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Abstract 
Multi-scale image segmentation produces high level object features at more than one level, 

compared to single scale segmentation. Objects generated from this type of segmentation hold 

additional attributes such as mean values per spectral band, distances to neighbouring objects, 

size, and texture, as well as shape characteristics. However, the accuracy of these high level 

features depends on the choice of segmentation scale parameters. Several studies have investigated 

techniques for scale parameter selection. These proposed approaches do not consider the different 

objects’ size variability found in complex scenes such as urban scene as they rely upon arbitrary 

object size measures, introducing instability errors when computing image variances.  A technique 

to select optimal segmentation scale parameters based on image variance and spatial 

autocorrelation is presented in this paper. Optimal scales satisfy simultaneously the conditions of 

low object internal variance and high inter-segments spatial autocorrelation. Applied on three 

Cape Town urban scenes, the technique produced visually promising results that would improve 

object extraction over urban areas. 

Key words:  segmentation, object oriented classification, object’s variance, spatial autocorrelation, 

objective function, Moran’s index. 

1.  Introduction 

Multi-scale image segmentation is the partition of an image into spatially continuous, mutually 

disconnected and homogeneous regions at various segmentation levels (Pekkarinen, 2002). The 

technique was initially investigated by Woodcock and Strahler (1987). In the context of image 

analysis, scale is defined as the level of aggregation and abstraction at which an object can be 

clearly described (Benz et al., 2004). Multi-scale segmentation starts considering each pixel as an 

object and merges them to create larger objects based on homogeneity thresholds defined by the 

analyst (Blaschke, 2010). Multi-scale segmentation provides high level object features, compared to 

single scale segmentation. In fact, objects generated from this type of segmentation hold additional 

attributes such as mean value per spectral channel, distances to neighbouring objects, size, as well 

as shape characteristics. Multi-scale segmentation has the advantage of considering homogeneity 

criteria such as colour, shape compactness and smoothness, during the creation of image objects. 

The technique offers the possibility of varying the size of output segments and creates object 

hierarchy levels that facilitate their accurate extraction. In the absence of objects hierarchy levels, 

each object will be created from scratch and no topology relationships will be built between objects 
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produced at finer scales and those generated at coarser resolutions. Creating image hierarchy allows 

each segmentation level, except the first one, to be derived from previous levels. However, the 

quality of objects created from segmentations, relies on the choice of scale parameter, and this 

choice mostly relies on subjective series of trial and error (Hay et al., 2003; Meinel and Neubert, 

2004; Kim et al., 2008). This paper proposes a technique that improved the selection of optimal 

segmentation scales by revealing thresholds that produce segments with low internal and high inter-

segment variability for urban scenes. 

 
2. Materials and Methods 

2.1 Material 

Three different scenes of Cape Town urban area, in South Africa, were considered to test the 

technique (Figure 1). The areas were extracted from a 0.5m spatial resolution ortho-rectified RGB 

digital aerial photograph. The choice of these areas was motivated by the fact that each scene was 

characterized by a different type of urban land cover, ranging from small sized buildings to 

vegetation extents. 

 

 

Figure 1A: Original Cape Town urban scene. B: Residential area of Kensington composed of 
individual housing units of small and medium size, a road network, trees and recreation areas. C 

and D: Residential areas of Vredehoek and Oranjezicht. 

The merit of segmentation results is influenced by the type of land cover and the number of 

spectral signature considered. This investigation used 1464 segmented objects which provided 1464 

distinct spectral signatures samples and different segment size measures to calculate image internal 

and inter-segment variances. The different urban scenes were partitioned beforehand into several 

segmentation levels using the multi-resolution algorithm in the eCognition software. Once 
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segmented, the different objects’ spectral and size statistics were used to determine segments 

variances and spatial autocorrelations.  

2.2 Image segmentation 

The different segmentations were done using 12 distinct scale parameters in the eCognition 

software, using the multi-resolution algorithm. Multi-resolution algorithm starts with one seed pixel 

object and merges each pair wisely with neighbouring objects to form larger objects until the 

homogeneity thresholds defined are reached. These homogeneity thresholds are controlled by the 

scale parameter which influences the size of output segments. The different image bands which are 

very relevant in terms of spectral information were equally weighted at a factor of 1 in order to 

consider all the spectral information made available by each band. The remaining parameters 

including shape, colour, compactness, smoothness were uniformly weighted at a factor of 0.5 for 

equal influence on the results.  

 
2.3 Identifying optimal segmentation scales 

The technique investigated in this research is comparable to those of Espindola et al., (2006), 

Kim et al., (2008), Johnson and Xie, (2011). The approach used internal and inter-segment 

heterogeneity to evaluate local and global segmentation quality. Two properties characterizing good 

segmentation were considered: (1) resulting segments must internally be homogeneous and (2) each 

segment should be separable from its neighbours. As a consequence, optimal scales should satisfy 

low internal and high intra-segment variances (each region must be homogeneous and adjacent 

regions should be dissimilar). The internal segment variance expressing the overall homogeneity of 

image objects was calculated using equation [1]: 
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In equation [1], vi is the variance and ai is the area of the segment i. The internal object variance 

was weighted with the area size in order to put more weight on larger objects and limit possible 

instabilities caused by smaller ones. The inter-object variance expressing the spatial autocorrelation 

between neighbouring image objects was calculated using Moran’s Index (MI) in equation [2]. This 

index was chosen because it is a reliable indicator of statistical separation between spatial objects 

(Johnson and Xie, 2011): 
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where (yi -y) and (yj -y) are the deviations from the means. Wij is a measure of the spatial proximity 

of adjacent image objects. In this case a value of 1 was attributed to Wij because image objects 

produced by the segmentation are adjacent objects (Espindola et al., 2006).  

The Moran’s Index captures the difference between mean values of each image object and their 

neighbours. Low values of the index indicate high inter-object heterogeneity, which is an advantage 

for image segmentation. In order to equally consider the internal objects’ variances and the Moran's 

measurements, the indices were normalised using equation [3], proposed in Espindola et al., (2006): 

 min
max min
X X

X norm
X X
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

  [3] 

 

with X taking values of image variance or the Moran's Index to be normalised.  

Once the two statistical indicators have been normalised, they were combined to calculate the 

Objective Function given by equation [4]: 

                  F(v, MI) = F(v) + F(MI)   [4]                  

where v is the image variance and MI is the Moran's Index. In order to determine the optimal scales, 

the different objective function values were plotted to produce a curve. The lowest values of the 

curve indicate potential optimal segmentation scales which produce segments with high spatial 

auto-correlation and low internal variance measures. 

2.4 Refining the segmentation scales 

After identifying the ideal scales, a refining function is applied to each value in order to measure 

the degree of internal homogeneity associated to each object. This function is defined by the 

equation [5] proposed in Johnson and Xie (2011): 
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Low values of the index reveal low degree of objects’ homogeneity and high values indicate more 

homogeneous image objects. 

2.5. Accuracy assessment 

The accuracy assessment of our technique was based on several reference objects (manually 

digitized in ArcGIS from the available aerial photography) and image objects segmented using the 

optimal scales identified in this research. In addition to visual analysis, the following three criteria 

were considered as indicators of the accuracy of the segmentation: (1) the percentage of the largest 

segmented object after excluding the 'extra' pixels which fall out of the reference object boundary, 

(2) the percentage of area of the 'lost' pixels and (3) the percentage of the area of the 'gained' or 

'extra' pixels. If the area of the lost or extra pixels is more than 25% of the reference object, then 

there is a chance that the actual shape of the object is distorted by the segmentation process. In 
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addition, objects found with an area  percentage  more than 55% compared to the reference object 

are considered as optimally segmented (Marpu et al., 2010).The value of 55% was chosen because 

the spectral value of the image can still be restored using the median value of the object reflectance 

to improve the results. Figure 2 illustrates the effects of gained and lost pixels. 

 

Figure 2: An illustration of a manually digitised reference object overlaid with the segmented 
object. Gained or extra pixels and lost pixels mostly originate from spectral similarities with 

neighbouring objects. The areas of lost or gained pixels are characteristics of under segmentation 
and the percentage area of the biggest segmented object defines over segmentation. 

2.6. Comparison with other segmentation techniques 

The quality of segmentation results can be tested by comparing segment objects with reference 

objects using formal properties such as object difference. This object difference can be analysed as 

a geometric relationship between segments and its corresponding reference. In the case of a good 

segmentation, the similarity between the image object and its reference should be maximized. Four 

analyses were done to compare the segmentation results from our technique to other approaches: (1) 

the percentage of overlapping area between image objects and respective references, (2) the average 

difference of perimeter, (3) the Area-Fit-Index and the shape index and (4) the Shape Index.  

The Area-Fit-Index proposed in Lucieer (2004) is defined in equation [6]: 

                
Area reference Area largest segment

AFI
Area reference object


                   [6] 

The shape index was calculated using the equation provided in Neubert and Herold (2008) as 

follows: 
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where Perimeter and Area represent the image object’s perimeter and area measures. 

3.  Experimental Results  
3.1 Identifying suitable scales 

In addition to visual interpretation, optimal segmentation scales can be evaluated using internal 

variance and spatial autocorrelation measures. Kim et al., (2008) described optimal segmentation 

scales as being associated with negative Moran's Index values and the spatial statistics associated 

with the optimal scales found in this study were located below zero as shown in table 1. 

 
Table1: Weighted and normalised variances and Moran’s Indices  

associated with each scale parameter. 

Scale 
parameters 

Weighted 
variance 

Moran’s Index Normalised 
variance 

Normalised 
Moran’s Index 

Objective 
function 

15 1.7934 -0.0786 0.7761 0.3491 1.1252 

25 1.6487 1.1792 0.7309 0.9640 1.6949 

35 1.5935 -0.3374 0.7535 0.2628 1.0163 

55 1.6745 0.0262 0.6787 0.9421 1.6208 

65 1.7018 1.0425 0.7450 0.9437 1.6887 

85 1.6722 -0.3599 0.5446 0.8674 1.4120 

100 1.7953 0.1224 0.8577 0.8406 1.6963 

120 1.7922 -1.1504 0.5945 0.0248 0.6193 

150 1.6733 1.1760 0.6397 0.9927 1.6324 

180 1.6545 0.0345 1.1263 0.5533 1.6796 

200 21.3007 -0.0062 0.5444 0.3439 0.8883 

260 1410.9208 18.3254 0.8318 0.5479 1.3797 

 

The scale parameter of 15 was chosen as our starting scale and as a consequence it was not 

considered as a low point of the objective function curve despite its negative Moran’s Index value 

as revealed in table 1. 

The objective function values calculated for the three study sites revealed in figure3 that scales 

of 35, 120, 120 and 200 are optimal for segmentation. The curve presented a localised normal 

distribution with succession of high and low points.  
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Figure3. Objective function showing six low values describing optimal segmentation scales. Scales 
of 35, 85,120 and 200 were identified. 

3.2 Refining under and over segmentation 

 In order to refine the different optimal scales, a heterogeneity function was used.  The curve of 

this index describes more homogeneous objects at the peak points. In contrast, lower points of the 

curve characterize objects with high internal heterogeneity. Figure 4 presents the different 

heterogeneity scores associated with each scale. 

 

 

Figure 4. Heterogeneity function showing segments’ internal homogeneity scores at various scales. 
The higher the value the more homogeneous is the segment. Scales of 120 and 200 for instance 

produced better segments homogeneity than 150 and 250. 

Figure 5 illustrates visual segmentation results of two sport fields in the Kensington scene. As 

can be observed, more than 70% of the reference areas overlap with more than 85% of segments’ 

areas. A good delineation of both sport fields was achieved at scale of 85. However, the effect of 

over segmentation was prominent at scales of 25, 55 and 65. At these scales segments’ boundaries 

have not reached the reference objects’ sizes. 
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Figure 5: A: Original Kensington scene, 5B: segmentation at scale of 25 showing sport fields 
partitioned into smaller segments, 5C:  over-segmentation at scale of 55 and 5D: good segmentation 

results at scale of 85. 

 

 

Figure: 6A: Original Oranjezicht scene, 6B and 6C: segmentations at respective scales of 25 and 55 
showing small road segments and 6D: good segmentation of the same area at scale of 120 showing 

segments approximating their real world widths and lengths. 

 

The segmentation performed on the Oranjezicht scene (see figure 6) produced a satisfactory 

delineation of the road network, when done at scale of 120. At lower scales, the process produced 

an over-segmentation with small individual road segments difficult to classify.  The proposed scale 
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exhibited high discriminative power against road intra-class variations in an image containing trees 

and pavement areas. Moreover, more than 90% of road segments areas overlapped with the 

reference objects’ boundaries at scale of 120 and the amount of lost pixels were very low in 

comparison to scales of 25 and 55. However, some gained pixels areas were observed mostly at 

road junctions due to the presence of large pavements. The scale parameters 25 and 55 described 

high objects’ internal variances, explaining the partitioning of roads into smaller objects. Increasing 

the scale threshold up to 120 reduced this high internal variance, resulting in a better delineation of 

the road network as illustrated in figure 6D. 

 In figure 7, the scale parameter of 25 produced individual trees with size approximating some 

small buildings, limiting their separation from the built up structures.  Forest stands, easy to extract 

based on size and shape index, were obtained at scale of 200 over the area of Vredehoek.  

 

 

Figure: 7A: Original Vredehoek scene, 7B and 7C: segmentation at scales of 15 and 25 showing 
individual trees and 7D: segmentation showing group of trees easy to classify at scale of 200. 

 

The visual analysis of segmentations done at scales of 120 and 150 revealed that the scale of 150 

produced objects containing more than one class as illustrated in figure 8. In contrast, the scale of 

120 minimized the effect of mixed pixels. 
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Figure 8A: segmentation at scale of 150 producing heterogeneous objects. 8B: segmentation done at 
scale of 120 optimally captured a portion of road in comparison to A. 

 
3.3 Accuracy Assessment 

Table 2 shows an extract of the accuracy assessment of 30 randomly selected segmented 

reference objects. The overall results show that the area overlap between objects and their 

references was above 80% and the different percentages of lost pixels were below 20%. In the same 

way, the percentages of gained pixels were found between 1 and 17 %. 

Table 2: Area proportions of the largest segmented objects as well as the percentage of ‘gained’ 
(extra) and ‘lost’ pixels. 

Object sample 
Area 
reference 

Area 
object 

Percentage  
Segmented 
 object 

Percentage 
extra pixel 

Percentage lost 
pixel 

1 402.36 361.01 89.72% 0 10.28 % 

2 293.17 303.15 126% 3.40% 0 % 

3 467.11 472.17 101.08% 1% 0 % 

4 483.56 396.06 81.91 0% 18.09 % 

 

4.  Discussion and Conclusion 

To date the selection of segmentation parameters has mostly been performed intuitively by ‘trial 

and error’. This paper presented an improved concept for the selection of optimal segmentation 

scales based on image variance and spatial auto-correlation. It extends the methods described in 

Espindola et al., (2006), Kim et al., (2008) and Johnson and Xie (2011) by considering real world 

objects’ size measures for minimizing instabilities caused by arbitrary size thresholds. This research 

provides a comprehensive approach to understanding the segmentation results and also provides 

support for finding optimal segmentation scales. The segmentation evaluation was based on 30 

manually digitized reference objects per image. The results of the evaluation of our technique 
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compared with other approaches presented in Neubert and Herold (2008) are shown in table 3. 

Based on the mean area difference, the technique exposed in this research demonstrated a better 

performance in balancing under and over-segmentation. This is illustrated by the smallest mean area 

difference value found in comparison to the other approaches. The ENVI 4.4 method also had a 

good performance in limiting under and over-segmentation followed by the EDISON segmentation 

approach. Comparing our segmentation with the EWS 1.0 segmentation, the latter resulted in high 

amount of lost and extra pixels illustrated by the high average area of 24.6. The ENVI 4.4 

segmentation performed better in terms of object perimeter followed by our segmentation 

technique. The Berkley Imgseg 0.54 and InfoPACK 2.0 methods produced the worst results when it 

comes to object delineation. 

 

Table 3: Comparison of various segmentation techniques based on 30 random reference objects. 

Segmentation 
techniques 

ENVI 4.4 
Berkley 
Imgseg 

0.54 

Definiens 
Developer 

7.0 
EDISON EWS 1.0 

InfoPACK  
2.0 

Our 
Technique 

Number of 
reference areas 

20 20 20 20 20 20 30 

Average 
Difference of 
area (m2) 

6.9 12.3 15.9 11.5 24.6 17.0 5.4 

Average 
difference of 
perimeter (m) 

12.3 22.2 17.2 13.8 18.1 29.6 11.44 

Average 
difference of 
shape index 

10.8 21.1 16.2 12.4 15.4 46.0 7.29 

Area-Fit-Index -0.04 -0.14 0.08 -0.18 -0.12 -0.04 -0.19 

 

The differences in object shape between the references and segmented objects were minimized 

using our technique, followed by ENVI 4.4. The InfoPACK 2.0 segmentation produced highly 

distorted objects’ shapes illustrated by the average shape index value of 46.0. All the techniques 

performed well regarding the Area-Fit-Index. The smaller the Area-Fit-Index value, the better is the 

segmentation.  

This analysis confirms and supports our previous visual observation results. Despite some losses 

and gains of pixels that affected mostly roads and large buildings the proposed technique improved 

the segmentation quality by minimizing over and under-segmentations. This makes it a valuable 

source for selecting the best-fitting multi-level segmentation scales.  
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