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Abstract 

The proliferation of woody vegetation on open grass savannas constitutes degradation in 

rangeland quality. Historical high spatial resolution satellite imagery in archive provides 

possibilities for assessing increase in woody vegetation cover on the rangelands. This paper 

examines the quantification of woody vegetation in the field and on historical high spatial 

resolution imagery, using the southern granites research supersite in the Kruger National 

Park (KNP) as test case. The recently established research supersites represent the key 

characteristics of the vegetation zones in the KNP. Field quantification of woody cover was 

undertaken in June and September 2013 by employing a detailed procedure that quantified 

the area covered by individual woody (tree, shrub) canopies at twelve one hectare sample 

plots. The area covered by the woody individuals at the respective plots was then totalled in 

order to yield the fraction (%) of cover per hectare.  The woody cover data were then related 

to test recent historical imagery in order to assess woody cover estimation procedures on 

historical imagery. Digital high spatial resolution aerial photographs (dated 2010) and dry 

period (spring/autumn) SPOT multispectral images (September 2001, April 2012) were used; 

the dry period dates selected so as to eliminate herbaceous vegetation from the analysis. For 

the newest (2012) image, sub-pixel classification correctly assigned woody cover at the field 

sample plots to their 2013 field-derived cover fractions. The results indicate that sub-pixel 

classification, validated by detailed field quantification of woody cover, can accurately map 

woody encroachment on savanna rangelands using historical high spatial resolution 

imagery. 

 

1. Introduction 

Savanna rangelands in Africa provide habitat for a variety of ungulates (du Toit & 

Cummings, 1999), which makes their conservation of biodiversity significance. Deterioration 

in their quality results in reduced carrying capacity for these ungulates, as well as associated 

negative effects on biodiversity. There is, therefore, an acute need for spatial data on the 

condition of savanna rangelands.  

http://dx.doi.org/10.4314/sajg.v3i2.1
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One of the mechanisms by which savanna rangeland quality deteriorates is the 

proliferation of woody vegetation at the expense open grass grazing land, known as bush 

encroachment. Bush encroachment on savannas manifests through conversion of the 

savannas to dense, acacia-dominated thickets with little grass cover (Meik et al., 2002). The 

encroaching species are often unpalatable to grazers (Kraaij & Ward, 2006) or not accessible 

to browsers if thorny (Moleele et al., 2002). The availability of high spatial resolution digital 

satellite imagery, as well as improved image processing algorithms that enable discrimination 

of woody vegetation, permits the monitoring of bush encroachment. However, difficulties in 

quantifying the woody cover both in the field and on historical imagery limit the full 

utilisation of this capability. Part of the problem lies in the characteristically scattered and 

patchy nature of savanna woody cover. The scattered nature of the cover presents spatial 

quantification difficulties both in the field using quantification instruments, and in mapping 

the cover using image classification algorithms. In the field, the woody cover is sometimes 

quantified by visual estimation (e.g. Oldeland et al., 2010; Shackelton, 2000), which can be 

subjective. 

Since high spatial resolution imagery only dates back to the mid 1980s, historical aerial 

photographs enable an extension of high spatial resolution analysis of bush encroachment to 

periods before then. Appropriate digital image processing protocols and algorithms are 

needed to enable this linkage between multispectral satellite imagery and historical aerial 

photographs, most of which are panchromatic. The common approaches to mapping woody 

cover on such imagery in bush encroachment studies are the use of traditional pixel-based 

image classification (e.g. Hudak & Wessman, 1998; 2001) and object-oriented classification 

(e.g. Laliberte et al., 2004; McGlynn & Okin, 2006), although some studies have used manual 

quantification on aerial photographs (e.g. O’Conner & Crow, 1999). Hudak and Wessman 

(1998) utilised pixel-based image classification of the severity of encroachment based on 

photo texture on a 2m spatial resolution set of historical aerial photographs that were later 

spatially related to lower spatial resolution (≤ 10m) satellite imagery by pixel aggregation. 

LaLiberte et al. (2004) utilised image segmentation to discriminate shrub encroachment on an 

imagery dataset that included very high spatial resolution (0.60m) QuickBird multispectral 

imagery that was at nearly the same spatial resolution as the panchromatic historical aerial 

photographs. 

Pixel-based approaches to quantifying bush encroachment suffer from the error of over-

estimation in that whole pixels can be assigned to woody cover when the woody cover is only 

dominant and not covering the entire pixels concerned. Proponents of the use of object-

oriented classification in mapping bush encroachment stress the advantage that it groups 

adjacent pixels into contiguous multi-dimensionally homogenous clusters that represent 

natural land cover patterns and minimize classification errors that result from single pixels 

with outlier values and areas of complex spectra due to mixed coverage (Laliberte et al., 
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2004; McGlynn & Okin, 2006). However, such approaches appear inappropriate for mapping 

and quantifying the actual woody cover on savannas in that aggregating woody cover that is 

inherently patchy in nature amounts to introducing over-estimation error. Sub-pixel 

classifiers such as spectral mixture analysis (SMA) offer a more accurate alternative. Spectral 

mixture analysis calculates the fraction of cover (as a decimal) by land cover classes of 

interest per pixel. Locations that represent pure coverage by the cover classes of interest (i.e. 

‘end members’) are identified and specified during SMA (Pan & Li, 2013). The technique 

potentially can have high land cover classification accuracy on digital images. 

In this paper we demonstrate methods for quantifying woody vegetation cover in the field 

and on historical imagery. We use a section of the Kruger National Park in South Africa as 

test case. Historical high spatial resolution aerial photographs and SPOT imagery were used. 

In particular, we examine sub-pixel classification in the quantification of woody vegetation 

cover by testing it against detailed field validation data. We then assess the potential of sub-

pixel classification in monitoring bush encroachment using high spatial resolution historical 

aerial photographs and multispectral imagery. 

 

2. Materials and Methods 

 

2.1 Study sites 

Savanna vegetation in the Kruger National Park (KNP; Figure 1a) was utilised for the 

study. The geology of the KNP broadly consists of high fertility basalts in the eastern half, 

and low fertility granites in the west (Figures 1b, c). The structure of the Park’s vegetation is 

influenced by the geology, with the basalts predominated by more open short tree cover and 

sweet grass, and tall tree woodland with a sweet and sour grass mixture on the granite 

substrates (Gertenbach, 1983). The sweet grass in the Park’s basalt substrate zone is heavily 

grazed (van Wilgen et al., 2000). Structurely, the woody vegetation ranges from shrubs of 

<1m height to tall trees >10m, with a variety of species of many genera like Acacia, 

Combretum, Grewia, Terminalia, etc (Gertenbach, 1983). There is no targeted management 

for bush encroachment in the KNP, compared to the neighbouring private protected areas. 

Management in the KNP recently established four research supersites that encompass the 

Park’s geology and rainfall characteristics (Smit et al., 2013).We utilised two of the research 

supersites for this study (Figure 1c), the one in the southwest (Site A - the Southern Granites 

supersite) and the one in the south-eastern sector (Site B - the Southern Basalts supersite). 

 

2.2 Field quantification of woody vegetation cover 

The first stage of the work was to obtain sample quantitative data on woody vegetation 

cover in the field at the two study sites. As opposed to visual estimation, we sought actual 

detailed measurements. We judged densiometer crown cover measurements to be unsuitable 

due to the scattered tree nature of woody cover on the savannas in the study area (Figure 2). 
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A densiometer reading was only indicative of crown cover by individual tall trees and 

difficult to use in the case of short shrubs.  
 

 

 

 
 

Figure 1. Location of the Kruger National Park study area in South Africa (a), the Park’s 

geology (b) and study sites in relation to geological fertility (c). Geology data from the 1:1M 

geology map of South Africa (Council for Geosciences, Pretoria, South Africa). 
 

 

We, therefore, devised a methodology to determine the total area of cover by individual 

woody canopies per unit area. We decided to use a hectare as the unit area, and measured the 

canopy diameter (d) of each woody individual within a 100m x 100m (1ha) plot by spreading 

measuring tape either beneath or above the canopy as appropriate. The canopy diameter then 

gave a canopy radius (r) measurement (r = 1/2 d). Treating the shape covered by the canopy as 

circular, we then calculated the area covered by each canopy as: Area = πr2. The total area 

covered by all woody canopies (trees, shrubs) within the 1ha plot then gave a % woody cover 

value, as a fraction of the one hectare area. Geographic location of the corners and centre of 

the plot was then recorded, in UTM coordinates. The location of the sample sites (plots) was 

purposefully varied in order to yield differences in woody cover as influenced by landscape at 
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each of the two sites (Site A, Site B; Figure 1c). Therefore, the woody cover measurements 

were replicated using the three landscape topographic positions of valley, mid-slope, and 

crest. The work was undertaken in June 2013 and September 2013. Six plots were eventually 

utilised at each of the two study sites, the numbers limited by the time-consuming nature of 

the work. 
 

 
 

Figure 2. Illustration of the scattered nature of woody vegetation cover (trees, shrubs) on the 

southern granites in the Kruger National Park (photo by authors, taken at UTM coordinates 

[36 J 0333109, 7236281] facing north east, in March 2010). 

 

 

2.3 Image data 

Three image dates were utilised for mapping of woody cover on digital imagery. They 

included high spatial resolution colour aerial photographs and Systemé Pour l’Observation de 

la Terre 4 (SPOT 4) High Resolution Visible and Infrared (HRVIR) multispectral images 

(Table 1).  Although the field quantification utilised both study sites (Site A, Site B; Figure 

1c), we used only the more wooded Southern Granites study site for the image analysis. The 

images were selected mainly on the basis of availability. However, in order to differentiate 

the spectral signature of woody vegetation from herbaceous vegetation, season was taken into 

consideration when selecting the images from the list of available images. Dry season image 

dates were preferred in order to eliminate herbaceous vegetation from the analysis. The 

phenology of the herbaceous vegetation responds to rainfall events. During the rainy season 

(about November to March) the herbaceous vegetation is green (e.g., see Figure 2), as is the 

woody vegetation, but during the dry season (about April to October) herbaceous vegetation 

is dry. The Southern Hemisphere winter months (about June-August) were avoided because 
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the trees are largely leafless in winter, which can hinder the detection of tree cover. 

Therefore, autumn (April) and spring (September) images were judged ideal for detecting 

woody cover on images, because the woody vegetation is in leaf and herbaceous vegetation 

dry. 

 

 

Table 1 Image data covering the Southern Granites site (Figure 1c) that were tested in the 

mapping of woody cover 
 

Sensor / category Reference Spectral 

characteristic 

Date Spatial 

resolution 

SPOT 4 HRVIR K/J 139/400 Multispectral 10 September 2001 20m 

Aerial photographs - Colour 2010 0.5m 

SPOT 4 HRVIR K/J 139/400 Multispectral 05 April 2012 20m 

 

 

The SPOT images were obtained in digital form, from the South African National Space 

Agency (SANSA). The aerial photographs were sourced from the National Geospatial 

Information (NGI) directorate in Cape Town, South Africa, in digital (scanned) format. The 

exact date of acquisition of these aerial photographs in 2010 was not available. 

 

2.4 Image processing 

 

2.4.1 Pre-processing 

All the images were geometrically registered in a common projection (UTM zone 36 S; 

WGS 84 datum) using image to image registration procedures. The resulting spatial 

registration error was sub-pixel (i.e. total RMSE <0.50m on the aerial photographs, < 20m on 

the SPOT images). The Southern Granites site (Figure 1c) was then sub-set from the 

respective image scenes. 

 

2.4.2  Sub-pixel classification 

ERDAS Imagine 2010 was utilised for sub-pixel classification. Sub-pixel classification is 

implemented in a five step process in ERDAS Imagine 2010, involving pre-processing, 

environmental correction, signature derivation and refinement, and Material of Interest (MOI) 

classification (ERDAS Inc., 2010). The pre-processing, which  must be performed before 

initiating the software’s associated other sub-pixel classification processes, surveys the image 

for backgrounds that will be removed during signature derivation and MOI classification 

(ERDAS Inc., 2010). Each of the image sub-scenes resulting from the sub-setting process 

was, therefore, submitted to the software’s pre-processing routine. Bands 1 (green), 2 (red) 

and 3 (near infrared) of the SPOT images were used in the analysis. 

Environmental correction compensates for unwanted spectral variations in scene pixels 

caused by differences in atmospheric and other environmental conditions (ERDAS Inc., 

../Program%20Files/ERDAS/ERDAS%20Desktop%202010/help/html/subpixel_classifier/SPC_Signature_Derivation.html
../Program%20Files/ERDAS/ERDAS%20Desktop%202010/help/html/subpixel_classifier/SPC_MOI_Classification.html
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2010). The process automatically calculates environmental correction factors and outputs 

them to a file. These correction factors are applied within the signature derivation and MOI 

classification processes (ERDAS Inc., 2010). In-scene correction, which applies when the 

signature is used in the same scene as that from which it was derived, was selected as 

opposed to the scene-to-scene option. On the 2012 image that had a small amount of cloud 

cover (Figure 3a), sample pixels representing cloud cover were specified at this stage. 

During field work sites that represented pure (mature) tree cover stands were identified 

and their GPS coordinates recorded. These sites were different from the sampling plots that 

were utilised in quantifying woody cover. For these pure tree stands spectral signature 

polygons were manually drawn on-screen and saved for use in the signature derivation stage, 

as woody cover end-members. In reality in the savanna woodlands of KNP, there are few 

stands with 100% tree crown cover. The average tree crown cover from the field sites was 

about 92%, so 0.92 was specified to the software as the mean material pixel fraction (at 95% 

confidence level). 

The last step of the sub-pixel classification process in ERDAS Imagine 2010 software is 

the MOI classification, using the signatures derived in the third stage of the process. Woody 

vegetation cover was the material of interest in this case. The MOI classification process 

produces a classification image that identifies detections of the material of interest and 

indicates the average fraction of a pixel's spatial area occupied by the material (ERDAS Inc., 

2010).  

For each image sub-scene, eight output classes in woody cover fraction increments of 10% 

were specified (i.e. 0.20-0.29, 0.30-0.39, etc). This resulted in eight classes, the maximum 

that the software allowed and, therefore, woody cover of less than 20% was grouped in the 

<0.20 class. The area covered by each cover fraction was then computed. The respective 

cover fraction spatial layers that resulted were then aggregated to the 100m pixel size to 

facilitate comparison with the 100m x 100m plot field data. The aggregation resulted in four 

woody cover fractions: 0.20-0.39, 0.40-0.59, 0.60-0.79, and 0.80-1.00. As the 2012 image 

was very close to the field work dates in 2013, the 2012 classification was compared with the 

data from the 2013 field work. 
 

 

3. Results 

Field data confirmed that granites generally have more dense woodland than the basalt 

substrate in KNP, with generally higher woody cover values per hectare (Table 2). For the 

current small number of study sites this difference was, however, not statistically significant 

(t = 1.575, P = 0.077).  

Figures 3-5 show the results of the sub-pixel classification of the images. Overall, the total 

area under woody canopies for cover fractions of at least 20% was highest (330.6ha) on the 5 

April 2012 SPOT image, followed by the 10 September 2001 SPOT image (140.8ha), and 

../Program%20Files/ERDAS/ERDAS%20Desktop%202010/help/html/subpixel_classifier/SPC_Signature_Derivation.html
../Program%20Files/ERDAS/ERDAS%20Desktop%202010/help/html/subpixel_classifier/SPC_MOI_Classification.html
../Program%20Files/ERDAS/ERDAS%20Desktop%202010/help/html/subpixel_classifier/SPC_Classification_Image.html
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least (97.1ha) on the 2010 colour aerial photographs (Table 3).  In general on all three 

historical images, the sub-pixel classification generally detected high woody cover for the 

lower woody cover fractions (<40%), which was in agreement with the field data in Table 2 

that show the highest woody cover to have been about 40%. Sub-pixel classification also 

detected a general pattern of high woody cover in the valleys (Figures 3-5), which also was in 

agreement with the pattern from the field data as shown in Table 2. 

 

Table 2 Indicative woody canopy cover data illustrating the relationship between field data 

and sub-pixel classification of the images listed in Table 1 
 

Study site                

(as on  

Figure 1c) 

Sample site 

(plot number, 

as on  Figures 

3-5) 

Landscape 

topographic 

position 

Field 

derived 

woody cover 

% (per 

hectare) 

2012 image 

classification 

of fraction of 

woody cover 

(100m pixel) 

Southern granites 1 Valley 40.7 0.20-0.39 

Southern granites 2 Crest 13.9 <0.20 

Southern granites 3 Mid-slope 9.2 <0.20 

Southern granites 4 Valley 8.6 <0.20 

Southern granites 5 Mid-slope 15.1 0.20-0.39 

Southern granites 6 Crest 10.7 <0.20 

 

Southern basalts 
 

1 

 

Crest 

 

13.3 

 

Southern basalts 2 Crest 4.0  

Southern basalts 3 Mid-slope 2.4  

Southern basalts 4 Mid-slope 0.5  

Southern basalts 5 Valley 7.7  

Southern basalts 6 Valley 17.0  

 

Table 3 Area of woody cover per woody cover fraction as detected by sub-pixel classification 

of the Southern Granites site (Figures 3-5) 

 
Woody cover fraction Area (ha) 

 5 April 2012 image 2010 aerial photographs 10 September 2001 image 

<0.20  3669.7 3903.2 3859.5 

0.20 - 0.29 50.7                     51.6                43.5                     

0.30 - 0.39 70.0                     35.8                 47.1                     

0.40 - 0.49 76.1                     5.2                  30.2                     

0.50 - 0.59 62.7                     2.8                   13.3                     

0.60 - 0.69 40.8                     0.8                  5.0                      

0.70 - 0.79 19.6                      0.5                   1.3                      

0.80 - 0.89 9.0                        0.2                    0.3                      

0.90 - 1.00 1.7                      0.2                  0.1                      

Sum for fractions ≥0.20 330.6 97.1 140.8 

 

The sub-pixel classification correctly assigned the woody cover at most of the field sample 

plots to their correct fraction of cover classes (Table 2). Using a contingency table, which is a 

simple cross-tabulation of the mapped class against that observed in the field (Foody, 2002), 

the overall classification accuracy was 83.3%. In the absence of historical near-concurrent 
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field data with which to compare it the assignment of pixels to woody cover fractions on the 

older imagery can, therefore, be judged to have been reliable too.  

The results indicate potential for use of sub-pixel image classification in the analysis of 

bush encroachment on historical images through the mapping of woody vegetation cover. A 

sub-pixel classification procedure similar to the one employed in this study can be employed 

on the historical images (including panchromatic aerial photographs), provided woody cover 

end-member pixels are identified. Such end-member pixels can be identified on the image 

itself even when identification was not possible at the time the image was acquired. 

 

4. Discussion and Conclusion 

We recommend the woody cover field quantification and sub-pixel woody cover image 

classification methods utilised in this study for similar studies of savannas. The field method 

we describe here would avoid the rather subjective visual estimation from an oblique 

perspective that is sometimes resorted to, which comes with its likely errors due to subjective 

judgements. The method has the disadvantage of being time consuming and physically 

demanding and is, therefore, only suitable when there are no time constraints.  

There is an element of over-estimating the woody canopy cover when assuming the canopy 

is circular because some canopies are oval or irregular (see Figure 2). Another source of over-

estimation is the fact that some canopies have inter-branch gaps. These sources of inaccuracy 

should be borne in mind when choosing to use the woody cover field quantification method 

in this study. Witkowski & Garner (2000) used an alternative approach by calculating canopy 

area as: Canopy area = π*(d1/2)*(d2/2); where d1 = longest canopy diameter, d2 = canopy 

diameter perpendicular to the longest. This approach perhaps accounts for the non-circular 

dimensions of different tree and shrub species canopies, although identifying the longest 

canopy diameter appears to be an additional practical difficulty.  

The spectral signatures of all woody canopies within an image scene may not be the same 

as the specified end-members, which can be a source of sub-pixel classification error. A 

possible solution for purposes of improving classification accuracy is the use of multiple end-

members in order to improve representation (e.g. Bateson et al., 2000; Dennison & Roberts, 

2003). For the savanna vegetation in this study, a number of factors can cause variation in 

spectral signature, including phenology, shadow, physiological stress, and herbivory. The 

detection required the woody canopies to be in leaf, so the absence of leaves from the woody 

canopy, for example due to seasonal cycles or fire damage, can result in mis-classification of 

woody cover. On the colour aerial photographs that were used in this study, tree shadow was 

a significant source of error in that, even on the same tree, sections of trees that were not on 

the sun-facing side were not detected as part of the woody canopy during sub-pixel 

classification. Physiological stress, for example moisture stress due to topographic position, 

can also cause differences in reflectance even within the same woody species. In the case of  
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Figure 3. (a) The 5 April 2012 SPOT image (RGB:321), and (b) sub-pixel classification of 

woody vegetation cover on the image. 
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Figure 4. (a) The 10 September 2001 SPOT image (RGB:321), and (b) sub-pixel 

classification of woody vegetation cover on the image. 
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Figure 5. (a) The 2010 colour aerial photographs, and (b) sub-pixel classification of woody 

vegetation cover on the photographs. 
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woody species that are under pressure due to browsers, herbivory can be a further source of 

within-species non-uniformity in spectral reflectance. Elephants can cause severe damage to 

woody vegetation in the Kruger National Park (Trollope et al., 1998; Brits et al., 2002). 

During the field work in the KNP, there was evidence of such physical damage to woody 

species due to elephant herbivory. 

Careful selection of image dates is an important component of the protocol for detecting 

and monitoring change in woody vegetation cover on African savanna rangelands. As 

demonstrated in this paper, using imagery that was acquired during a season when the 

herbaceous vegetation is in senescence but the woody vegetation is in leaf is critical. Season 

partly accounts for the differences in amount of woody cover that was mapped for the 2001 

and 2012 images in this study (Figures 3, 4; Table 3). On the September 2001 image, the 

woody vegetation that was detected was mainly that in river valleys whereas way from the 

river valleys the woody canopies were still in early spring leaf. 

Using imagery from various sensors a number of studies have shown that spatial 

resolution is a determinant factor in the successful use of remote sensing to monitor bush 

encroachment (e.g. Hudak & Wessman, 1998; 2001; McGlynn & Okin, 2006; Pringle et al., 

2009; Oldeland et al., 2010). High spatial resolution is vital in detecting the encroachment 

because of the small sizes of encroaching woody shrub canopies in savannas (e.g. see Figure 

2), which requires a sensor that will detect the canopies. Given the high spatial resolution of 

the aerial photographs that were used (Table 1), more woody cover should have been 

detected on the aerial photographs than was detected (Table 3). Although more woody cover 

detail was detected on the higher resolution aerial photographs than on the SPOT images 

(Figures 3-5), the amount of woody cover that was detected on the aerial photographs was 

lessened by the failure of the sub-pixel classifier to detect portions of woody canopies that 

were under shadow as being part of the respective canopies. Without such an error, the results 

from this study indicate that historical aerial photographs are quite useful in detecting woody 

encroachers using sub-pixel classification because of their high spatial resolution (Figure 5). 

However, in order to integrate historical aerial photographs with the newer satellite imagery 

in an analysis of bush encroachment, the high spatial resolution of the aerial photographs 

needs to be degraded to the pixel size of the satellite imagery (e.g. Hudak &Wessman, 1998). 

The methods for quantifying woody vegetation cover in the field and on historical imagery 

shown by this research can contribute to the monitoring of bush encroachment on savanna 

rangelands and, ultimately, to remote sensing of environmental changes. Sub-pixel 

classification appears to be accurate in quantifying woody cover on high spatial resolution 

images of savannas. Not all woody savanna vegetation is a manifestation of bush 

encroachment, given the diverse drivers of change in savanna woody cover (Wigley et al., 

2010). However, in places that are known to have been open savanna in the past, the 

occurrence of woody vegetation would be a manifestation of encroachment. The rate and 
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extent of the encroachment can then be quantified using the procedures utilised in this 

research, which has shown the feasibility of linking multispectral satellite imagery and 

historical aerial photographs, including panchromatic photographs. 
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