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Abstract 

Fire risk assessment is one of the most important components in the management of fire that offers 
the framework for monitoring fire risk conditions. Whilst monitoring fire risk conditions commonly 
revolved around field data, Remote Sensing (RS) plays key role in quantifying and monitoring fire 
risk indicators. This study presents a review of remote sensing data and techniques for fire risk 
monitoring and assessment with a particular emphasis on its implications for wildfire risk mapping 
in protected areas. Firstly, we concentrate on RS derived variables employed to monitor fire risk 
conditions for fire risk assessment.  Thereafter, an evaluation of the prominent RS platforms such as 
Broadband, Hyperspectral and Active sensors that have been utilized for wildfire risk assessment. 
Furthermore, we demonstrate the effectiveness in obtaining information that has operational use or 
immediate potentials for operational application in protected areas (PAs). RS techniques that involve 
extraction of landscape information from imagery were summarised. The review concludes that in 
practice, fire risk assessment that consider all variables/indicators that influence fire risk is 
impossible to establish, however it is imperative to incorporate indicators or variables of very high 
heterogeneous and “multi-sensoral or multivariate fire risk index approach for fire risk assessment 
in PA. 
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1. Introduction 

Approximately 133,000 Protected Areas (PAs) worldwide covering over 12% of the land surface 
of terrestrials biomes emerged as the cornerstone of efforts towards conservation (Nagendra et al., 
2013). Protected Area is a clearly defined geographical space, recognized, dedicated and managed 
through legal or other effective means to achieve the long-term conversation of nature with associated 
services and cultural values (International Union for Conservation of Nature (IUCN), 2015). Fire is 
considered as a major factor in the environmental transformation of ecosystems (Food and 
Agricultural Organisation, 2007). On the other hand, fire is recognized as an important ecological 
process used as a management tool for maintaining healthy ecosystems particularly in PAs. However, 
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fires in PAs are paradoxical (Pereira et al., 2012), in that if properly planned, desired outcomes such 
as regulating fuel accumulations, regeneration of vegetation by removing fungi and microorganisms, 
disease and insect control, receiving more energy through exposure to solar radiation, mineral soil 
exposure and nutrients release are achieved (Bond et al., 2005, Pausas and Paula, 2012). In contrast, 
unwanted or uncontrolled fires can be destructive or result in ecological disturbance causing bush 
encroachment, invasion by alien plants, reduction in water yield and loss of biodiversity (Brown and 
Smith, 2002, Jhariya and Raj, 2014). It is always a challenge to reconcile the fire management goals 
that relate to safety on one hand to the maintenance of ecosystem health as acknowledged by Van 
Wilgen et al. (2011). This is because approaches to fire management in PAs have focused on 
encouraging particular fire patterns in the absence of sound monitoring and assessment of fire risk 
conditions (Mbow et al., 2004). Hence, it is imperative to develop an effective and efficient fire 
management plan to reduce these losses and optimize the benefits from fires. Towards the 
achievement of this goal, fire risk assessment has been commended as one of the major components 
of integrated fire prevention and management (Chuvieco et al., 2004, Leblon et al., 2012, Yebra et 
al., 2008). 

Different systems or techniques have been used to monitor and assess fire risk conditions in the 
past. For instance, conventional methods such as (i) field reconnaissance (traversing the landscape on 
the ground and recording the extent of similar fuel conditions in notebooks or on paper maps); (ii) 
directly mapped fuel from aerial photo interpretation and (iii) an ecological modelling approach 
which uses environmental gradients to create fuel maps for monitoring vegetation conditions have 
been applied for fire risk assessment (Arroyo et al., 2008, Keane et al., 2001). Field sampling 
involving oven drying methods such as gravimetric sampling (involves comparing the difference in 
weight of sample from the field and its oven drying) (Aguado et al., 2007) and analogue sampling 
methods (involving the repeated weighing of a sample exposed to field conditions) such as calibration 
of a sticks known as hazard sticks  (Yebra et al., 2013) were employed to measure fuel moisture 
content. In addition, Fuel moisture content (FMC) has been indirectly measured using meteorological 
variables through the analysis of atmospheric characteristics from which fuel water status is estimated 
(Yebra et al., 2008). Although these conventional methods are considered to be reliable, accurate and 
useful for calibration and  final product accuracy assessment of derived from remotely sensed data 
(Arroyo et al., 2008), they however suffer from numerous drawbacks. For example, field 
measurements are primary based on point-source data. In general, to forecast fire danger rating over 
a large geographic regions, point data must be interpolated (Leblon et al., 2012) which would be quite 
expensive and laborious in terms of data collection and its processing (Chowdhury and Hassan, 2015). 
Therefore, Leblon (2005) argued that the accuracy of ratings may be limited by the density of point 
data and interpolation methods that generally does not account for fine-scale variations in 
environmental conditions. 

In the past three decades, passive and active remote sensing systems have been employed to 
address the spatial and temporal interpolation limitations associated with conventional methods with 
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obvious advantage of spatial and regular temporal coverage (Dalponte et al., 2009).  Subsequently, 
several operational global, regional & national monitoring system products and early fire-warnings 
were developed based on remote sensing and Geographic Information System (GIS). Among the 
existing products, the most prominent ones are Global Fire Monitoring Centre (GFMC) of the United 
Nations International Strategy for Disaster Risk Reduction (UN/ISDR), Global Observation of Forest 
and Land Cover Dynamic (GOFC)/GOLD, the Early Warning System for Wildfire (EWSFire) 
component of Canadian Forest Fire Danger Rating System (CFFDRS), the European Forest Fire 
Information System (EFFIS) and the South African Advanced Fire Information System (AFIS) as 
well as the MODIS Rapid Response System  (Ballester, 2007, Vorster and Jordaan, 2014). 

With the consideration of the characteristics of various remote sensing systems developed over the 
past decades, the significant mandate of PAs (irrespective of vegetation cover) and the impacts of fire 
as well as heterogeneity of environmental factors that influence vegetation flammability are 
significant. Questions such as how to ensure the long-term sustainability of the PAs with complex 
landscapes where diverse conflicts of interest meet, i.e. nature conservation and tourism still persist 
(Aretano et al., 2015). Furthermore, effective application of fire as an ecological process to develop 
sound fire management strategy and hence monitoring of fire risk conditions for fire risk assessment 
based on the remote sensing technology has become critical within PAs management. Therefore, 
summaries and comparisons of different remote sensing approaches are urgently required and 
indispensable for PAs management in order to better understand the mechanisms of interactions 
between vegetation characteristics and its environmental conditions. Thus, the objective of this 
manuscript is to review different remote sensing data and techniques that have been used for 
predicting and monitoring fire risk conditions and its implication for fire risk assessment and mapping 
in PAs.  

 

2. Remote Sensing in Monitoring Vegetation Conditions for Fire Risk Mapping 

In wildfire risk assessment, remote sensing (RS) derived products assist in the elaboration of 
vegetation or fuel maps (type & structural traits), topography and land use in order to create a 
permanent or static database. Furthermore, RS derived products are used to determine the 
meteorological conditions and vegetation or fuel properties (biomass & moisture)  in real time and in 
a dynamic way in order to provide the risk indexes (Calle and Casanova, 2008). Several studies have 
demonstrated the existence of relationship between fire and vegetation characteristics (Lozano et al., 
2007, Schneider et al., 2008) as well as the relationship between remote sensing and these variables 
or indicators (Arroyo et al., 2008). However, in order to understand the usefulness of remote sensing 
in monitoring and mapping wildfire risk conditions, it is crucial to understand the relationship 
between environmental conditions and fire occurrence following protocols as suggested by 
Chowdhury and Hassan (2015). In doing so, more information on remotely sensed data used to 
quantify vegetation flammability will be discussed. 
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 Remote sensing derived variables/indices for monitoring fire risk conditions 

Generally, remotely sensed vegetation and water indices have been used to assess the extent of 
vegetation flammability conditions and to understand the fire risk conditions. In simplicity, 
Chowdhury and Hassan (2015) on the basis of environmental conditions broadly categorised these 
indices into (i) vegetation greenness, (ii) meteorological variables; (iii) surface wetness conditions 
and (iv) vegetation wetness conditions. 

Vegetation greenness-related indices have been immensely used for fire risk assessment under the 
assumption that the chlorophyll content of vegetation decrease in proportional to the vegetation water 
content based on the spectral signature of vegetation greenness expressed in Red (R) and Near 
Infrared (NIR) portions of the spectrum (Table 1). The internal structure of healthy leaves acts as an 
excellent diffuse reflectors of near-Infrared reflectance wavelengths and therefore measuring and 
monitoring  near–infrared reflectance (NIR) is used to determine the health of the vegetation (Barroso 
and Monteiro, 2010). The healthy vegetation shows a very low reflectivity in the Visible Band of the 
electromagnetic spectrum (0.4 -0.7 micrometres). While unhealthy vegetation lack of chlorophyll in 
their leaves makes the spectral curve of reflectivity move significant towards the red colour (Calle 
and Casanova, 2008). 

The Normalized Difference Vegetation Index (NDVI) also known as “continuity index is 
calculated as function of surface reflectance of red (0.6 – 0.70 µm) and NIR (0.70 – 0.90 µm) (Huete 
et al., 2002). No doubt, that NDVI is one of the immensely utilized and well-known VI in measuring 
both morphological and physiological characteristics of the vegetation conditions for estimation and 
monitoring fire risk conditions for fire risk assessment and mapping with PAs. For example, NDVI 
have been used to distinguish shrub height in order to distinguish shrub for description of fuel 
conditions (Riaño et al., 2007), to evaluate vegetation cover or canopy cover (Falkowski et al., 2004); 
Leaf Area Index (LAI)(Yebra et al., 2008); biomass (Saatchi et al., 2007, Sannier et al., 2002, 
Verbesselt et al., 2006b); phenology (Van Wagtendonk et al., 2003), and fraction of Absorbed 
Photosynthetic Active Radiation ( fAPAR) and also a fractional of vegetation cover (fPAR) (Jia et 
al., 2006a). 

However, other indices based on R & NIR exhibit stronger relationships with vegetation or fuel 
conditions than NDVI in both protected and unprotected areas. For example, Soil Adjusted 
Vegetation Index (SAVI) that take into account the influence of bare, unsaturated soil backgrounds 
in order to minimise soil noise (Huete, 1988, Moreau et al., 2003). While Enhanced Vegetation Index 
(EVI) is an example of optimized spectral band combinations that aim to minimize VI biases from 
canopy background and aerosol variations and outperformed NDVI over high biomass area since it 
does not saturate easily and it is recommended for tropical dense vegetation (Huete et al., 2002, Huete, 
2012). Visible Atmospherically Resistant Index (VARI) was developed for estimating green 
vegetation fraction since it minimizes the sensitivity to atmospheric effects (Stow et al., 2005). Global 
Environmental Monitoring Index (GEMI), one of the hybrid vegetation indices for extraction of 
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biomass data was introduced because is good for vegetation canopy of low cover (Bisquert  et al., 
2014, Zhang et al., 2005). 

 
Table 1. Selected vegetation greenness indices in monitoring fire risk conditions in the literature 

Indices Formula Reference 
SR 𝑆𝑆𝑆𝑆 =

𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅

 (Falkowski et al., 2004) 

 NDVI 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 –  𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅

 

 

(Rollins et al., 2004); (Bisquert  et al., 2014); 
(Wang et al., 2013) 

SAVI 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  (𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑅𝑅)/ (𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑅𝑅 + 𝐿𝐿)  ∗  (1 + 𝐿𝐿) (Verbesselt et al., 2006b) (Huete et al., 2002) 
 

VARI 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑅𝑅

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑅𝑅 − 𝐵𝐵
 (Gitelson et al., 2002) (Schneider et al., 2008); 

(Stow et al., 2005); 
 
GEMI 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  ŋ (1 − 0.25𝜂𝜂) − �𝑅𝑅−0.125
1−𝑅𝑅

�Where  
ŋ = 2(NIR2 – R2 ) + 1.5R2 +0.5NIR2 / R +NIR +0.5 
 

 
(Pinty and Verstraete, 1992); (Bisquert  et al., 
2014) 

EVI 𝐸𝐸𝐸𝐸𝐸𝐸 =  2.5 (𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅)
𝑁𝑁𝑁𝑁𝑁𝑁+6𝑅𝑅−7.5 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+1

  (Huete et al., 1984); (2002); (Mildrexler et al., 
2007); (Bisquert  et al., 2014) 

 
Remote Sensing meteorological variables such as Surface Temperature (Ts), Air Temperature (Ta) 

and Relative Humidity (RH) on the other hand are used as indicators in monitoring and analysis of 
fire risk conditions. Ts computed from thermal infrared bands have been found to provide valuable 
information on fuel temperature, vegetation moisture status and air humidity over the surface (Leblon 
et al., 2012, Wang et al., 2013). Manzo-Delgado et al. (2004) used Ts variable as the fire risk indicator 
over the temperate forest in Central Mexico. The results showed that ∼60% of the fire took place 
when they were between 8 oC and 15oC. Since, Ts is too sensitive to weather conditions, the difference 
between Ts and Ta is regarded as a better spectral index to monitor vegetation water status than Ts 
alone (Leblon et al., 2012).  

Keetch-Byram Drought Index (KBDI) is one of the fire/drought index that is derived from 
meteorological data. It has been used to estimate fire risk conditions from meteorological data such 
as daily maximum temperature, daily total precipitation and minimum annual precipitation (Keetch 
and Byram, 1968). KBDI is strongly related to vegetation water content since most of the vegetation 
moisture stress are caused by soil moisture deficiencies (Aguado et al., 2003). It has been 
recommended for operational use in South Africa (Dimitrakopoulos and Bemmerzouk, 2003) as an 
indicator of dead fuel moisture content. Its utility has been effectively demonstrated on shrub species 
or herbaceous fuel moisture content (Riaño et al., 2005).   

Surface Wetness Conditions have been monitored based on the concept of evapotranspiration 
(ET). ET is described as the loss of water from the Earth’s surface to the atmosphere by the combined 
processes of evaporation from open water bodies, bare soil and plant surfaces, and transpiration from 
vegetation or any other moisture containing living surface (Li et al., 2009). RS-based ET estimation 
methods can be broadly categorised into the following groups based on the following principles (i) 
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water balance,(ii) surface energy balance, (iii) vegetation indices and (iv) hybrid approaches based 
on vegetation indices and Ts (AghaKouchak et al., 2015).  

In fire risk assessment, hybrid approaches have been widely applied whereby Surface Temperature 
(Ts) has been incorporated with vegetation greenness variables to indirectly estimate the surface 
wetness condition as an indicator for wildfire risk. This approach explores the complementary of 
thermal and visible/near infrared wavelengths in order to obtain information about heat energy and 
the water status of the surface related to water stress (Sandholt et al., 2002). For example the ratio of 
NDVI/Ts (Aguado et al., 2003, Prosper-Laget et al., 1995); and EVI/Ts (Mildrexler et al., 2007). The 
incorporation of NDVI and Ts assists in justification for the influence on the ground cover rate over 
the composite Ts measured by the sensors (Leblon et al., 2012). This resulted to the derivation of 
more indices such as Stress Index (SI) (Vidal et al., 1994), Water Deficient Index (WDI) (Moran et 
al., 1994, Vidal and Devaux-Ros, 1995); Temperature –Vegetation Wetness Index (TVWI) (Akther 
and Hassan, 2011).  

WDI developed by Moran et al. (1994) estimated by the ratio of LE/LEp by using land surface 
temperature and ambient Ta and has been used for partially vegetated covers. LEp is the latent heat 
flux for potential evapotranspiration rate (Rahimzadeh-Bajgiran et al., 2012) and has a potential for 
evaluating evaporation rate and relative field water deficit for both full cover and partially vegetated 
sites (Verbesselt et al., 2002). TVWI was developed by Sandholt et al. (2002) as a simplification of 
WDI by interpreting the relationship between LST and NDVI in terms of soil moisture. 

Although these evapotranspiration-concept indices are widely used they are acquired through 
thermal inertia approach. These indices only yield satisfactory results in soils with little vegetation 
cover since the latter reduces the temperature differences between day and nights and in order to 
determine the moisture in a concrete point it is necessary to have the day and night temperature in a 
cloud –free images (Calle and Casanova, 2008). 

In general, quantification of vegetation/fuel cover moisture has been conducted through the 
measure of fuel moisture content or the Equivalent Water Thickness (EWT) defined as ratio between 
the quantity of water and the leaf area (Leblon et al., 2012) and Relative Water Content (RWC) 
compares the water content of a leaf with the maximum water content at full turgor (Ceccato et al., 
2002, Wang et al., 2013). It is regarded as an extremely essential vegetation condition parameter since 
it ha as an inverse relation with ignition probability owing to the fact that the energy necessary to start 
a fire is used up in the process of evaporation even before the fire starts to burn (Dimitrakopoulos and 
Bemmerzouk, 2003). Moreover, fuel cover moisture dilutes volatiles and excludes oxygen from the 
combustion zone. However, the water content also affects fire propagation as the source of the flames 
as it reduced with humid materials and therefore reduce vegetation flammability (Chuvieco et al., 
2009 ). Most studies have directly measured vegetation water content by utilizing water absorption 
channels in the SWIR and contrasting it with NIR channels to account for the variations in reflectance 
due to leaf internal structure (Dalponte et al., 2009) (Table 2). The uncertainties arise in estimating 
vegetation water content using NIR – SWIR indices because they cannot completely remove 
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background soil effects (Gao, 1996). Therefore, a new index called Normalized Multi-Band Drought 
Index (NMDI) was introduced by combining multiple, rather than one SWIR for monitoring soil and 
vegetation moisture conditions (Wang et al., 2008). 

 
Table 2. Selected vegetation wetness condition indices derived as a function NIR and shortwave 

infrared (SWIR) to determine the fuel moisture content for fire risk 

Indices Algorithm  References 

Normalized Difference Water 
Index  NDWI = 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 (Gao, 1996); (Verbesselt et al., 2006a) 

Global Vegetation Moisture 
Index  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = [(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+0.1)−(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+0.2)]
[(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+0.1)+ (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+0.2)]

  (Wang et al., 2013); (Ceccato et al., 
2002) 

Normalized Differences 
Infrared Index  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   (Hunt and Rock, 1989);(Chuvieco et 
al., 2002) 

Moisture Stress Index (MSI) 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

  (Sow et al., 2013) 

Simple Relation Water Index 
(SRWI) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  (Gao, 1996); (Sow et al., 2013) 

Normalized Multi Drought 
Index (NMDI) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 2 − (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 6 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 2 + (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 6 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7) (Wang et al., 2013),  

 
All of these RS derived variables have been used as indicators for fire risk conditions in fire risk 

assessment and mapping either individually or integrated with other variables (Calle and Casanova, 
2008). While some obtained a sound correlation with fire occurrences, other indices and variables 
yield to a low correlation or dissimilar results among different ecosystems. With the 
acknowledgement of limitations related to VI, the researchers have developed and improved 
techniques by using hyperspectral, hyper-temporal and microwave remote sensing derived indices to 
characterize the vegetation.  
 
3. Remote Sensing Platforms for Monitoring, Assessment and Mapping 

Wildfire Risk  

Fundamentally, the choice of remote sensing platform will depend on the amount of information 
or variables that are available to create a fire risk index or model to a sufficient degree of accuracy 
and to monitor changes (Kennedy et al., 2009). Furthermore, Nagendra et al. (2013) highlighted three 
critical aspects that should be considered in the selection of datasets, i.e. (i) Scale (spatial and 
temporal), (ii) the adequacy or quality of spatial datasets and (iii) dataset sources. Different RS 
instruments and platforms have been utilized in the past decades for acquiring imagery to extract 
indicators for monitoring fire risk conditions for wildlife risk mapping with differing success. Thus, 
a review of the prominent remote sensing platforms that have been utilized for obtaining information 
that have operational uses or immediate potentials for operational application in PAs management 
are explored in the following section. 
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 Broadband sensors 

Remote sensing broadband sensors imageries have been found to effectively monitor vegetation 
traits for fuel type, fuel load or biomass mapping and fuel moisture content in wildfire risk assessment 
for PA. Landsat and other coarse, medium to high spatial resolution sensors have relative good spatial 
and spectral resolution essential for fire risk assessment and mapping. The 30m spatial resolution of 
Landsat sensors allows spatial detail to be captured at a scale appropriate for monitoring vegetation 
structure and composition (Willis, 2015) and good spectral resolution of seven bands. Erten et al. 
(2004) used Landsat TM images taken before and after the forest fire in Gallipoli Peninsula Historical 
National Park in Spain to map burned area and to estimate vegetation moisture context in conjunction 
with topographic maps, forest type map, vegetation map, elevation, slope, aspect, topographic map 
and climate data (average, wind, rainfall data and temperature to determine fire risk areas.  The 
authors concluded that remote sensing is a useful tool to determine fire risk area and could support 
fire management activities. Banu et al. (2014) employed Landsat 8 imagery to estimate the vegetation 
moisture in combination with other variables for the cartographic wildfire risk areas in National Park 
Domogled- Cerna Valley in Romania. Because of its revisiting time of 16 days, the operativeness for 
estimation of the FMC in real time is ruled out (Calle and Casanova, 2008) and the constraints to 
cover a cloud-free landscape in a large area, it is difficult to reveal key characteristics of the plant 
where vegetation is highly dense or saturated (Mbow et al., 2004). 

As an alternative, Advanced Very High Resolution Radiometer (AVHRR) sensors of National 
Oceanographic and Atmospheric Administration (NOAA) with a daily temporal resolution have 
demonstrated to be effective for mapping fire risk (in particular dynamic fire risk map) through the 
study of water stress. Sannier et al. (2002) used NOAA- AVHRR to estimate the biomass for wildfire 
risk assessment in Etosha National Park. The study had demonstrated the suitability of AVHRR for 
measuring biomass of grassland in the Park. Maselli et al. (2003) used past-fire occurrence data and 
NOAA-AVHRR NDVI data of 16 years (1985-2000) to estimate fire risk in Tuscany (Central Italy). 
AVHRR has an image archive with long history, it is useful to study long-term changes of vegetation 
however its utility has been restricted because its often introduce substantial errors at the various stage 
of processing and analyzing (Xie et al., 2008). 

Another sensor that has been applied in wildfire risk mapping is Systѐme Pour I’Observation de 
la Terre (SPOT) managed by French Space Agency (CNES). Verbesselt et al. (2006a) used SPOT 
VEGETATION time-series to monitor the vegetation biomass and water content to improve fire risk 
assessment in the savannah ecosystem of Kruger National Park in South Africa. This study illustrated 
the importance for the combination of both vegetation biomass and vegetation water content for fire 
risk assessment. The study concluded that monitoring of vegetation biomass and water content with 
SPOT VGT provided a more suitable tool for fire management and suppression compared to satellite-
based fire risk assessment methods only related to vegetation water content.   

Fire risk assessment and mapping have been extensively investigated using Moderate Resolution 
Imaging Spectro-radiometer (MODIS). For example, Yebra et al. (2008) estimated FMC of 
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Mediterranean vegetation species using a 5-year time (2001 -2005) of Terra MODIS for fire risk 
assessment in the Cabañeros National Park (Central Spain) offering reasonable result with better 
performance on grassland (91% & 89%) than shrublands (73% and 84 %).  Dlamini (2011) used 
MODIS Terra and Aqua satellites’ active and burnt area data to analyse and process the biophysical 
and socio-economic variables to generate a fire risk map of the Kingdom of Swaziland. Accuracy 
assessment and comparison of the fire risk maps resulted in 93.14% and 96.64% accurate 
respectively, showing adequate agreement between risk maps and the existing data. Although the 
model is valid for generalized national planning and assessment purposes the author suggested that 
more work is needed to improve data collection and integration for practical application in near real-
time fire risk analysis.  

Furthermore, the utility of MODIS data was found to be useful for estimating herbaceous water 
content and for monitoring the drying process of herbaceous vegetation in the management of 
savannah fire by the study conducted by Sow et al. (2013) at Senekal. In comparison with other 
broadband sensors, MODIS data are available at a significantly higher temporal resolution (daily) 
with the spectral bands available in Landsat data. However, MODIS imagery has limitations for 
monitoring land cover changes (Gillespie et al., 2014) and for validating fire susceptibility indices 
(FSI) because of possible over or underestimation of the model performance since some large fires 
have several fires detections which are likely to have similar environmental conditions and spatial 
and temporally correlation (Schneider et al., 2008). Alternatively, Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) sensors with footprint of 30m have been used to 
construct FSI using NDVI/LST of ASTER data. 

Meteosat Second Generation (MSG), the new generation of geostationary meteorological satellite 
developed by the European Space Agency (ESA) in close corporation with the European Organisation 
for the Exploitation of Meteorological Satellites (EUMESAT), possesses a high temporal resolution 
(a near earth image every 15 min) together with a spatial resolution (3 km at sub-satellite point) 
appropriate to regional to continental scales.  In addition, the optical imaging radiometer on-board 
MSG (Spinning Enhanced Visible and Infrared Imager (SEVIRI) presents spectral capabilities that 
are very similar to the TIR bands around 10.8 and 12.0 μm of the NOAA- AVHRR series (Peres and 
DaCamara, 2004). These temporal, spatial and spectral characteristics make MSG-SEVIRI suitable 
for retrieval of environmental parameter that change rapidly in time. Nieto et al. (2010) used MSG-
SEVIRI data to estimate dead fuel content in the Iberian Peninsula of Spain. The accuracy assessment 
showed a negative bias comparison between equivalent moisture content (EMC) of the vegetation 
derived from Ta, vapour pressure, and surface meteorological data. The remote sensed tends to 
underestimate the EMC from the ground. The authors recommended that improvements in Ta and 
vapour pressure would lead to a better agreement between the observed and the predicted values and 
alternative method for estimation NDVI max that produced unbiased estimation of Ta.  

Furthermore, there is mounting evidence that these optical broadband instruments have the 
capacity for acquiring information that has operational significant for application in fire risk 
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assessment and mapping in the PA. However, other than well-known satellite optical sensor limitation 
of cloud-effect, these sensors (MODIS, NOAA-AVHRR, Landsat & SPOT) lack specific windows 
such as red-edge which is very important band in biomass estimation particular in sparse vegetation 
and grassland ecosystem (Kumar et al., 2015). RapidEye with a relative high spatial resolution (5m) 
and 5 bands including a new band (red-edge), blue, red, green and NIR has shown a greatest capability 
for estimation of grassland biomass semi-arid region (Adelabu et al., 2013, Zandler et al., 2015) and 
hence potential for fire risk assessment. However, its applicability in monitoring fire risk conditions 
especially in PA is lacking. Furthermore, multispectral sensors have known limitation such as sensor 
saturation and absence of specific narrowband to target and highlight specific biophysical parameters 
(Mallinis et al., 2014), which is critical in estimation of vegetation wetness conditions for fire risk 
assessment. This spectrum is available in hyperspectral sensors. 

 
 Hyperspectral remote sensing 

Advancement in remote sensing and imaging spectrometry led to the development of hyperspectral 
imagery which has demonstrated to be useful for the spectral and spatial discrimination of fire-related 
vegetation attributes such as green canopy closure, vegetation moistures, ratio dead to live plant 
materials and distribution of bare ground  (Wang  et al., 2010). Hyperspectral imagery also known as 
Imaging Spectrometers (IS) are instruments that have the ability to collect ample spectral information 
across a continuous spectrum general with 100 or contiguous spectral bands across the visible (VIS), 
NIR and SWIR regions of the electromagnetic spectrum, offering unprecedented detailed spectral 
reflectance data from land surface features. Because of its fine spectral information, hyperspectral 
sensors have been used for remote sensing mapping of biophysical and chemical information that is 
directly related to the quality of wildfire fuel including fuel type, fuel moisture, green biomass and 
fuel conditions (Yoon and Kim, 2003).  

Kötz et al. (2004) demonstrated the potential for use of imageries from hyperspectral remote 
sensing in assessing and mapping wildfire risk assessment. Jia et al. (2006a) used AVIRIS data to 
map major forest components and fuel types by discriminating the fractional covers of photosynthetic 
Vegetation (PV), non-photosynthetic vegetation (nPV) and bare soil with 73,5%, 40,3% and 77,6% 
for PV, NPV and soil respectively. These make hyperspectral remote sensing data an excellent 
indicator not only for fuel fractional cover but also for fuel condition after fire by greatly improving 
regional fire risk assessment.  

Similarly, Dennison et al. (2006) illustrated the ability of hyperspectral data AVIRIS to retrieve 
both fire temperature and background land cover for fire spread model in wildfire risk assessment 
with the conclusion that fire and fuel information extracted from hyperspectral data provide the basis 
for eventual real-time complex fire spread model. However, the limitations of AVIRIS are that it is 
only available in small areas upon request and that data processing requires special expertise and 
software (Jia et al., 2006a).  Additionally, the capability of Airborne Imaging Spectrometer data 
(DAIS7915 and ROSIS) to estimate structure and foliage water content of a coniferous canopy for 
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fire risk assessment and fire impact management at Ofenpass Valley in the Swiss National Park have 
been carried out with an accuracy assessment of 71,6% and 78,2% for foliage water content and dry 
matter respectively (Kötz et al., 2004).  

Yoon and Kim (2003) applied Hyperion hyperspectral remote sensing data acquired to evaluate 
its potential of mapping fuel properties such fuel moisture, fuel greenness, live biomass and fuel 
types. Although the Hyperion imagery included a lot of sensor noise and poor performance in liquid 
water band, the overall results showed that Hyperion imagery is useful for wildfire fuel mapping. The 
usefulness of hyperspectral data to recognize and map fuel type was illustrated when the highest 
accuracy level of 90% was achieved when comparing the MIVIS based results with ground truth data 
in the Pollino National Park in the south of Italy (Lasaponara et al., 2006).  

Since it has been proven that the operational assessment of FMC requires high spectral resolution 
sensors with narrow bands to calculate vegetation dry matter content, only few studies have used the 
approach to estimate FMC (Hunt et al., 2012). To our knowledge, no studies have been conducted 
for FMC assessment using narrow bands of Hyperspectral sensors for monitoring fire risk conditions 
in the PAs. Hyperspectral sensors could actually provide information for estimation of FMC because 
due to the presence of high spectral resolution and narrow bands to which vegetation dry matter 
content can be retrieved.  Therefore, future research for dry-matter content from narrow bands of 
hyperspectral sensors is needed to support this. Assumptions of greater utility of high resolution 
satellite imagery are widespread but its credibility has been questioned depending not only on the 
classification content but on image acquisition parameters and scene configuration (Carter et al., 
2009). Based on the evaluation of classification results in terms of cost and technical characteristics, 
the use of hyperspectral datasets is suitable for use in PAs although they are still unavailable and 
costly for most developing countries. 

 
 Active sensors 

Active sensors have been widely used to estimate various components of forest structures such as 
crown and stem biomass, foliage water content, crown bulk density and forest height that can be 
directly incorporated into fire risk assessment (Saatchi et al., 2007). Furthermore, it has be used as an 
effective solution for overcoming the limitation on providing information on conditions at the top of 
canopy especially in densely vegetated regions (Arroyo et al., 2008). It is employed to estimate fuel 
height which is critical both in fuel load assessment and fuel discrimination and it provide information 
of surface fuels when they are covered by forested canopy (Keane et al., 2001).  

Several studies have demonstrated the successful use of Light Detection and Ranging (LiDAR) 
system in measuring vegetation characteristics for fire risk assessment. For instance, Morsdorf et al. 
(2008) employed airborne laser scanner (ALS) to measure the location and geometry of individual 
trees and vegetation cover to quantify fire risk in the Swiss National Park in Switzerland. Riaño et al. 
(2007) combined LiDAR and Colour infrared Ortho images of Gestosa in Portugal for shrub height 
mapping. González-Olabarria et al. (2012) illustrated the operational application of LiDAR derived 
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data for fire risk assessment at the landscape level. Due to its efficiency and ability to record elevation 
information below vegetation cover, LiDAR has been effectively used to develop Digital Elevation 
Models (DEM) or Digital Terrain Models (DTM) (Burns, 2012). However, its affordability would 
ultimately be limited by logistics costs and challenges associated with the deployment of such 
airborne sensor system in an African landscape (Naidoo et al., 2012). 

Despite the popularity of microwave remote sensing, very few studies have utilized such data in 
monitoring fire risk conditions in PAs. This is as microwave sensors are less affected by atmospheric 
conditions and can collect information during both day and night, it will be a better option (Tanase et 
al., 2015). Leblon et al. (2002) demonstrated the efficacy of using Radio Detection and Ranging 
(RADAR) system to assess canopy and forest fuel moisture content through analysing the potential 
use of European Remote Sensing Satellite Synthetic Aperture Radar (ERS-SAR) backscatter for 
retrieving Fire Weather Index (FWI) data and FMC. The results revealed significant relationships 
between backscatter and the FWI, and between the rate of change in backscatter coefficient and in 
the LFMC. This indicate the usefulness of ERS-1 images in monitoring fuel moisture. The capability 
of RADAR system for monitoring forest fuel and as potential tool for forest fire risk assessment was 
illustrated by Saatchi et al. (2007) through the use of Airborne SAR imagery to estimate the 
distribution of forest biomass and canopy fuel loads in Yellow Stone National Park. The authors 
found good agreement between radar-generated fuel parameters and in-situ measurement with r2 
value of 0.85 (canopy fuel weight), 0.84 (canopy bulk density) and 0.78 (foliage biomass). Tanase et 
al. (2015) study using L-band of SAR similar to ALSO PALSAR-2 radar data collected over a semi-
arid Australian forest employed linear regression model to relate FMC to backscatter intensity and 
polametric decomposition components. Their results revealed that radar system can provide similar 
or improved results for FMC with a value of r=0.6 -0.7 than those achieved in previous studies using 
optical-based VIs.  

Although active sensors provide a better alternative to broadband and hyperspectral sensors, 
however active sensor satellite images have inherent of speckles which looks as a grainy texture due 
to random construction and destructive interference from multiple scattering (Chowdhury and 
Hassan, 2015). Other notable limitations include for instance, the right angle surface causes double 
bounce reflection, volume scattering may occur when radar beam penetrates the top most surface and 
the brightness of the image increase due to high moisture content of the target surface (Moreira et al., 
2013). According to Levin and Heimowitz (2012) the radar operates under commercial mode and the 
revisit time period is quite long (ERS1/2). The repeat cycle is around 35 days compared to RADARsat 
which has only 24 days coverage which limits capturing the temporal dynamic of moisture conditions 
and their coverage is very small. Future research in this direction can significantly improve our 
understanding of vegetation conditions in response to fire risk.   

The utility and potential applications of RS have been explored. However, the usefulness of RS 
for monitoring fire risk conditions for fire risk assessment and mapping depends on the ability of 
delineating fire risk conditions at the current time. Based on this, we believe that when selecting the 
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source of data imagery: the data source that has a record especially from reviewed literature; ability 
to predict or estimate attributes (fuel types, fuel property, land use & topography); and resolution of 
dependent variables are therefore fundamentals to the usefulness of RS in monitoring fire risk 
conditions for fire risk assessment in PA. 

From this review of sensors for monitoring fire risk conditions, we strongly deduce that the “best” 
sensor is often more than one sensor. We suggest the application of multi-sensoral or multiresolution 
data approach for fire risk assessment and mapping. Because the use of multi-sensoral data together 
improved methods may overcome some of the problems that are faced with single dataset. 

 
4. Remote Sensing Techniques for Wildfire Risk Mapping 

Generally, the usefulness of remote sensing in fire risk assessment depends not only on the data 
type sources, but also on effective image processing techniques. Therefore, pre-processing imagery 
prior to information extraction in order to eliminate data registration errors and to increase 
interpretability of the image is essential. Image pre-processing involves series of operation including 
but not limited to bad lines replacement, geometric and radiometric corrections, image enhancement 
and masking as well as geo-referencing. Image classification is defined as the process of extracting 
different classes or themes from raw remotely-sensed data (Xie et al., 2008). Numerous classification 
algorithms are available for different data types and conditions. The traditional pixel-based 
classification method, relying on spectral information works well with medium to coarse resolution 
images but is often found insufficient when applied to very high-resolution imagery and LiDAR 
(Arroyo et al., 2006). Pixel-based classification algorithms tend not to be ideal to extract information 
desired from the data exhibiting high frequency components with high contrast and horizontal layover 
of objects (Wang et al., 2010).  

Object-based classification methods based on both spectral and contextual information have been 
shown to improve the performances of many applications, including fuel type mapping for fire risk 
assessment (Arroyo et al., 2006). However, the implementation of contextual information in 
classification is a complex process (Chen et al., 2004). The application of advance classifier such as 
Artificial Neural Network (ANN) can also improve image classification (Satir et al., 2016). Empirical 
and physical-based methods or techniques have also been used to estimate parameters (vegetation 
water content in this case) showing different results and accuracies among different ecosystems. The 
former uses statistics to construct relationship between fields measured FMC or input variables data 
and spectral measures based on reflectance data (Yebra et al., 2008). Physical-based approaches 
estimate FMC by attempting to simulate the processes that occur in the fuel thereby comparing the 
observed reflectance of every pixel to those simulated in a look up table, assigning to each pixel the 
parameters of the most similar simulated spectrum (Yebra et al., 2013). Chuvieco et al. (2009 ) used 
logistic regression models to establish ignition point (IP) of live grasses and shrubs fuels for fire risk 
assessment. Results revealed clear variation in FMC values of grassland and shrubs for discriminating 
difference groups of periods, with FMC of grassland more sensitive to the number of fires and burnt 
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area as well as a good estimator of large fires. Jurdao et al. (2012) explored different empirical 
methods to convert LFMC into IP at Iberian Peninsula of Spain taking into account the climate and 
vegetation functional type using non-parametric significance tests, histograms and percentiles, 
classifications tress, and Logistic Regression models for estimating IP form FMC. Logistic regression 
analysis outperformed other models since it uses several predictor values to compute a continuous 
probability of IP.  

Yebra et al. (2008) compared the performance of empirical and Radiative Transfer Models (RTM) 
approaches of Mediterranean vegetation species from MODIS reflectance measurement with the aim 
of developing an operational methodology of FMC estimation for fire risk assessment.  The physical 
based on simulated data (leaf level PROSPECT and canopy level SAILH RTM) for grassland and 
shrublands according to their biophysical parameter traits and FMC range. Both models offer the 
similar accuracy level with better determination coefficient for grasslands (R2=0.90 and R2=0.894 
respectively than for shrublands (R2=0.732 and R2 =0.894). 

Furthermore, statistical classifier and image transformation techniques have been applied for land 
use classification and vegetation or fuel type classification for fire risk assessment. Image 
transformation techniques are frequently applied to multidate imagery that has been stacked in 2n-
dimensional space (i.e.) Principal Component Analysis (PCA) and Tasseled Cap Transformation 
(TCP). TCP approach was employed on Landsat-ETM derived Wetness and Brightness Indices to 
assess the risk of intensive fire propagation in a National Park named Niokola Koba, Senegal West 
Africa (Mbow et al., 2004). The results revealed that TCP method is suited for an operative use for 
management of fire in savanna ecosystems. PCA is a helpful technique that is used to produce 
uncorrected output bands, to segregate noise components and to reduce the dimensionality of data 
sets (Wang  et al., 2010). Mutlu et al. (2008) applied PCA to the LiDAR-QuickBird stack imagery 
and Minimum Noise Fraction (MNF) transform stack imagery to assess fuel models. The study 
revealed that PCA techniques provide accurate estimates of surface fuel parameters effectively and 
accurately over extensive areas of forest.  

Due to the sub-pixel issue associated with medium to coarse spatial resolution of operation satellite 
system like Landsat, a number of image analysis accommodating mixing problems exits with fire risk 
assessment (Gitas et al., 2012). Support Vector machines (SVMs) are non-parametric linear 
classifiers that delineate the optimal separating hyperplane between classes by focusing on pixels that 
lie at the edge of the class distributions with the rest of the training sample effectively being discarded 
(Mallinis and Koutsias, 2012). Mallinis et al. (2014) used SVM classification approach in order to 
discriminate and map Mediterranean fuel types. However, the McNemar’s test indicated that the 
overall accuracy differences between the produced fuel types map were not significant. Although 
SVM is complex and time consuming method (Hussain et al., 2013), it has the crucial ability to detect 
low cover fractions, which remains challenge to conventional approaches. Spectral Mixing Analysis 
(SMA) addressed this issue by quantifying the sub-pixel fraction of cover of different endmembers, 
which are assumed to be representing the spectral variability among the dominant terrain features. Jia 
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et al. (2006b) applied SMA to discriminate forest cover for prediction of fire spread in California, 
USA. 

Other techniques have been used to combine remote sensing and GIS data into decision level fire 
risk zone map and demonstrated their potential capabilities. For example, knowledge-based 
techniques, Artificial Neural Network (ANN) (Alonso-Betanzos et al., 2003, Satir et al., 2016), 
Bayesian belief networks (BBNs) (Bashari et al., 2016, Dlamini, 2011), Analytic Hierachy Process 
(AHP) (Ajin et al., 2016, Chavan et al., 2012). Alonso-Betanzos et al. (2003) applied a neural network 
approach for the prediction of forest fire risk in Galicia. The results indicated the system perform 
satisfactory with sensivity of 0,857. In their method to resolve the uncertainity in wildfire prediction, 
Bashari et al. (2016) used BBNs to identify the factors influencing fire in arid and semi arid of Iran, 
which has significantly supported the process of adaptive management.  

  
5. Conclusion 

The objective of this manuscript was to review different remote sensing data and techniques that 
have been used for predicting and monitoring fire risk conditions and its implication for fire risk 
assessment in PAs. The review indicated that numerous fire risk indicators have been introduced, 
however, in general Vegetation Greenness-related indices (based on chlorophyll absorption) such as 
NDVI, EVI and SAVI and Vegetation water related indices (based on water absorption) such as 
NDWI, NDMI and GVMI are the most commonly used indices for quantifying fire risk conditions 
with NDVI & NDWI at the top of the list.  

Overall, remotely sensed data, ranging from Broadband, Hyperspectral and active (LiDAR and 
Radar) have shown great potentials in monitoring fire risk indicators or variables for fire risk 
assessment at all scale. Based on their stress-free acquisition and accessibility, broadband 
Multispectral data have been found to be more effective for monitoring fire risk conditions at regional 
scale. However, mixed pixels and sensor saturation problem have been reported with these data in 
fire risk assessment for complex environments. Furthermore, the absence of red-edge and narrow 
bands to target and highlight specific biophysical parameters such as vegetation dry matter content 
and biomass estimation which are critical for fire risk assessment.  

Furthermore, and for remote sensing approaches to be useful for fire risk assessment in PAs, the 
study suggest should be conducted not for research purpose only but also should be useful at the 
operational level. Moreover, the specific remote sensing tools and products as well the results should 
be communicated to the general decision-making body in a non-technical manner. Lack of error 
values evaluation uncertainty of the outcomes in the majority of the RS studies is a critical issue that 
often prevent stakeholders to trust RS data and techniques for conservation assessment in PAs (Petrou 
et al., 2015). Hence, fusion of multisensory and multiresolution data might overcome problems faced 
by single dataset and has the potential to improve fire risk assessment and mapping in PAs. 
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