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Abstract  

Light detection and ranging (LiDAR) technology has become a standard tool for three-

dimensional mapping because it offers fast rate of data acquisition with unprecedented level of 

accuracy. This study presents an approach to accurately extract and model building in three-

dimensional space from airborne laser scanning data acquired over Universiti Putra Malaysia in 

2015. First, the point cloud was classified into ground and non-ground xyz points. The ground 

points was used to generate digital terrain model (DTM) while digital surface model (DSM) was 

produced from the entire point cloud. From DSM and DTM, we obtained normalise DSM (nDSM) 

representing the height of features above the terrain surface. Thereafter, the DSM, DTM, nDSM, 

laser intensity image and orthophoto were combined as a single data file by layer stacking. After 

integrating the data, it was segmented into image objects using Object Based Image Analysis 

(OBIA) and subsequently, the resulting image object classified into four land cover classes: 

building, road, waterbody and pavement. Assessment of the classification accuracy produced 

overall accuracy and Kappa coefficient of 94.02% and 0.88 respectively. Then the extracted 

building footprints from the building class were further processed to generate 3D model. The model 

provides 3D visual perception of the spatial pattern of the buildings which is useful for simulating 

disaster scenario for emergency management. 

1. Introduction  

From visualization to functional solution goal oriented use, the need for three-dimensional (3D) 

building geometry has continued to grow over the last 3 decades. As a result of this, 3D city 

modelling has been a subject of research interest to geographic information system (GIS) and 

remote sensing community for a range of applications such as urban planning, 3D cadastre, utilities 

and telecommunication facility management, architecture, safety, marketing, et cetera, using 

different approaches and data sources (Biljecki et al. 2015). The complexity of environmental 

challenges in the phase of increasing rural-urban migration and its consequences on urban 

development, climate change and land use demand proper planning through 3D map updating. 3D 

models enable identification of high-risk urban zones by providing additional physical parameters 
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to the topography, socioeconomic variables and hazard indicators for initial assessment of 

emergency situation. 

Spatial information of buildings can be obtained from several sources, land surveying, airborne 

and space-borne platforms (Cheng et al. 2011; Sampath & Shan 2007), however, the accuracy 

varies accordingly and this explains why it is still a subject of intensive research the years. The 

traditional land surveying method of detailing building footprint is time and labour intensive (Nagai 

et al. 2008). Satellite image provides excellent source from which building footprints can be derived 

over wide coverage; however, small to medium scale geospatial enterprise may find the cost of high 

resolution satellite imagery prohibitive for their projects. Several studies  have been conducted to 

automatically extract building from satellite  images, nevertheless, limitation of the data to two-

dimension (2D) space hampers the ability to use them for 3D modelling (Lee et al. 2003; Shufelt & 

Mckeown 1993) (Zhang et al. 2006). Advances in photogrammetric engineering and software 

development enable generating elevation data of terrain features from aerial photos taken with 

aircraft or unmanned aerial vehicles (UAVs). Photogrammetric method has the benefit of medium 

to large aerial coverage, manoeuvrability in terms of time and weather and fast processing, but, the 

3D data generated of low vertical accuracy (Mitchell & Macnabb 2010). 

Today, LiDAR has become a standard geospatial data source for accurate 3D modeling. Laser 

scanners (airborne and terrestrial) provide precise xyz points that represent the 3D geometry of the 

surface imaged. In addition to the xyz points, the reflected data collected by the scanning laser sensor 

records gray levels intensity images that show the strength of the returned laser pulse reflected from the 

object (Liang et al. 2016). LiDAR and its derivatives such as digital terrain model (DTM), digital 

surface model (DSM) and normalised DSM (nDSM) have been widely used in 3D application 

domain (Turker & Koc-San 2015; Yu et al. 2010; Rottensteiner & Jansa 2002). Similarly, several 

algorithms have been used to aid the extraction of building footprints from laser  scanning data 

(Zhang et al. 2006; Yan et al. 2015; Gilani et al. 2016). One of the challenges with using points data 

alone for building extraction is density (Sampath & Shan 2007). Point data itself is a discrete 

representation which does not offer consistent depiction of the building edges. The effect of 

building footprints by surrounding noise worsen where tall trees forms canopy that extends into the 

roof area. To solve this problem, focus has been shifted to improving accuracy of building 

extraction by combining high-resolution 2D imagery and laser scanning data (Rottensteiner & Jansa 

2002; Tomljenovic et al. 2016).  

Deciding the best method to extract building from diverse dataset available is a difficult task. 

Building, especially at the roof top, are heterogeneous in terms of geometry, material types, colors, 

chemical properties, and even climatic setting. This makes it difficult to have a unique approach 

that could be applicable to all situations.  Moreover, point density plays a major role when using 

laser scanning data for building extraction. It is a fact that low point density produces irregular 

boundaries for linear features, but the major issue with integrating high density point and images is 

that it leads to confusion between classes during the classification process even with object-based 
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classification method (Blaschke 2010; Blaschke et al. 2014). So, in this study, we improved 

building edge extraction by integrating four airborne laser scanning (ALS) derived datasets and 

high resolution orthophoto using object-based image analysis (OBIA) techniques and created 

accurate 3D models of buildings for visualization and spatial planning. 

2. Materials and method 

2.1 Study area and data 

This study was conducted over the faculty of Engineering, Universiti Putra Malaysia. 

Geographically, the faculty is located in the north of the campus precisely between Latitude 3o 00’ 

11.95” N to 3o 00’ 32.72’’ N and Longitude 101° 43’ 06.41” E to 101° 43’ 23.64” E (Figure 1). The 

study area is selected because it is accessible and represents a typical dense urban landscape with a 

mix of low and high-rise buildings, sparse vegetation and open water (lake). The LiDAR data was 

collected in 2015 by Ground Data Solution Bhd over University Putra Malaysia using Riegl scanner 

aboard EC-120 Helicopter flown at an average altitude of 600m above the terrain surface. The point 

cloud acquired has an average point density of 6 points per square meters with vertical accuracy of 

15cm on non-vegetated terrain and horizontal accuracy of 25cm.  

In addition to the xyz data, the scanner also records the intensity of all the pulses of light that 

bounce off the target and stores them as a grey scale image. Hence, intensity images are made of 

pixels representative of the energy of laser pulses returning back to the system (Hinks et al. 2015). 

Concurrently, RGB colour image of the scanned area were acquired using Canon EOS5D MARK 

III camera with focal length of 35mm mounted on the aircraft. The camera has horizontal and 

vertical resolution of 72Dpi respectively and exposure time of 1/2500sec.  

 

Figure 1. Location of University Putra Malaysis in Peninsula Malaysia (right) and Faculty of 

Engineering from Google Earth image (left) 
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2.2 Methodology  

Three primary data sets (xyz point cloud, laser intensity image and aerial photo) acquired over 

the study area and their derivatives were used in this study. Initial task involves generating surface 

and terrain model from the ALS data and the derivation of other datasets from intensity image and 

aerial photo. Subsequently, all the primary data and their derivatives were combined as a single 

image file, each representing a layer, for classification. Lastly, the buildings were extracted and 

modelled in 3D space. The overall methodological workflow is shown in figure 2. 

 

 

Figure 2. Overall data processing workflow 

2.3 Data processing  

Data processing started with sub-setting point clouds that belong to the selected site which was 

subsequently filtered using curvature filter, a slope-of-the-slope analysis (ESRI 2016) to obtain the 

terrain points. Record of laser returns is from any target stroke; ground and non-ground ones. To 

derive the required digital elevation model, only the returns from bare-earth are needed and hence 

the data needs to be separated by filtration (Zhao et al. 2008). The two sets of points (terrain and 

surface points) were further processed to generate the DTM and DSM respectively using inverse 

distance weighing (IDW) interpolator. DTM represents the digital model of the bare earth’s surface 

while DSM depicts elevation information of land cover including the terrain and surface features 

(Bater & Coops 2009; Yu et al. 2010). Subtracting the former from the latter produces nDSM 
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(Figure 3b) that represents height of features above the ground surface (Yu et al. 2010). nDSM is 

mathematical expressed as:  

               [1] 

These derived datasets (Figure 3) and the aerial photo (Figure 4) were layer stacked into a single 

image file where each of the aforementioned data represent image band for further analysis where 

each dataset represent a band. 

 
Figure 3. Laser scanning data derivatives (a) DSM (b) DTM (c) nDSM (d) intensity image 
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Figure 4. High-resolution orthophoto of the study area 

2.4 Classification process  

Consensus has been reached among the remote sensing community that land cover information 

can be extracted with better accuracy using data from multiple sources. This concept is called data 

fusion (Gilani et al. 2016; Li et al. 2013; Awrangjeb, Mohammad Zhangb & Clive 2013; 

Awrangjeb et al. 2010; Hermosilla et al. 2011; Blaschke 2010; Blaschke 2013). A recent study by 

Gibril et al. (2016) highlights that layer stacking data from different sources into classification 

process preserves the spatial and spectral information in the individual band and therefore increases 

the accuracy of the extracted feature with object based image analysis (OBIA). Today, literature is 

overwhelmed with report of the efficiency of OBIA which has currently earned wide acceptance in 

the field of remote sensing as a preferred technique for accurate object recognition, scene 

classification, and information retrieval (Blaschke 2010). As opposed to the pixel-based approach 

which utilizes only the spectral information in each pixel for information extraction, OBIA uses 

spectral information from a set of similar pixels assumed to belong to the same object by exploiting 

the spectral properties that include colour, size, texture, shape and contextual information (Demers 

et al. 2015).  

The primary goal is to detect all buildings with minimum segments possible. So, the stacked 

image file was input into the segmentation process as the basis for feature extraction. Ordinarily, 

since the aim is to extract buildings, the segments should primarily divide the building rooftops 

accordingly. However, due to differences in composition of the roof surface material, the roof of a 
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single building may be divided into several segments. Therefore, options leading to optimised 

segments depend on correct selection of algorithm and segmentation parameter values. This process 

was executed in ENVI5.3 using edge segment algorithm (Mavrantza & Argialas 2008) with scale 

level and merge level of 52 and 97 respectively, texture kernel of 3 and employing full lambda 

schedule. Edge segment algorithm generally detects objects with distinct boundaries using Sorbel 

edge detection (Mavrantza & Argialas 2008). The scale and merge level determine the size and 

shape of the segments. In the case of over-segmentation, Full lambda schedule merges small 

segments with larger ones. This results in the segmentation process which partitions the image into 

unclassified image objects; thus, classification is required to extract the features of interest.  

The image was classified into four classes: buildings, roads, vegetation, and water bodies. The 

classes were defined using ground truth information collected prior to the data processing. Sample 

segments used as ground truth data (reference data) for training and accuracy assessment were 

selected with the aid of the high resolution orthophotos and guided by the general knowledge of the 

site. The reference data was divided into two parts, 70% and 30%, for the image classification and 

quality evaluation respectively. Care was taken to ensure that training samples selected for any 

particular class vary across the representative objects of the class in order to capture the different 

attributes of the specific class. This was particularly important for the vegetation class since both 

trees and low vegetation are classified as one class. After selection of training data set, the 

segmented image was classified using support vector machine (Haitao et al. 2007). Support vector 

machine (SVM) is a classification technique based on Vapnik- Chervonenkis dimension theory and 

Structural Risk Minimization (SRM) rule. It has been proved by several researchers that SVM is as 

good as or even better than other competing methods (Turker & Koc-San 2015; Haitao et al. 2007; 

Christopher 1998). SVM separates classes with a hyperplane surface to maximise the margin 

between the respective classes and this can be performed for non-linear and high-dimensional 

problems (Haitao et al. 2007). Classification accuracy was evaluated using confusion matrix (Lee et 

al. 2003). Confusion matrix compares the ground truth data and the classified results to determine 

the probability of omission and commission presented as a percentage of the overall accuracy.  

For improved feature extraction, the classification result was subjected to post-classification 

editing to homogenize small irrelevant and unclassified classes. This was achieved using three post-

processing algorithms: sieving, clumping, and aggregation (Tomljenovic et al. 2016). Sieved classes 

locate isolated classified pixels using blob grouping after which the irrelevant/isolated pixels were 

termed as unclassified. Thus, clumping was necessary whereby the previously obtained unclassified 

pixels were clumped to surrounding classified areas using morphological. The last post-classifier 

aggregates small class region to a bigger one thus effectively cleaning up the classification results. 

2.5 Building extraction and 3D modelling  

One of the advantages of OBIA is that the output is always a vector data that can easily be 

transferred to any GIS software for further analysis (Haque et al. 2016). The classified image object 
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was exported to ArcGIS10.2 to extract building footprints. Using simple attribute query, the 

building class was separated as a single vector file layer, followed by clean-up operation in 

preparation for 3D reconstruction. Before any editing was done, the percentage of detection was 

evaluated using completeness and correctness analysis (Xiao et al. 2012). One of the main tasks was 

to isolate buildings that have different heights but are represented by single feature. These polygons 

were manually edited into separate entities based on the nDSM to ensure that such building sections 

have the same heights using the average height value within the building polygon. Also, cars 

mistakenly classified as building because of the height consideration were manually deleted. 

Furthermore, edge smoothing operation was carried out to straighten jagged edges caused by 

obstructing tall trees that cover some roof sections Once this was completed, the heights associated 

with the polygons were automatically determined from the nDSM using the average height of the 

polygon area. The height values was subsequently used to generate the building block model (Idrees 

et al. 2013) that gives the desired 3D visualization of the buildings. 

3. Results and discussion 

3.1 Classification result 

The classification process produced was targeted at four land cover classes: buildings, 

vegetation, water bodies and roads (Figure 5). Vegetation class has the highest coverage area 

representing about 54.97% of the entire study area while the building and road classes considered 

impervious surfaces constitutes the remaining 40.14%. The lake within the faculty occupies 4.18% 

of the land area. It can be observed that the usual noisy appearance associated with pixel-based 

classification results is not present. OBIA allows extraction of features in their natural setting with 

discrete boundary for the respective classes. The vector output eases building extraction for 3D 

reconstruction.  
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Figure 4. Land use / land cover classification map 

In the Figure 5, isolated features particularly within the pave surfaces can be seen misclassified 

as building. These are cars wrongly identified as object above the surface based on the height 

components of the DEM and nDSM. Aside that, the colour properties of those vehicles carry similar 

surface reflectance that is confused with the spectral reflectance of roof materials. This phenomenon 

was corrected using the post classification tools mentioned earlier. Moreover, the classification 

result has no issue with shadow affect because the imaging angle is near vertical and the resolution 

of the image is also high (Zhou et al. 2009).  

For the accuracy assessment, 234 points, widely spread among the classes were selected in the 

image. More pixels were chosen within building class as the main focus of this study. Confusion 

matrix (or error matrix) depicts the degree of similarity between the classified image and the ground 

truth data (reference). The diagonal cells show the number of truly classified pixel between 

classified image and reference data while the non-diagonal cells shows the error and the number of 

pixels not matching their land cover classes (Green & Congalton, 2004). For example, from the 

detail analysis of the individual error (Table 1), it can be observed that 14 pixels out of 165 pixels 

classified as building do not actually belong to building class but objects such as vehicles on the 
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road with height component similar to low building structures or building with roof-top that have 

similar spectral characteristics of vegetation. But for the other classes, misclassification did not 

occur. A measure of the individual land cover class performance (Table 2) indicates that 100% class 

accuracy is obtained in all the classes except the building class which produced 91.52%. This result 

further proves the advantage of the fusion process. Quantitative evaluation of the classification 

process yields overall accuracy of 94.02% and Kappa coefficient of 0.88 (Table 2). These 

classification accuracy indicators are good enough for the map to be used for decision making 

process. 

Table 1. Comparison between ground truth and classified image (Confusion matrix) 
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Ground Truth (Pixels) 

Class Vegetation Roads Buildings Water bodies Total 

vegetation 49 0 9 0 58 

roads  0 19 5 0 24 

buildings  0 0 151 0 151 

water bodies  0 0 0 1 1 

total  49 19 165 1 234 

Table 2. Confusion matrix (percentage) 

Class Vegetation Roads Buildings Water bodies Total Prod. 

Acc. 

vegetation 100 0 5.45 0 24.79 100 

roads 0 100 3.03 0 10.62 100 

buildings 0 0 91.52 0 64.53 91.52 

water bodies 0 0 0 100 0.43 100 

total 100 100 100 100 100  

User Acc. 84.48 79.17 100 100   

Overall accuracy is 94.02%; Kappa coefficient is 0.88 

 

3.2 Building footprints extraction and 3D modelling 

According to Tomljenovic et al. (2016), regular building outline is difficult to obtained from 

ALS data alone, particularly with low density point cloud. In this study, the use of additional 

information in the classification process improved the accuracy of building detection. However, 

some building outlines still produced jagged and irregular boundary (Figure 5), primarily due to 

incoherent point samples along the building edges. Outline irregularities are much more pronounced 

in areas where tree canopies cover building roofs. However, adoption of a combination of the post-

classification enhancements procedure (Cheng et al. 2011; Hermosilla et al. 2011; Tomljenovic et 

al. 2016) resulted to better footprint of the individual building (Figure 6). Sampath and Shan (2007) 

posit that regularity of building boundaries is proportional to point spacing with a precision of 18% 

to 21%. This study reveals that building outline horizontality increases slightly with the use of 

auxiliary data. Conversely, the usual curvilinearity along edges associated with building footprint 

extraction using LiDAR point data alone significantly reduces (Sampath & Shan 2007).  
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Figure 6. Extracted building footprint superimposed on the orthophoto 

The cleaned up extracted building footprints was subsequently used for the 3D building block 

model (Figure 7) using average height of the area occupied by the respective footprints. It can be 

seen that the roof gable are not adequately represented due to limitation of existing GIS software in 

handling 3D modelling with vector data (Biljecki et al. 2015; Rottensteiner & Jansa 2002); third-

party software like Google Sketchup are usually employed for this application. The block model is 

sufficient for our application because it provides basis for visualization, spatial planning and 

disaster scenario modelling. 

 

Figure 7. 3D model of the buildings with vertical exaggeration of 1.25. Average water level of the 

lake is 40.6 m 
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4. Conclusions 

Laser scanning is a state-of-art technology that provides precise xyz coordinates of the imaged 

surface for variety of 3D applications. This study combines laser scanning derived datasets and 

aerial photo to extract and model buildings in 3D geometry. Integration of different datasets allows 

extraction of building footprints with high level of precision. Nevertheless, some level of manual 

editing is required to achieve better accuracy with respect to building edges. The use of intensity 

data as additional information is valuable, though, it also introduce some amount of noise along 

border lines especially where two different land cover classes share boundary with varying 

elevation. Overall, the extracted building is complete and of good quality to generate 3D model. 

The building block model did represent the actual height but did not depict bevel-shaped roof 

facades. Nevertheless, the outcome demonstrates reliable 3D model for visualization, development 

planning and disaster scenario modelling to aid emergency preparedness and management. The 

limitation of the currently available free source GIS software for complete 3D modelling reflecting 

the true roof facades and the wall structure is the shortfall of this study.  Future study will explore 

the interoperability with third-party packages for precise modelling of the roof top in their correct 

3D representation of 3D city and for disaster modelling applications. 
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