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Abstract 

The Tshwane Metropolis, Gauteng Province, South Africa, continues to experience rapid 

urbanization as a result of population growth. This has led to the conversion of natural lands 

into large man-made landscapes i.e., increase in impervious surfaces and a decrease in 

vegetative cover. This land use or land cover changes are also thought to affect the climate of 

the Tshwane metropolis as is evidenced by heat waves in 2013 and 2014. This paper describes 

how vegetation and impervious surface area (ISA) or built up areas were classified from Landsat 

8 LCDM, 2013, and Landsat 7 ETM+, 2003 images using thematic spectral indices and mean 

surface temperatures derived from the thermal bands. The linear relationship between the two 

land cover types and surface temperature (LST) derived from the thermal bands was also 

examined. The results of this research reveal that the ISA increase has occurred due to urban 

sprawl and this has contributed to increase in surface temperature. 

Keyword: Thematic indices, surface temperature, Landsat, vegetation, ISA, Tshwane Metropolis. 

1. Introduction 

Globally, rapid increase in population in major cities has led to urban sprawl at an unprecedented 

rate which is, according to the analysis and predictions of the United Nations report (2012), 

expected to continue into the next epoch (Deng and Wu (2013). Moreover, Parece and Cambel 

(2013) reflected that over 50% of the global population lives in urban settlements and the United 

Nations (2009) estimate that it will increase to 69% by 2050. The highest rate of urbanization and 

associated land use or land cover changes are anticipated in developing countries (Montgomery and 

Hewett, 2005).  Over the last decades, Southern Africa has been facing major land use and land 
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cover changes, such as loss of natural land, i.e. forest or plantations, agricultural lands and 

grasslands coupled with growing impervious surfaces such as roads, sidewalks, parking lots, 

rooftops and bare lands due to a continuous increase in the population. Brunsell (2006) reported that 

the conversion of natural land to impervious surfaces is one of the main contributors to climate 

change and variability in different parts of the world.  

 Land surface temperature (LST) is measured by the surface energy balance, atmospheric state and 

thermal properties of the surface. Zhang et al. (2009) asserted that it is the alteration of the land 

surface which influences changes in the thermal properties of the urban landscape, making it 

warmer than the surrounding rural areas and creating urban heat islands. Therefore monitoring land 

cover dynamics in the urban area, in a timely and cost effective manner, is very important for local 

communities and decision makers. It enables them to plan, manage and conserve natural resources 

and the environment. 

 Remote sensing data offers considerable measurement possibilities (e.g. spectral, spatial and 

temporal) combined with timely data acquisition and wide area coverage. Due to these features, it 

has been used to separate different land cover types for the last few decades (Xu, 2007). Improved 

data over the years have led to a wide variety of infrared thermal sensors such as NOAA–AVHRR, 

MODIS, ASTER and Landsat TM/ETM+, being used for the estimation of land surface 

temperatures, temperature variability and urban heat islands (Pinheiro, 2006; Ifatemehin et al., 

2009; Jeong, 2012).In-situ data from meteorological stations, though they have a high temporal 

resolution and offers long term coverage, lack spatial information (area covered) when compared to 

remote sensing data (Weng, 2009).  

Even though there is an increasing concern regarding global climate change and a greater 

availability of remote sensing data as mentioned above, few studies on the effect of land use or land 

cover changes on surface temperature have been conducted in major cities in Africa. In this study, 

impervious surface area and vegetation are extracted using thematic oriented indices. Thermal 

bands from Landsat 7 ETM+ and Landsat 8 LCDM are analyzed to derive the mean surface 

temperature for the two land cover classes on the particular two days of different years.    

 

2. Data and methodology 

2.1. Study area and data 

Geographically the Tshwane Metropolitan Municipality (TMM) stretches from 25º 19.5’ South to 

25º 56.3’ South and from 27º 53.25’ East to 28º 27.3’ East. It is located in the North-East of 

Gauteng Province, South Africa. The TMM has a land area of 2198 km2 and lies at an altitude of 
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about 1,350m (4,500ft.) above sea level. The climate varies between hot, arid steppe in the north to 

warm, temperate with dry winters and warm summers in the south (Conradie, 2012). According to 

Goddard Institute of Space Studies (2008), Tshwane has an average annual temperature of 18.7 °C, 

which is high considering its high altitude of about 1350 m. Rain is predominantly in the summer 

months with an average annual precipitation of 715 mm. The driest and wettest months are June and 

January with average precipitations of 6 mm and 122 mm respectively. In the past decades, TMM 

has experienced a constant growth in population and expansion of the metropolis. The estimated 

population has increased to about 2.950 million after the 2011 amalgamation of the Metsweding 

District Municipality (City of Tshwane Metropolitan Municipality, 2011). This sprawl has 

generated various urban land uses such as residential, commercial and industrial and has 

continuously necessitated the construction of new impervious surface areas thereby replacing 

natural vegetation. 

In this study, two multi - date images recorded by Landsat 7 ETM+ and Landsat 8 LCDM were 

downloaded from http://www.glovis.usgs.gov for the dates 31/03/2003 and 13/11/2013 for Tshwane 

Metropolitan respectively (Table 1). The study mainly relied on a land use map with a scale of 

1:10,000 and a polygon shape file (Projection: Universal Transverse Mercator (UTM) zone 35 

South, Datum: WGS 1984) of Tshwane metropolis to clip the study area. Software employed for 

desktop analysis are ArcGIS 10.1, ENVI, QGIS and STATISTICA. Reference temperature data 

were also acquired from the South African Weather Stations. 

Data pre-processing is an important phase of satellite imagery processing and analysis, because it 

has an impact on all other actions and the final product quality. Image-to-image registration was 

carried out using ENVI by selecting 20 ground control points (GCPs) using a first order polynomial 

transformation technique. Total root mean square (RMS) error of 0.46 pixel associated with the 

GCPs was accepted. 
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Figure 1. Map showing the location Tshwane metropolitan municipality within the Gauteng 

Province in South Africa. 

 

Table1. Landsat scenes accessed for the study 

Year Sensor Path Row Date 

acquired 

Resolution 

(m) 

2003 ETM+ 170 078 2003/03/31 30 

2013 LDCM 170 078 2013/11/13 30 
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During radiometric calibration, pixel values from raw, unprocessed bands for the Landsat images 

used were converted to spectral radiance and reflectance using equations given in Chander et al. 

(2009) and Landsat 8 handbook, 2013 to reduce noise so as to facilitate effective mapping 

(Kasischke et al., 2004). 

 

2.2. Image processing 

Image classification was carried out by assigning a land cover class to each pixel of the image, 

based on its spectral characteristics. This was achieved thresholding Normalized difference 

vegetation index (NDVI) and Normalized difference built up index (NDBI). Although there various 

vegetation indices in remote sensing of vegetation, NDVI was considered for this study because it 

takes the advantage of high vegetation reflectance NIR spectral ranges (Leprieur et al., 2000, 

Jensen, 2000; Xu,2010). NDVI is a ratio of the difference and summation of bands 4 and 3 

(equation 1) respectively, and provides a value that range between –1.0 and +1.0, where the positive 

values would normally indicate the presence of vegetated areas whereas, for negative values would 

be non-vegetated areas (Rouse et al., 1974). The formulae of NDVI is as follows; 

NIR RED
NDVI

NIR RED




        [1] 

NDBI generated from the Landsat 7 ETM+ and Landsat 8 LCDM for the TMM revealed that the 

spectral response of built-up lands showed a higher reflectance in the mid infra-red (MIR) 

wavelength range than in the near infra-red (NIR). The mathematical expression for NDBI is given 

in equation 2 (Zha et al., 2003). 

MIR NIR
NDBI

MIR NIR




        [2] 

In general, spectral index values vary across land cover types in different regions with dissimilar 

climatic and environmental conditions (Cheng et al., 2006). Also, spectral index such as NDVI 

suffer from a number of limitations that include value saturation and sensitivity to soil background 

among others according to Huete (1987). 

 Therefore, in the current study, appropriate threshold was performed to identification of spectral 

characteristics of different land cover types. Subsequently, the Landsat-derived NDVI images were 

labeled ‘vegetation’ for pixels having positive values and ‘others’ for all remaining pixels of 

negative value. In the NDBI binary image, built up or impervious surface area showed pixels with 

positive values while pixels with negative values were re-coded as ‘others’. Through the arithmetic 

manipulation of red, near infrared and middle infrared bands of the Landsat images and recoding, it 
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was possible to classify impervious surface area and vegetation within the study area using ArcGIS 

10.1.  Thereafter, each index derived image was reclassified and converted to polygons and 

exported as a shape file.  

 

2.3. Conversion to At-Satellite Brightness Temperature 

For Landsat thermal bands, the conversion of DN to At-Satellite Brightness Temperature in ENVI 

5.1 classic is given by (https://landsat.usgs.gov/Landsat8_Using_Product.php).  

      [3] 

Where: K1 = Band-specific thermal conversion constant (in watts/meter squared * ster * μm), K2 = 

Band-specific thermal conversion constant (in kelvin), Lλ is the Spectral Radiance at the sensor's 

aperture, measured in watts/ (meter squared * ster * μm). 

Table 2. The K1 and K2 constant for Landsat sensors are provided in the image metadata file. 

 Landsat 7 ETM + Landsat 8 LCDM 

K1 (watts/meter squared * ster 

* μm) 

666.09 774.89 

K2 (Kelvin) 1282.71 1321.08 

 

2.3.1. Conversion from brightness temperature to Land Surface Temperature (LST) 

After the image classification of the study area in Landsat 7ETM + and Landsat 8, the land surface 

emissivity values from literature of Mallick et al. (2008) was used to derive the surface temperature 

image. Thereafter, the emissivity raster images for the two years were generated and used in the 

conversion of brightness temperature image to Land Surface Temperature (LST) using the equation 

[4]; 

    [4] 

 

To convert the LST image to Celsius image using the equation [5] below; 

    [5] 

2

1ln(K / L ) 1
b

K
T






(KELVIN)

1 / )*ln(

b

b

T
LST

T   


(CELSIUS) (KELVIN) 273.15LST LST 

https://landsat.usgs.gov/Landsat8_Using_Product.php
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Where: λ is the wavelength of radiation emitted in Landsat 7 ETM + (11.5µm) and Landsat 8 

LCDM (10.8 µm). ρ= h * c/σ, σ = Stefan Boltzmann’s constant (5.67x 10-8 Wm-2 k-4), h = Plank’s 

constant (6.626 X 10-34 J sec), C = velocity of light, 2.998 x 108m/s), ε = spectral emissivity 

coefficient (0.95).  

2.4 Statistical analysis 

Two statistical analysis techniques were applied to understand the influence of vegetation and built-

up areas (ISA) on LST. Firstly, the NDVI and NDBI were reclassified in to low, medium and high, 

representing various magnitudes of the vegetation and built-up densities. Secondly, the two-way 

analysis of variance was implemented to test the significance difference of LST in various classes 

as derived above at a confidence level of 95%, p<0.05. Finally, the correlation analysis was done to 

test the relationship between LST and NDVI as well as NDBI respectively at the 95% confidence 

level (p<0.05).  

3.0 Results 

The binary images were generated using the raster calculator algorithm in spatial analyst tool of Arc 

GIS 10.1 raster software. The derived images for the two selected years are presented in Table 3 

Landsat 7 ETM+ 2003 and Landsat 8 LDCM 2013 showing NDVI ranging from -0.627 – 0.588  

and -0.325 – 0.654  and a NDBI ranging from -0.735 – 0.700 and -0.539 – 0.599 respectively (Table 

3).  

 

Table 3. Dynamic ranges of NDVI and NDBI of the Landsat images 

Index Landsat 7ETM+ 2003 Landsat 8LCDM 2013 

 Minimum Maximum Dynamic range Minimum Maximum Dynamic range 

NDVI -0.627 0.588 1.215 -0.325 0.654 0.979 

NDBI -0.735 0.7 1.435 -0.539 0.599 1.138 
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Figure 2. NDVI binary image for Landsat 7 ETM+ & Landsat 8  Figure 3.  NDBI binary binary image for Landsat 7 ETM+ & Landsat 8  
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Figure 2 shows the NDVI binary image indicating three vegetation categories (e.g., tree plantation, 

cultivated lands, grasslands or parks, mixed) based on the positive NDVI threshold values from 

Landsat 7 ETM+2003 and Landsat 8 2013 within Tshwane Metropolis. Figure 3 show the NDBI 

binary image three built up / ISA categories (e.g., asphaltic roads, cemented floors and buildings 

etc.) based on the positive NDBI threshold values from Landsat 7 ETM+ 2003 and Landsat 8 2013 

within Tshwane Metropolis. Most of these places are the central business district (CBD), industrial 

areas and residential areas. 

 

Table 4. Vegetation changes from 2003 to 2013 using NDVI 

NDVI Landsat 7ETM+ 

2003 

Area (Ha) NDVI Landsat 8 

2013 

Area (Ha) 

Low Vegetation 42,534 Low Vegetation 63,474 

Medium Vegetation 23,383 Medium Vegetation 28,624 

High Vegetation 7,174 High Vegetation 6,843 

 

Based on area (see Error! Reference source not found.2 and 3) it was observed that vegetation and 

built up / ISA has changed between the 2003 and 2013 within Tshwane metropolis. Table 4 

indicates that the high vegetation areas reduced while medium and low vegetation increased from 

2003 to 2013 within the metropolis. This might be due to change in overall agricultural activities or 

deforestation or presence of open soil or mixed with scattered vegetation. 

 

Table 5. Impervious surface area changes from 2003 to 2013 using NDBI 

NDBI Landsat 7ETM+ 

2003 

Area (Ha) NDBI Landsat 8 

2013 

Area (Ha) 

Low Built up / ISA 14,593 Low Built up 22,143 

Medium Built up / ISA 19,279 Medium Built up 15,343 

High Built up / ISA 5118 High Built up 3726 
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Table 5 shows that low ISA / built up areas (i.e., outskirt) have increased whereas the medium and 

high ISA / built up areas (e.g., central business district, CBD) within the ten year span. This might 

be due to population increase which has led to land use changes in industrial areas (e.g., Pretoria 

West), residential areas (e.g., Pretoria North, etc.) and modifications in the CBD areas 

(reconstructed tall buildings within Pretoria central).  

The thermal band of Landsat images not only provides a measure of the magnitude of land surface 

temperature, but also gives the spatial extent of the UHI effect of the entire study area (Figure 4). 

Based on the two land cover types (vegetation and ISA), the LST in the images ranges from 17.85 – 

40.81oC (Landsat 7 ETM, 2003) and 17.99 – 40.92oC (Landsat 8, 2013). From the image (Figure 4), 

the high temperature zones were observed in places like Pretoria central (CBD), Pretoria West 

(industrial) and residential areas such as Pretoria East and Pretoria North. 

 

Figure 4. LST maps of the study area for Landsat 7 ETM+, 2003 and Landsat 8, 2013. 
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4.0 Statistical Test for the thematic derived binary image 

Figure 5 and 6 shows the one-way ANOVA plot of the mean surface temperature against the NDVI 

and NDBI derived binary images from Landsat 7 ETM + and Landsat 8 sensors respectively. This 

was done to compare the mean LST value of the 3 groups vegetation and ISA / built up generated in 

the indices images and conclude if there is a statistically significant difference among the groups.   

   

Figure 5. One-way ANOVA plot of mean surface temperature against NDVI derived vegetation 

groups in (a) Landsat 7 ETM +, 2003(b) Landsat 8, 2013  

 

 

Figure 6. One-way ANOVA plot of mean surface temperature against NDBI derived built up 

groups in (a) Landsat 7 ETM +, 2003 (b) Landsat 8, 2013 

 

 

 

(a) (b) 

(a) (b) 



South African Journal of Geomatics, Vol. 4, No. 4, November 2015 

 

362 

 

At 95% significant level (α =0.05), Ho : Null hypothesis indicates there is no significant difference 

the LST values of the three  groups of vegetation and built up / ISA derived in each indices derived 

binary images, while the H1: Alternative hypothesis indicates there is a difference in their LST 

values. 

From figure 5(a & b): Ho: high vegetation = medium vegetation = low vegetation; H1: high 

vegetation ≠ medium vegetation ≠ low vegetation. Since the p-value is less than 0.05 (p-value 

=<2e-16) derived when comparing mean LST values of the vegetation groups, we reject Ho null 

hypothesis and accept H1 the alternative hypothesis, meaning there is a significant difference in the  

vegetation groups derived in both Landsat 7 ETM + and Landsat 8 using NDVI. This signifies that 

vegetation cover within the study area has changed heterogeneously over the 10 years. 

From figure 6 (a & b): Ho: high built up / ISA = medium built up / ISA = low built up / ISA; H1: 

high built up / ISA ≠ medium built up / ISA ≠ low built up / ISA. Since the p-value is also less than 

0.05 (p-value =<2e-16) derived when comparing mean LST values of the vegetation groups, we 

reject Ho null hypothesis and accept H1 the alternative hypothesis, meaning there is a significant 

difference in the various built up / ISA groups derived in both Landsat 7 ETM + and Landsat 8 

using NDBI due to land use or cover change. 

 

5.0 LST relationships to thematic indices derived vegetation and ISA / built up 

Weng (2001) indicated that the best way to understand the impact of land cover changes on LST is 

to investigate the links between the thermal signatures and land cover types. A sample with 1000 

randomly generated points was used to investigate the relationship of LST to NDVI derived 

vegetation fractions and NDBI derived ISA / built up fractions from the Landsat 7 ETM +, 2003 

and Landsat 8, 2013 respectively. Given a rescaled pixel size of 30m in the Landsat thermal images 

used (i.e., Band 6, Landsat 7 ETM + and Band 10, Landsat 8), the resultant surface temperature 

depend on the relative proportions of surfaces which are mostly vegetated and non – vegetated 

surfaces (Yuan and Bauer, 2007).    

 The correlation analysis was performed to investigate this relationship. The results from the linear 

relationship between the NDVI derived vegetation fractions in the two Landsat images in figure 7 

indicated a negative relationship with the surface temperature (LST) with correlation coefficient r2 

= 0.3394 and r2=0.1095 respectively.  Figure 8 indicated a consistent positive correlation between 
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the surface temperature (LST) and the NDBI derived ISA / built up fractions in both Landsat 

images with a correlation coefficient r2 = 0.4619 and 0.0816 respectively at p-value =<2e-16. 
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Figure 7. Scatterplot plots of NDVI binary image and mean surface temperature (OC) LST in (a) 

Landsat 7 ETM +, 2003 (b) Landsat 8, 2013 
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Figure 8. Scatterplot plots of NDBI binary image and mean surface temperature (OC) LST(a) 

Landsat 7 ETM +, 2003 (b) Landsat 8, 2013 

In both years (figure 4), it is clearly seen that vegetation had lower surface temperature values than 

the ISA. These variations in the pixel temperatures may be mostly associated to impervious surface 

(a) (b) 

(a) 
(b) 
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increase and characteristics since vegetated surfaces vary less in temperature than sunlit impervious. 

Some studies also point out that the cool surface temperature effect of vegetation is as a result of the 

light energy conservation role during photosynthesis (Bounoua et al., 2009). 

 

6. Discussion 

The urban expansion experienced across Tshwane Metropolitan is observed as a sign of growth and 

prosperity but has continuously brought about expanded infrastructure that makes use of more 

impervious surfaces. These changes have brought about a series of adverse impacts on the 

environment like ecological and hydrological disturbances of which surface temperature variation 

like urban heat islands is one of the major effects. An increase in manmade features such as ISA in 

urban areas have generally resulted in a high reflection and emission of solar radiation and greater 

thermal capacity and conductivity, leading to relatively higher temperatures in the urban centers 

compared with the surrounding rural areas.  

In this study we focused on the changes in vegetation and ISA across Tshwane metropolis. From 

the processed Landsat images, the result clearly shows that ISA exhibits a hotter surface 

temperature than vegetation (figure 6). Also, the trend observed was that, pixels of places with 

higher surface temperature signified that vegetation was small or absent and thus showing a high 

chance of ISA. This was also explained through the correlation analysis performed in figure 7 and 

figure 8, to investigate the relationships of LST to vegetation and impervious surface area. The 

measurements indicated that the ISA / built up areas had a positive linear relationship with LST 

(i.e., correlation coefficient r2 = 0.4619 and 0.0816) and vegetation a negative linear relationship 

with LST (i.e., correlation coefficient r2 = 0.3394 and r2=0.1095). Also the contrasting quantitative 

effect of these two land cover changes displayed the distribution of urban heat islands scale within 

the study area especially around the CBD and outskirt (e.g. Centurion and City of Tshwane Rural, 

with increasing impervious surfaces (figure 4).  

Also, the mean surface temperature from the weather stations (South African weather Station, 

SAWS and Pretoria Botanical Institute) was used as a point of reference to verify the accuracy of 

the final retrieved LST images for 2003 and 2013. From Landsat 7 ETM+ 2003, the mean pixel 

temperature for Pretoria Eendracht and Irene weather stations were 26.28oC and 26.77oC while the 

mean near surface air temperature from SAWS is 29.60 OC and 27.80 OC. Hence, the LST retrieval 

error was 3.3oC and 10C respectively. Similarly, with Landsat 8 2013 data the mean pixel 

temperature for the Pretoria UNISA weather station and Pretoria National Botanical Institute was 
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27.218OC and 28.63OC, while the mean near surface temperature was 27.6OC and 29.91OC 

respectively. Thus, the LST retrieval error was 0.38OC and 1.3OC for the two stations.  

Therefore, the thermal bands of Landsat 7 ETM + and Landsat 8 LCDM data employed for this 

study provided good results and can be used for  further temperature variability analysis. 

 

7. Conclusion 

The study examined the relationships between the LST, thematic indices derived ISA / built up and 

vegetation in Tshwane metropolis. Results reveal that ISA and vegetation have experienced changes 

across the study area between 2003 and 2013 due to urban sprawl. Likewise, ISA proved to be a 

true indicator of variations in land surface temperature dynamics with a positive linear relationship 

between LST and ISA, whereas the relationship between LST and NDVI had a negative linear 

relationship. This is because the ISA / built up materials (i.e., cemented floors, old asphaltic roads 

etc.) emit sunlight energy while vegetation absorb sunlight energy which is used during 

photosynthesis. Therefore, ISA can be used as a complementary metric for surface urban heat island 

studies. For example, the study presented the extent of formation urban heat island scale based on 

impervious surface areas. 

The derived surface temperature values from the satellite data (such as Landsat 7ETM + and 

Landsat 8) were found to be in good agreement with temperature values from the weather stations 

used. Therefore, the use of remote sensing data to study the variations in LST and urban landscape 

pattern in Tshwane metropolis shows that it offers a faster alternative and a cost effective method 

with the advantage of covering a large area.  

Finally, the consistent information about these land cover and climate change can be used to 

provide vital information to multitude of social, economic and environmental policies, regulations 

and decision makers. 
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