 = (
𝑁𝐼𝑅(𝐵𝑎𝑛𝑑 5)−𝑅𝑒𝑑(𝐵𝑎𝑛𝑑 4)

𝑁𝐼𝑅(𝐵𝑎𝑛𝑑 5)+𝑅𝑒𝑑(𝐵𝑎𝑛𝑑 4)
)        [9] 

4.4 Fractional Vegetation Cover 

Spatial variation in the radiometric temperature of surfaces is related to variations of the soil-water 

concentration vertically and surface greenness detailed by the FVC. The variations of detailed 

explanations of FVC utilized by remote sensing and modeling, be that as it may, can prompt an error 

between what is utilized as part of a model and what is estimated utilizing remote sensing. Hence, the 

formula as described in Wang et al., (2015) was used in deriving the FVC from the NDVI image as 

shown in Equation [10]. 

𝐹𝑉𝐶 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛
⁄ )

2

               [10] 

4.5 Land Surface Emissivity 

The LSE must be known in order to estimate LST since it is the relative capacity of a surface to 

discharge radiative energy and characterized as the proportion of black-body radiative energy 

(Planck’s law) to land surface radiative energy of similar temperatures (Jimenez-Munoz et al., 2014). 

Nonetheless, it stays a challenge to absorb satellite radiance within the TIR regions (10-12𝜇m) 

because of the absence of infrared LSE. Fortunately, several methods in remote sensing have been 

proposed for LSE retrieval. According to (Dutta, 2015), LSE can be calculated using: 

𝐿𝑆𝐸 = 𝜀𝑠 ∗ (1 − 𝐹𝑉𝐶) + (𝜀𝑉 ∗ 𝐹𝑉𝐶)                [11] 

Where, 𝜀𝑠 and 𝜀𝑉 are the Soil and Vegetation Emissivity constants for TIR bands respectively as 

shown in Table [1]. 

Table 1: Emissivity constants (Jimenez-Munoz et al., 2014) 

Emissivity Band 10 Band 11 

𝜀𝑠 0.971 0.977 

𝜀𝑉 0.987 0.989 
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4.6 Mean and Difference LSE 

Over a short distance, there can be a substantial LSE change. The possibility of utilizing the NDVI 

values for the retrieval of the vegetation and soil proportion; or the minimum and maximum NDVI 

value; so as to be able to estimate LSE and in turn the mean and difference LSE as required in the 

SWA application. The mean and difference LSE shows the TIR bands relationship with the applied 

formula of: 

𝑀𝑒𝑎𝑛(𝜀) =
𝐿𝑆𝐸10+𝐿𝑆𝐸11

2
                   [12] 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(∆𝜀) = 𝐿𝑆𝐸10 − 𝐿𝑆𝐸11                [13] 

4.7 Atmospheric Transmittance 

Atmospheric transmittance which is characterized as atmospheric capacity in transmitting 

electromagnetic energy is reliant on air masses by radiation, water vapour, and air dust. It fluctuates 

for radiation of various wavelengths; smaller light scattering and atmospheric absorption, greater air 

transmittance. The value of W as shown in Equation (6) is incorporated for the AT when using the 

SW Algorithm needed in the LST retrieval process. 

4.8 Land Surface Temperature 

SWA utilizes both TIR bands normally situated in the 10-12𝜇m atmospheric window. According 

to (Jiménez-Muñoz, 2008, Kamran et al., 2015), “the basis of the SW algorithm is that the radiance 

attenuation for atmospheric absorption is proportional to the radiance difference of simultaneous 

measurements at two different wavelengths, each subject to different amounts of atmospheric 

absorption”. Therefore, processes 4.1 – 4.7 is combined with the LST retrieval process as described 

in Li et al., (2013) and Rozenstein et al., (2014) to give Equation [14]. 

𝐿𝑆𝑇 = 𝑇𝐵10
+ 𝐶1(𝑇𝐵10

− 𝑇𝐵11
) + 𝐶2(𝑇𝐵10

− 𝑇𝐵11
)2 +𝐶0 + (𝐶3 + 𝐶4𝑊)(1 − 𝜀) +

(𝐶5 + 𝐶6𝑊)∆𝜀                  [14] 

5. RESULTS AND DISCUSSION 

As described in the processing, the results entailed spatial distribution maps showing the NDVI, 

FVC and LSE values. LSE was created using the NDVI threshold technique where the NDVI was 

reclassified into soil and vegetation. Highly elevated regions had more vegetative cover; hence, LSE 

was high in these regions. Figure [2] has been derived using LSE, 𝑇𝐵 and Emissivity difference 

between band 10 and 11. 

An analysis of Figure [2] shows region (a) having highest temperatures of 22-28℃, (b) having 

mixed temperature levels due to the dam presence and low inhabitants, (c) is well populated with 

average temperatures of 18-23℃, (d) which is the busy Durban central business district having varying 

temperatures between 13-23℃ while (e) and (f) have relatively low temperatures due to being along 

the coastline with low inhabitants. The long variation in the temperature values is attributed to taking 

the mean temperatures over the time stamp covering all seasons. Also, the results were slightly 
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affected due to errors as indicated in the analysis section for the time series was acquired from the 

satellite. Input parameters when estimating RH and W contributed to slight errors where some regions 

had either lower or higher temperatures. 

 

Figure 2: Durban LST map showing min-max values (June 2014 – May 2015) 

From the above results, it can be observed that the UHI effect is a reality over the city centre which 

is along the harbour as well as suburban, industrial and highly dense unplanned areas i.e. natural 

processes and human activities, influence LST. The process was then repeated in two other study 

areas (East London and Polokwane) which have a slightly different climatic condition from Durban 

for validation purposes. 

LST is not only influenced by land-use/land-cover types, but also by elevation, vegetation 

coverage, local meteorological conditions, and landscape composition. Therefore, even for the same 

land-use type, the mean LST may be different in different locations along the urban–rural gradient. 

In this study, the simple linear regression was conducted to evaluate the relationships between LST 

and elevation derived from Digital Elevation Model (DEM) to explore the relationship between LST 

and vegetation fraction (NDVI). 

e 

a b 
c 

d 

f 



South African Journal of Geomatics, Vol. 6. No. 2, Geomatics Indaba 2017 Special Edition, August 2017 

271 

 

 

Figure 3: East London LST map showing min-max values (June 2014 – May 2015) 

The white blanks regions (a) and (b) of Figure [3] was as a result of the shapefile obtained from 

the Eastern Cape municipality which was used in clipping from the raw downloaded Landsat-8 data. 

Figures [3] and [4] which were the validation sites showed higher LST in urban areas when compared 

to the non-urban areas. 

In order to reveal the diversities of LST in different types of Landcover, the temperature 

characteristics of four Landcover types were analysed. The minimum, maximum and mean 

temperatures of the land cover patterns were derived by averaging all corresponding pixel values. The 

preceding results reflect that the spatial variability of LST is basically consistent with Landcover 

types of the study sites. In summary, the results had a wide range due to the range of temperatures 

being considered over various seasons. 

6. Analysis 

Sensitivity, statistical regression and error analysis on each study site was then carried out to 

further determine the validity of this SWA and determine error effects from estimations. 

 

a b 
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Figure 4: Polokwane LST map showing min-max values (June 2014 – May 2015) 

6.1 Sensitivity Analysis 

The sensitivity analysis provides possible error effects of the estimation parameters used for LST 

retrieval. LSE, at-sensor 𝑇𝐵 and AT were required for the application of this SWA and errors on these 

parameters subsequently led to LST errors. The analysis was performed using the python scripts as 

established by Isaya Ndossi and Avdan, (2016) in which various contributions to final LST error is 

estimated from numerous derivatives according to the classical error theory (Jin et al., 2015, 

Rozenstein et al., 2014). LST estimation errors are independent of change in temperatures as it 

changes over 0-60℃ range by less than ± 0.03°C as 𝑇10-𝑇11= -2.2℃, Table [2] and 0.1gcm-2 

Atmospheric Water Vapour Content under-estimation. This little change, therefore, becomes 

negligible practically. 

Table 2: Estimated LSE from NDVI and FVC 

Class FVC NDVI LSE 

Water body 0.013 -0.171 0.989 

Vegetation 0.977 0.615 0.972 

Built-up 0.153 0.106 0.911 

Bare soil 0.029 0.026 0.895 

There is an error increase in LST estimations when the AWVC decreases which in turn causes an 

increase in the AT. The impact increases as 𝑇𝐵 difference between the increasing TIRS bands. 

6.2 Linear regression analysis 

Statistical regression analysis was used to establish a relationship between the estimated LST 

values and the measured air temperature values from the SAWS and was achieved by using mean 

temperature values over the study period (June 2014 to May 2015). R2 was achieved by utilizing 

Microsoft Excel and regression model formula of 

 𝛾 ≈ 𝑓(𝑥, 𝛽);                    [15] 
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where 𝛾 is the dependent variable (measured LST) and 𝑥 is the independent variable (estimated 

LST). The analysis resulted in an R2 of 0.952 (Durban), 0.983 (East London) and 0.979 (Polokwane) 

as shown in Figure [7]. 

 

Figure 7: Linear regression analysis for Durban LST (June 2014 – May 2015) 

6.3 Error analysis 

Error from the split window algorithm used for LST retrieval is hard to measure. However, such 

errors are minimized.  

Table 3: RMSE for Durban (June 2014 – May 2015) 

Month Estimated (℃) Measured (℃) R2 RMSE 

Jun 9.75 8.5 1.56 1.19 

July 14.34 15 0.44  

Aug 17.74 17.9 0.03  

Sept 22.65 22 0.43  

Oct 17.23 16 1.51  

Nov 20.64 21 0.13  

Dec 23.44 23 0.19  

Jan 26.54 26 0.29  

Feb 22.94 24 1.12  

Mar 24.44 27 6.55  

Apr 20.75 20 0.75  

May 18.55 16.5 4.2  

y = 1.0918x - 2.005
R² = 0.952
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For the error with calibration, it showed that the results are within the pre-determined ±0.6K 

obtained after July 2014 to (http://landsat.usgs.gov/l8handbook_appendixa.php). Error from LSE can 

originate from the error of estimating NDVI and approximations. However, soil emissivity is highly 

relative within the study area which is well vegetated for a ~0.979 emissivity applicability. This 

research had below 0.005 emissivity error which prompted a 0.16℃ maximum LST error (when 

interpolated with SAWS data). Thus, the overall estimate is 1.04K – 1.27K RMSE in the LST 

estimation for the three study site as shown in Table [3]. 

Table [3] was then repeated for the other study sites - East London and Polokwane - with RMSE 

values of 1.27 and 1.04 respectively. 

 

7. Conclusion 

The applied SWA is a dynamic mathematical tool that provides LST information using the 𝑇𝐵 of 

TIRS bands, LSE derived from FVC of the OLI bands in accurately estimating LST with the addition 

of Atmospheric Transmittance. The applicability of this SWA from the results of validation and 

RMSE for the retrieved LSTs is confirmed when validated against observed SAWS data from the 

three study sites. On the basis of the validation and the sensitivity analysis, it can be concluded that 

the SWA presented in this paper is able to provide an alternative to ground-truth observations for 

accurate LST retrieval from the Landsat-8 dataset. 
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