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Abstract 

Maize is considered globally as the most important agricultural grain which is 

staple food for many humans and feed to livestock. There is need to enhance productivity 

through management tools to meet the demand for growing populations. Farmers are 

likely to be interested in technologies that are beneficial to their operations. A technology 

that could assist farmers to produce staple foods e.g. maize more efficiently is remote 

sensing. The paper focuses on reviewing published research that deals with application 

of remote sensing in maize farming particularly the spectral characteristics of maize 

leaves, classification and mapping. It further surveys the application of remote sensing in 

detecting foliar nitrogen deficiency, water stress and disease infestations in maize. 

Remote sensing can be considered as a fast, non-destructive and relatively cost-effective 

method to study biophysical and biochemical parameters of vegetation across vast 

spatial areas. However, selection of appropriate sensors with special attention on their 

spatial and spectral resolutions as well as processing techniques will validate a success 

story for remote sensing application in maize production.  
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1. Background 

Maize has been considered globally as the most important agricultural grain which is 

staple food in many countries and feed to livestock. It is estimated that by 2050, the 

demand for maize in developing countries will double, and by 2025 maize will have 

become the crop with the greatest production globally (FARA, 2009). In 2006 the Abuja 

Summit on Food Security in Africa identified maize, among other crops, as a strategic 

commodity for achieving food security and poverty reduction. There was a call to 

promote maize production on the continent to achieve self-sufficiency by 2015 (AUC, 

2006). 

Maize production at macro level is limited by climate and soil. The potential areas 

maize can, therefore, be cultivated are geographically specific to these environmental 

conditions. At micro level, the determinant or stress factors to maize production would 

include among other factors water and nutrients deficiencies (nitrogen, phosphorus, 

potassium, etc.), insect pests, and diseases (Zhao et al., 2003). The proper functioning, 

growth and eventually yield output of the crop is influenced by these factors. Detection of 

stress levels to which maize production is subjected is therefore essential for assessing 

the effects on yield, taking action to mitigate these effects and enhancing production. 

Precision agriculture is based on intensive sources of information and attempts to 

address the site-specific needs with spatially variable application. This involves close 

monitoring and controlling many aspects of crop production that should aid in identifying 

proper targets and needs of crops for applying locally varying doses of chemicals. For 

instance, Mondal et al. (2011) conducted a research to monitor plant nutrient and 

moisture needs, soil conditions, and plant health (including identification of disease 

infestation).  

Effective crop planning and management requires informed and sound decisions 

drawn from knowledge about the crops in the field. In order to improve agricultural 

management, scientist are applying information technology (IT) and satellite-based 

technology (e.g. global positioning system, remote sensing etc.) to identify, analyze, 

monitor and manage the spatio-temporal variability of agronomic parameters (e.g. 
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nutrients, diseases, water, etc.) within crop fields. This aids in timely applications of only 

the required amount of inputs to optimize profitability, sustainability with a minimal 

impact on the environment (Mondal et al., 2011). There is therefore the assurance of 

proper resource utilization and management to enhance crop productivity. 

The purpose of this paper was to review published research in maize production using 

remote sensing as major research tool. The review seeks to investigate the potential of 

using remotely sensed data and analytical techniques to enhance productivity of maize. 

This is achieved through an understanding of the spectral characteristics of maize leaves 

for varietal separation, classification and mapping. The ability of these spectral 

characteristics can be used to monitor the nutrient status and health condition of the 

maize leaves. The paper concludes with a summary and some recommendations for the 

application of remote sensing in the production of maize. 

2. Spectral characteristics of maize leaves, classification and 

mapping 

When energy strikes on a surface material, it is either absorbed or reflected back 

through the electromagnetic spectrum. The visible (400-700nm wavelength) and near 

infrared (NIR) (700-2500nm wavelength) region of the electromagnetic spectrum is the 

region at which most agricultural studies carry out measurements. This is because the 

spectral region includes wavelengths which are sensitive to physiological and biological 

functions of crops (Lillesand et al., 2008). The spectral characteristics of healthy 

vegetation are distinctive with low reflectance in blue, high in green, very low in red and 

very high in the NIR (Chen et al., 2010; Genc et al., 2013). 

There is a large difference in the spectral characteristics between soil and crop, 

especially at the ‘red edge’ which is the point where the electromagnetic spectrum 

changes from visible to NIR (wavelength of approximately 700nm) (Figure 1). This 

region is used to detect biochemical and biophysical parameters in crops thereby being 

useful in vegetation studies. The principle is that the majority of the red light is absorbed 

by the chlorophyll in the canopy while a high proportion of the NIR light is reflected 
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(Ramoelo et al., 2012). The canopy greenness increases, either due to increasing crop 

density or chlorophyll content.  Canopy greenness is therefore related to the percentage of 

red reflectance absorbed and the percentage NIR reflectance reflected (Lillesand et al., 

2008). Therefore, the reflectance spectral techniques are very suitable for providing 

relevant information on both crop foliar and canopy which could be related to nutrient 

status and stress factors on the crops (Scotford & Miller, 2005; Ramoelo et al., 2012). 

Measurements at the red-edge bands has made possible the estimation of foliar 

nutrients and chlorophyll concentrations in differing vegetation types at varying growth 

stages (Huang et al., 2004; Cho and Skidmore, 2006; Darvishzadeh et al., 2008; Mokhele 

& Ahmed, 2010). Therefore, remote sensing (both multispectral and hyperspectral) can 

therefore provide an effective means for fast and non-destructive estimation of leaf 

nitrogen and water status in crop plants through complimentary tools such as regression 

models (Yao et al., 2010). 

 

 

Figure 1: Spectral reflectance curves for soil and crop (green vegetation) 

according to Scotford & Miller, 2005. 
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Spectral unmixing techniques can be used to quantify crop canopy cover within each 

pixel of an image and have the potential for mapping the variation in crop yield. Each 

image pixel contains a spectrum of reflectance values for all the wavebands measured. 

These spectra can be regarded as the signatures of surface components such as plants or 

soil, provided that components, referred to as endmembers, covers the whole pixel. 

Spectra from mixed pixels can be analyzed with linear spectral unmixing, which models 

each spectrum in a pixel as a linear combination of a finite number of spectrally pure 

spectra of the endmembers in the image, weighted by their fractional abundances (Yang 

et al., 2007; 2010). Spectral unmixing is an alternative to soft classification for sub-pixel 

analysis (Lu and Weng, 2004). This is usually very essential in crop identification and 

classification studies. The classification is performed under either supervised techniques 

which include maximum likelihood, minimum distance, parallelepiped etc or 

unsupervised technique. 

Adding to traditional unsupervised and supervised classification methods are advanced 

techniques such as artificial neural networks (ANN), support vector machines (SVM), 

decision trees (DT) and image segmentation which have been used to classify remote 

sensing data (Lu & Weng, 2007; Mathur & Foody, 2008). However, these classifiers 

remain to be evaluated using different types of remote sensing data from diverse crop 

growing environments. There is also the field-based crop identification which entails 

field boundary information and results in higher classification accuracy (De Wit & 

Clevers, 2004). 

Remote sensing has played a significant role in crop classification for various 

purposes.  Effective crop classification requires an understanding of the spectral 

characteristic (foliar and canopy levels) of the particular crop. In order to understand for 

instance the maize canopy spectral characteristics, a field investigation is targeted when 

the plant canopy is covered which is usually during six to eight weeks after planting. The 

light reflectances acquired during such growth stages could apply in differentiation of 

varieties; classification and mapping of maize varieties. For instance, Yang et al. (2011) 

used maximum likelihood and SVM classification techniques on SPOT 5 imagery to 

identify crop types and to estimate crop areas. Different band ratios of multispectral or 
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hyperspectral data and classifications schemes have been applied, depending on 

geographic area, crop diversity, field size, crop phenology and soil condition (Nellis et 

al., 2009). 

To extract vegetation species from hyperspectral imagery, a set of signature libraries 

of vegetation are usually required (Xavier et al., 2006). For certain applications, the 

vegetation libraries for particular vegetation species might be already available. However, 

for most cases, the spectral signature library is established from data collected with a 

spectrometer. As such, vegetation mapping using hyperspectral imagery must be well 

designed to collect synchronous field data for creating imagery signatures (Melgani, 

2004). 

In most agricultural studies, spectral reflectance values of at least two wavelength 

bands (on either sides of the ‘red edge’) are measured to enable the calculation of a ratio. 

These ratios are known as vegetation indices and many have been developed over the 

years. These indices are usually correlated against field observations of nutrient stress 

measured at foliar or canopy level. The number of wavelength bands measured will 

determine the complexity of the data analysis; wherein a small number of bands will 

translate to a simple data analysis. This could be illustrated in a scenario where in situ 

measured reflectance values of the red and NIR wavelengths are used to calculate 

normalized difference vegetation index (NDVI).  

However this only holds true until canopy closure when the crop has a leaf area index 

(LAI) of up to three where LAI is defined as the ratio between total leaf area, one side 

only, per unit area of ground (Scotford & Miller, 2005). Mirik et al. (2012) also described 

spectral vegetation indices as mathematical expressions that involve reflectance values 

from different parts of the electromagnetic spectrum. These expressions are aimed at 

optimizing information and normalizing measurements made across different 

environmental conditions. 

Shanahan et al. (2003) proposed a study evaluating the use of two indices (NDVI and 

green NDVI (GNDVI)) on a large plot scale. The experiment was conducted on four 

varieties of irrigated corn treated with five differing levels of nitrogen. Remote 
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measurements were taken with active sensors emitting light in four bands: blue (460nm), 

green (555nm), red (680nm), and NIR (800nm). The authors concluded that differences 

in NDVI was significantly impacted by nitrogen and sampling date. Also, increased 

nitrogen was correlated to increased chlorophyll content but not on a large scale. 

However, Strachan et al. (2002) recommended that canopy reflectance at red edge 

position can explain 81% of maize leaf nitrogen variability. 

3. Monitoring nutrient stress in maize  

3.1. Nitrogen deficiencies in maize 

Nitrogen (N) is a biochemical nutrient essential for plant growth. It forms part of many 

structural, metabolic and genetic compounds. Nitrogen is a critical building block of 

Chlorophyll which is essential for the process of photosynthesis.  Availability of N in the 

soil usually related to plant growth, photosynthetic capacity and stress (Ustin et al., 1998; 

Yao et al., 2010). Nitrogen deficiency in a plant will have symptoms on the lower, older 

leaves first before progressing upward to younger leaves if the condition is not corrected 

(Sawyer, 2004). 

Nitrogen deficiencies interfere with protein synthesis and growth in crops such as 

maize (Bruns and Abel 2005). Numerous studies have been conducted to proof the direct 

effect of N to yield levels of maize (Lindquist et al., (2007); Shapiro and Wortmann, 

2006; Singh et al., 2003; Abouziena et al., 2007; Savabi et al., 2013). Nitrogen 

deficiency-induced effects on kernel number could be related to photosynthesis or plant 

growth at flowering (Andrade et al., 2002). Gitelson et al. (2005) developed a model, 

based upon field measurements made by means of a hyperspectral radiometer, for non-

destructive estimation of chlorophyll in maize and soybean canopies. 

Nitrogen deficiency could be detected earlier in crops when visual symptoms of 

deficiency are less evident with the use of remote sensors (Jackson et al., 1981). This is 

achieved through its various compounds providing an effective means for monitoring 

growth status and physiological parameters in crop plants. Its presence in chlorophyll and 

other cellular structures influences information on spectral reflectance (Yao et al., 2010). 
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The measurement of chlorophyll content is also important with regard to N management. 

Hence, a number of studies have utilised remote sensing techniques to determine the 

status of nitrogen and other essential nutrients in field crops such a maize and wheat as 

illustrated through this review. 

Zhao et al. (2003) induced differing levels of nitrogen stress on corn and measured 

growth parameters, chlorophyll concentration, photosynthetic rates, and reflectance. The 

study demonstrated that reductions in leaf nitrogen concentrations are greater in plants 

suffering from inadequate soil N availability. Reduced nitrogen concentrations were 

correlated with lower rates of stem elongation and leaf area. The authors in 42 days after 

crop emergence noticed a 60% reduction in chlorophyll a, which caused an increased 

reflectance near 550 and 710nm. Therefore, reduced chlorophyll concentrations as a 

result of stress translate in decreased light absorbency and increased reflectance in these 

wavelength regions. 

Remotely sensed imagery can provide valuable information about in-field N 

variability in maize as well as variability at canopy level still using the relationship with 

N content. Maize leaf reflectance (near 550nm wavelength) has a good relationship with 

leaf N content (Osborne et al., 2002). Martin et al. (2007) found that NDVI increased 

with maize growth stage during the crop life cycle and a linear relationship with grain 

yield is best at the V7–V9 maize growth stages. 

Solari et al. (2008) investigated the potential use of active sensors at a field scale in 

determining N status in corn. Irrigated plots with uniform soils and fertilization, 

excluding N, were established at the initial stage and later differing rates and timing of 

nitrogen applications were administered in order to induce variable growth patterns. The 

authors discovered that the NDVI was sensitive to differences in N, hybrid, and growth 

stage. There exist a strong linear relationship between leaf chlorophyll concentration and 

leaf N concentration, where the greater leaf area and green plant biomass levels result in 

higher reflectance and higher subsequent NDVI values (Inman et al., 2007). This implies 

that these variables (leaf area and plant biomass) are directly related to the N content of 
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the plant; hence higher NDVI values indicate higher plant N content (Shaver et al., 

2011). 

3.2. Water stress in maize 

The saying that ‘water is life’ denotes for both flora and fauna. Water is a key 

determinant in the production of crops with maize inclusive. Accurate water content 

estimation is required to make decisions on irrigation and also crop yield estimations in 

agricultural studies (Peñuelas et al., 1993). The water content/status of a plant can be 

measured from root, stem and leaf material or the whole canopy. Leaf analyses are 

however, the most important organ for evaluating nutrient and water status of plants in 

comparison to other tissue types (Suo et al., 2010). The leaf is also mostly responsible for 

photosynthesis, an essential physiological process in plants. Hence, the health and 

nutrient status with water status inclusive of the plants can be evaluated from the leaves.  

Considerable technological developments have taken place over the years to determine 

water stress using remote sensing. The basis of detecting water stress relates to the 

differences in reflectance properties of plants under different water stress levels at certain 

wavelengths in the NIR portion of the electromagnetic spectrum (Genc et al., 2013). Two 

spectral regions have been found useful for detecting water status in plants; one 

characterised by high reflectance caused by reflections and scattering of light in the 

spongy mesophyll layer (NIR 0.7 – 1.3µm) and the other characterised by strong water 

absorption (mid infrared (MIR) 1.3 – 3.0µm). The first one is based on the turgor 

pressure in the leaf tissues while the second is directly related to leaf water content. The 

reflectance spectra of water stressed plants absorb less light in the visible and more light 

in the NIR regions of the spectrum than plants not experiencing water stress.   

As a result of the absorption by oxygen-hydrogen (O–H) bonds in water, its absorption 

features could be found at approximately 760nm, 970nm, 1200nm, 1450nm, and 1950nm 

(Li, 2006). The first derivatives of reflectance associated with the slopes of the lines near 

water-absorption wavelength bands 900nm and 970nm correlates well with leaf water 

content (Danson et al., 1992). Studies have shown that reflectance spectra of green 

vegetation in the 900-2500nm region are associated with liquid water absorption and are 
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also weakly affected by other biochemical components absorption. It is possible to 

investigate the effect of water on nutrient stress (nitrogen) through discrimination based 

on the visible and NIR reflectance of maize leaves (Christensen et al., 2005). Prior 

knowledge of water status of plants can increase the ability to discriminate nutrient stress 

significantly. 

The water band index is derived from the ratio of reflectance measured at 900nm and 

970nm (Peñuelas et al., 1993). This spectral index has been correlated with ground-based 

measurements of plant water content at both the leaf and canopy scales. It is, however, 

more sensitive to leaf water content than the water content of the whole plant. This is 

advantageous in agricultural applications where leaf water content changes more 

noticeably in response to drought conditions than the water content of the entire plant 

foliage (Champagne et al., 2003). Leaf water content can be measured with the 

spectrometer to determine available water to the plants.  

Genc et al. (2013) conducted an experiment on corn plants where reflectance 

measurements were made at the red and NIR portions before and after irrigation 

application. The results confirmed a decrease and increase in reflectance spectral at 

respective regions as the water level at field capacity increases. However, when the 

authors compared results at all four water levels, the reflectance spectra indicated that 

water stressed corn plants absorbed less light in the visible and more light in the NIR 

regions of the spectrum than unstressed plants. 

A recent significant breakthrough in passive optical remote sensing has been the 

development of hyperspectral sensors on satellite platforms (such as EO-1 Hyperion) that 

provide continuous narrow bands and high resolution in the visible and infrared spectral 

region. Compared with multispectral imagery that only has a dozen of spectral bands, 

hyperspectral imagery includes hundreds of spectral bands. Hyperspectral sensors are 

well suited for vegetation studies as reflectance/absorption spectral signatures from 

individual species as well as more complex mixed-pixel communities can be better 

differentiated from the much wider spectral bands of its imagery (Yang et al., 2010). 

However, the interpretation of this hyperspectral data can be complicated by the inter-
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relationships between wavelength variables but many statistical techniques have been 

utilised to analyse such data. For example, neural networks; partial least-squares analysis; 

fuzzy logic; principle component analysis and stepwise multiple linear regression have all 

been used (Xie et al., 2008). 

Maize growth rate can be used as a good predictor of kernel number when nitrogen 

and water supply are considered as variables. This relationship was proven by modifying 

maize growth rate by N and/or water supply to that similarly obtained when plant growth 

was changed by variations in plant density and incident radiation. The effect of reducing 

N availability was similar to the effect of reducing water availability (Andrade et al., 

2002). 

Thus, the effect of water deficiencies, nitrogen stress, plant density, and incident 

radiation on maize kernel set can be predicted through a relationship between growth rate 

and kernel number. This is explained by two aspects: the correlation between growth rate 

at flowering to growth of reproductive structures, and also that early seed development 

and kernel set in maize is dependent on a continued supply of assimilates from concurrent 

photosynthesis (Zinselmeier et al., 2000). 

A few water indices have been developed to study crop stress which include the water 

band index (WBI) (Peñuelas et al., 1993), shortwave infrared water stress index (SIWSI) 

(Fensholt & Sandholt, 2003) and normalized difference water index (NDWI) (Gao, 1995; 

Serrano et al., 2000). Recent studies have focused on combining the blue, green, red with 

blue and the NIR wavelengths in indices to estimate vegetation water content (Table 1) 

(Genc et al., 2013). Therefore, the use of remote sensing is particularly and practically 

suitable for assessing water stress and implementing appropriate management strategies 

because it presents unique advantages of repeatability, accuracy and cost-effectiveness 

over ground-based survey methodologies for water stress detection. 
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Table 1: Spectral indices and some wavelength bands used to detect water stress 

in maize 

Index Abbreviation and formula Reference 

Normalized 

difference vegetation 

index 

NDVI = (NIR − R) / (NIR + R) 

 

Rouse et al., 

1973 

Green NDVI GNDVI = (NIR − G) / (NIR + G) Gitelson & 

Merzlyak, 1996 

Simple ratio SR = R / NIR Jordan, 1969 

Normalized 

difference water 

index 

NDWI = (G – NIR)/(G + NIR) 
Gao, 1995; 

Mcfeeters, 1996; 

Serrano et al., 2000 

Water band 

index, 

WBI = 970nm/ 900nm Peñuelas et 

al., 1993 

Shortwave 

infrared water stress 

index  

SIWSI(6,2)= (r6 -r2)/( (r6+r2) 

(10) or SIWSI(5,2)= (r5 -r2)/( (r5+r2) 

(band 6 and 5 respectively of MODIS); 

SIWSI = SWIR−R(Rd) and 

SWIR+ R(Rs). 

Fensholt & 

Sandholt, 2003; 

Haixia et al., 2013 

Ratio of blue 

and NIR 

BN = B / NIR Genc et al., 

2013 

Ratio of green 

and NIR 

GN = G / NIR Genc et al., 

2013 

Ratio of red + 

green and NIR 

RGN = (R + G) / NIR Genc et al., 

2013 

SWIR (short wave infrared); NIR (near infrared); R (red); G (green); B (Blue) 
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3.3. Disease detection  

Detection and identification of plant diseases and planning effective control measures 

are important to sustain crop production. Maize production is challenged by disease 

attacks ranging from insect to fungi. Plant diseases do not only affect yields but also 

increase the cost of production through treatment procedures on the crops. Some of the 

common diseases on the maize crop include but are not limited to grey leaf spot, common 

rust, northern corn leaf blight, phaeosphaeria leaf spot, maize streak disease, stem rot 

diseases and others.  

When crops are infested by a disease, the biochemical constituent of the plant changes 

and so would be the spectral signatures. This is the reason why remote sensing could be 

used to monitor the infestation of diseases in field crops. Applications of remote sensing 

in field crops, for rapid detection of pest damage or disease, also include the use of 

handheld optical devices (Sudbrink et al., 2003; Moshou et al., 2004; Xu et al., 2007; 

Mirik et al., 2007) and airborne sensors (Sudbrink et al., 2003).  

The health of the leaf can also be monitored wherein changes in leaf chlorophyll 

content provide an indicator of maximum photosynthetic capacity, leaf development 

and/or stress (Si et al., 2012). Assessment of photosynthetic functioning is one of the 

most important bases for the diagnosis and prediction of plant growth and subsequent 

yield estimation. 

Williams et al. (2012) used the potential of the hyperspectral NIR imaging to evaluate 

fungal contamination in maize kernels. Using the principal component analysis (PCA), 

bad pixels as well as shading of acquired absorbance images were removed before further 

analysis. They concluded that the methodologies used were able to detect infection, the 

degree of infection and increase of infection over time. Therefore, remote sensing could 

assist in early detection of disease infestation in maize. 
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4. Crop yield predictions 

Crop yield prediction is production estimates that are made a couple of months before 

the actual harvest. This is frequently done through computer programmes that utilize 

agro-meteorological data soil data, remotely sensed and agricultural statistics to describe 

quantitatively the plant-environment interactions (Dixon et al., 1994; Zere et al., 2004). 

In some instances, meteorological data is included to run some of the yield models 

(Unganai & Kogan, 1998). The meteorological data is usually generated from weather 

stations and cover a given area. 

Crop phenology is fundamental to crop management, where timing of management 

practices is increasingly based on stages of crop development. The development of maize 

is subdivided into ten growth stages which summarily fall between the vegetative and 

reproductive phases. Plant development (phenology) is influenced by a variety of factors 

such as available soil moisture, date of planting, air temperature, day length, soil 

condition and nutrients. These factors therefore also influence the plant’s condition and 

productivity (Nellis et al., 2009). In order to achieve maximum production, vegetative 

stage three (four to six weeks after emerging) is more vital. This because at growth stage 

three there are eight to twelve leaves of the new maize plant that are fully unfolded. This 

is the stage of applying sprays and fertilizers. The yield potential of the plants is 

determined at this stage depending on the moisture and nutritional conditions at the time 

(Andrade et al., 2002). 

Maize yield is usually associated with the kernel number at harvest and is a function of 

the physiological condition of the maize crop during the reproductive phases - bracketing, 

flowering or silking (Otegui & Andrade, 2000). Andrade et al., 2002 also determined that 

Kernel number can be related to photosynthetic activity via chlorophyll content.  

Remote sensing techniques can be used to extract information about biophysical and 

biochemical parameters of vegetation such as LAI, chlorophyll, phosphorus, fibre, lignin, 

N (Darvishzadeh et al., 2008; Ramoelo et al., 2011) and silicon (Mokhele & Ahmed, 

2010) which are essential for the plant growth. Statistical regression techniques are used 

to derive specific vegetation parameters and indices (Darvishzadeh et al., 2008; Si et al., 

http://www.sciencedirect.com/science/article/pii/S0034425797001326
http://www.sciencedirect.com/science/article/pii/S0034425797001326


South African Journal of Geomatics, Vol. 3, No. 2, August 2014 

177 

 

2012) that could be utilised in estimating crop productivity. For instance, the LAI is used 

to quantify canopy structure, crop growth and hence predict primary productivity.  

High correlations are found between vegetation indices and green biomass in studies 

done at field level (Groten, 1993). This is related to the crop type and yields but requires 

ground truthing and actual yield measurements in selected fields (pixels) that cover the 

full range of observed vegetation indices such as NDVI values. Viña et al. (2004) using 

visible atmospherically resistant spectral indices documented a capability for detecting 

changes in corn due to biomass accumulation, changes induced by the appearance and 

development of reproductive structures, and the onset of senescence.  

Shanahan et al. (2001) used remotely sensed imagery to compare different vegetation 

indices as a means of assessing canopy variation and its resultant impact on corn (Zea 

mays L.) grain yield. Results showed that green normalized difference vegetation index 

(GNDVI), developed by Gitelson et al. (1996), derived from images acquired during 

midgrain filling were the most highly correlated with grain yield (Table 1). Therefore 

GNDVI could be used to produce relative yield maps depicting spatial variability in 

fields, offering a potentially attractive alternative to use of a combine yield monitor.  

While most studies on yield prediction with remotely sensed data apply multispectral 

data due to its availability, hyperspectral images could also be utilised. For instance, Uno 

et al. (2005) statistically analysed hyperspectral images with an artificial neural network 

(ANN) and vegetation indices to develop models to predict yields for maize in Canada. 

After using the PCA to reduce the number of input variables for analysis, a greater 

prediction accuracy (20% validation) was obtained with an ANN model than with either 

of the three conventional empirical models based on NDVI, SR or photochemical 

reflectance index (PRI). 

The use of remote sensing to estimate biological crop yields is being explored in many 

countries such as the United States, China and India, and likely will become the keystone 

of agricultural statistics in the future (Zhao et al., 2007). The fact that crop productivity 

vary greatly across climatic regions since it depends on agroclimatic conditions, the 

application of remote sensing in this field would be necessary. The variability of these 
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conditions warrants models to be developed based on the conditions of different areas 

where the crops are planted. Moreover, there is room to improve on methodologies and 

principles already developed in the creation of new models. 

5. Summary and recommendations 

According to this review there is great potential for remote sensing to be used in 

investigating maize growth process in order to enhance production of this global crop. 

This is backed by the availability of products with higher spatial, spectral and temporal 

resolution becoming more efficient, affordable and cost-effective. Its success in 

biophysical vegetation parameters identification and monitoring through the various 

growth stages of maize has been studied even though not uniformly across the globe. 

Spectral reflectance measurements can provide a basis for variable biophysical 

vegetation parameters. There is a good relationship between these parameters when the 

spectral reflectance is measured at the leaf scale. Research in the past has been 

undertaken to estimate foliar nitrogen concentrations in experimental fields using 

portable spectrometers, with promising results. However when measured at the canopy 

level the relationship is further complicated for various parameters (LAI, wet and dry 

biomass etc.) and therefore further research are needed. 

Sensor readings were also found to be more associated with chlorophyll content 

during vegetative growth phases than during reproductive phases (Solari et al., 2008). 

Taking advantage of improvements in sensor characteristics and processing techniques, 

the use of remotely sensed data for yield predictions for maize is gaining grounds. This is 

contributing substantially in a more accurate description of within-field crop yield 

variability which is a great concern in precision agriculture. However, it is still a 

challenge to develop accurate operational maize yield-estimating models. 

The challenge of water deficiency monitoring over a large spatial area has been 

overcome through the use of remote sensing. It is practically suitable for assessing water 

stress and implementing appropriate management strategies because it presents unique 
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advantages of repeatability, accuracy, and cost-effectiveness over the ground-based 

surveys for water stress detection. 

One of the potential applications of remote sensing technique in agriculture is the 

detection of plant disease on extensive areas before the symptoms clearly appear on the 

plant leaves.  This is advantageous because remote sensing detects biophysical changes 

before physiological changes are visible. The challenge of disease infestation on maize 

production warrants more investigation as not much was found during this literature 

survey. Early detection and delineation of maize infested areas especially in some of the 

high productive areas that are prone to diseases (e.g. grey leaf spot) using hyperspectral 

remotely sensed data could be attempted. Therefore, spectroscopy analysis could be 

considered as an efficient technique for non-destructive, rapid, and accurate measurement 

which is widely applied in agricultural fields for crop discrimination, monitoring of 

nutritional status as well as diseases (Sankaran et al., 2010). 
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