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Abstract 

Aquatic Invasive Alien Plant (AIAP) species are a major threat to freshwater ecosystems, 

placing great strain on South Africa’s limited water resources. Bio-control programmes have been 

initiated in an effort to mitigate the negative environmental impacts associated with their presence 

in non-native areas. Remote sensing can be used as an effective tool to detect, map and monitor 

bio-control damage on AIAP species. This paper reconciles previous and current research 

concerning the application of remote sensing to detect and map bio-control damage on AIAP 

species. Initially, the spectral characteristics of bio-control damage are described. Thereafter, the 

potential of remote sensing chlorophyll content and chlorophyll fluorescence as pre-visual 

indicators of bio-control damage are reviewed and synthesised. The utility of multispectral and 

hyperspectral sensors for mapping different severities of bio-control damage are also discussed. 

Popular machine learning algorithms that offer operational potential to classify bio-control 

damage are proposed. This paper concludes with the challenges of remote sensing bio-control 

damage as well as proposes recommendations to guide future research to successfully detect and 

map bio-control damage on AIAP species.  

 

1. Introduction 

Aquatic Invasive Alien Plant (AIAP) species are a major threat to the structure and functioning 

of freshwater ecosystems throughout South Africa (van Wilgen et al., 2004). Once introduced, 

AIAP species have the capability to proliferate profusely and spread rapidly thus successfully 

colonising freshwater ecosystems (Verma et al., 2003; Kull and Rangan, 2008). The unrestrained 

expansion of AIAP species is attributed to the lack of natural enemies as well as the prevalence of 

eutrophic freshwater systems (Law, 2007). The colonization of freshwater bodies by AIAP species 

cause severe social, economic and environmental problems (Coetzee et al., 2007; Villamagna and 

Murphy, 2010). AIAP species have been found to reduce indigenous biodiversity, increase sediment 

deposition, reduce water quality and alter water regimes (Görgens and van Wilgen, 2004; 

Richardson and van Wilgen, 2004). Consequently, bio-control programmes have been established in 
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an effort to control the extent of AIAP species and mitigate the adverse effects associated with their 

presence in freshwater ecosystems (Coetzee et al., 2011).  

 

Assessing bio-control damage on AIAP species is essential to evaluating the efficacy of bio-

control agents (i.e. larval and adult insects) and the success of bio-control initiatives. Current 

monitoring techniques which involve visually surveying AIAP species for bio-control damage are 

subjective, spatially restrictive, time consuming and laborious to conduct on a large scale (Everitt et 

al., 2002). The advent of remote sensing technologies could play an important role in addressing the 

challenges faced in obtaining information on bio-control damage. Field based remote sensing forms 

an integral component of characterising the spectral reflectance of AIAP species under insect 

induced stresses (Everitt et al., 2007). Satellite based remote sensing provides a synoptic view of 

the Earth’s surface (Verma et al., 2003) which can capture complete and accurate information on 

bio-control damage repeatedly (Dennison et al., 2009; Nagler et al., 2014). Information that was 

once inaccessible over large water bodies can be acquired instantaneously in a cost effective and 

timeous manner (Joshi et al., 2004). Satellite imagery can be incorporated into a geographical 

information system for multi-temporal analysis (Albright et al., 2004) which could be implemented 

to quantify the change in bio-control damage over time. The implementation of semi-automated 

classification algorithms (Benz et al., 2004) could provide near real time information on the extent 

and severity of bio-control damage. Therefore, remote sensing as a tool could potentially provide a 

comprehensive mapping and monitoring solution to identify AIAP species, predict bio-control 

target areas, detect bio-control damage and effectively plan bio-control strategies (Hestir et al., 

2008).  

 

Over the past decade, few studies have applied the use of remote sensing to detect and map bio-

control damage on AIAP species (Everitt et al., 2005; Everitt et al., 2007; Everitt et al., 2012). 

These studies have primarily focused on detecting and discriminating different severities of bio-

control damage based on the colour of the foliage using aerial photography and conventional 

classification techniques (Everitt et al., 2005; Everitt et al., 2007; Everitt et al., 2012). It is evident 

that there is a significant gap in the body of knowledge on remote sensing bio-control damage on 

AIAP species. It is prudent to critically assess what new remotely sensed data sources and methods 

offer for bio-control damage detection. Measuring key biochemical and biophysical parameters 

could potentially provide greater insight into the extent of physiological stress experienced by AIAP 

species under bio-control. The greater availability of remotely sensed data at higher spatial and 

spectral resolutions coupled with the development of machine learning algorithms could potentially 

improve classification accuracies (Abdel-Rahman et al., 2014; Adelabu et al., 2014). However, as 

research related to remote sensing bio-control damage is limited, it is necessary to investigate 

remote sensing of insect induced stresses in other related fields, including agriculture and forestry, 
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to determine its potential application in detecting bio-control damage. Lessons learnt will assist in 

identifying key areas of research that should be explored further to develop operational methods 

that will meet the information requirements of bio-control initiatives.  

 

In light of the above, this paper aims to review the application of remote sensing to detect and 

map bio-control damage on AIAP species. More specifically this paper focuses on the spectral 

characteristics of bio-control damage as well as remote sensing chlorophyll content and chlorophyll 

fluorescence as pre-visual indicators of bio-control damage. The use of multispectral and 

hyperspectral sensors for mapping different severities of bio-control damage are also discussed. 

Furthermore, this paper proposes popular machine learning algorithms that offer operational 

potential to classify bio-control damage. This paper concludes with the challenges of remote 

sensing bio-control damage as well as proposes recommendations to guide future research to 

successfully detect, map and monitor bio-control damage on AIAP species.  

 

2. Detecting bio-control damage on AIAP species 
 

2.1. A description of bio-control damage and its spectral characteristics 

Bio-control agents inflict both morphological and physiological damage to AIAP species (Allen 

Dray, Jr. and Center, 2002; Moran, 2004). With reference to water hyacinth (Eichhornia crassipes), 

Neochetina spp. larvae tunnel through the plant causing internal damage to the plant tissue (Julien, 

2001). Thereafter, herbivory by adult bio-control agents remove large portions of epidermal tissue 

from the leaf surface forming rectangular scars on the surface of the leaf (Julien, 2001). Feeding by 

bio-control agents negatively affect the leaf thickness, internal cell structure, pigment concentration 

and nutrient concentration thereby reducing the photosynthetic performance of the leaf. In addition, 

a large volume of water is lost through the feeding scars on the leaf surface thereby exposing the 

leaf to desiccation (Julien et al., 1999). Feeding scars also serve as sites for plant pathogen infection 

making the plant susceptible to disease infection (Julien, 2001). It is a combination of the 

morphological and physiological stresses mentioned above that alters the spectral reflectance of 

infested plants at the leaf surface (Everitt et al., 2005; Robles et al., 2010).  

 

The spectral reflectance of bio-control damage is primarily influenced by the pigments, 

intracellular airspaces, cellular structure and water content at the leaf surface. The spectral 

reflectance of bio-control damage in the visible region (VR: 400-700nm) is primarily governed by a 

reduction in chlorophyll concentration and leaf pigments (Fletcher, 2013). Infested plants exhibit a 

low reflectance in the green region together with low absorption pits in the blue (450nm) and red 

(670nm) regions. In the near infrared region (NIR) (700-1300nm), plants under stress, exhibit a low 

reflectance owing to extensive damage to the cellular structure of the leaf (Carter, 1993). The red-
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edge region is characterised by an abrupt change in reflectance between the VR (670nm) and NIR 

(800nm), caused by the combined effects of strong chlorophyll absorption in the red wavelengths 

and high leaf structure-driven reflectance in the NIR (Main et al., 2011). In the short wave infrared 

region (SWIR) (1300-2500nm) incident radiation is both reflected and absorbed with reduced 

absorption, centered at 1400nm and 1900nm (Huang and Apan, 2006). It is the difference in the leaf 

optical response between healthy and infested plants that allow for the detection of bio-control 

damage on AIAP species (Figure 1). Different severities of bio-control damage can be 

discriminated based on subtle differences in the reflectance spectra between severities. Identifying 

diagnostic features that are related to the biochemical and biophysical status of the plant (Adam et 

al., 2010) offers greater potential in discriminating different severities of bio-control damage as 

well as ascertaining the physiological status of the plant.  
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Figure 1: Spectral reflectance of water hyacinth (Eichhornia crassipes) plants a) healthy plant b) 

severely damaged plant. 
 

2.2. Remote sensing chlorophyll fluorescence 

Herbivory by bio-control agents negatively affects the functioning of chloroplasts at the leaf 

surface thereby reducing the photosynthetic capacity and performance of the leaves (Fletcher, 

2013). Light energy absorbed by chlorophyll that is not used for photochemistry is dissipated 

through non photochemical quenching or chlorophyll fluorescence; thereby protecting the 

chloroplasts from light induced oxidative damage (Zarco-Tejada et al., 2000a). Quantifying 

chlorophyll fluorescence would provide an indication of the functional status of photosynthetic 

apparatus because it is a direct indicator for photosynthesis (Zarco-Tejada et al., 2013). Therefore, 

chlorophyll fluorescence can be used as a direct proxy for photosynthesis and a bio-indicator for 

vegetation stress. Changes in chlorophyll function often precede changes in chlorophyll content 
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hence changes in chlorophyll fluorescence would occur before leaves become chlorotic. 

Chlorophyll fluorescence could therefore be a good pre-visual bio-indicator of physiological stress 

experienced by AIAP species.  

 

Remote sensing chlorophyll fluorescence could potentially determine the severity of 

physiological stress experienced by AIAP species before visual bio-control damage is seen. 

Chlorophyll fluorescence signal retrieval from reflectance spectra is a challenge as reflectance 

spectra is a combination of fluorescence emission and surface reflectance. A study conducted by 

Zarco-Tejada et al. (2000a-b) demonstrated that chlorophyll fluorescence can be detected at the leaf 

and canopy level in the red-edge spectral region. However, estimating chlorophyll fluorescence in 

vegetation canopies under natural illumination would provide a better understanding for detecting 

chlorophyll fluorescence using airborne or spaceborne remote sensing. Zarco-Tejada et al. (2001) 

estimated chlorophyll fluorescence under natural illumination from hyperspectral data. The results 

demonstrated that chlorophyll fluorescence changes can be tracked under natural illumination 

conditions using a fibre spectrometer over small canopies. These results are promising and illustrate 

the potential detection of chlorophyll fluorescence on AIAP species experiencing bio-control under 

natural illumination. 

 

Many studies have adopted a reflectance based approach by computing optical indices that are 

related to chlorophyll fluorescence (Zarco-Tejada et al., 2000a; Zarco-Tejada et al., 2000b; 

Dobrowski et al., 2005). Chlorophyll fluorescence indices offer improved performance when 

compared to other popular vegetation indices, such as Normalized Difference Vegetation Index 

(NDVI), as they provide a good indication of canopy physiology. Majority of published vegetation 

indices characterize the amount of vegetation and pigment concentration but are not sensitive to the 

photosynthetic status of the plant (Dobrowski et al., 2005). Chlorophyll fluorescence indices track 

vegetation physiological effects that are correlated with some phenomena responsible for 

fluorescence. These indices exploit the effect of chlorophyll fluorescence on reflectance in the red-

edge region (600 – 800nm). Dobrowski et al. (2005) explored the link between canopy reflectance 

derived chlorophyll fluorescence and plant physiological status. This was determined by 

investigating the influence of steady-state fluorescence on the red-edge spectral region. It was 

concluded that fluorescence ratio indices (R690/R600 and R740/R800) calculated in the red-edge 

spectral region tracked plant stress and photosynthetic status. In their study, Belasque et al. (2008) 

investigated the potential of fluorescence spectroscopy to detect stress caused by pitch canker 

(bacterial disease caused by Xanthomonas axonopodis pv. citri) and mechanical injury. This study 

(Belasque et al. 2008) employed ratios between fluorescence at different wavelengths (452 and 

685nm, 452nm and 735nm, 685nm and 735nm) to monitor the stress caused by the bacterial 

infection. It was reported that the ratio of two chlorophyll fluorescence bands can be used to detect 
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and discriminate between the mechanical damage and the disease severity. This demonstrates that 

there is an avenue for passive plant physiological monitoring on AIAP species under bio-control 

using remote sensing. However, further research needs to be undertaken to investigate the 

operational potential of detecting chlorophyll fluorescence on AIAP under bio-control at the leaf, 

canopy, airborne and spaceborne level. Importantly, it is critical to determine the infestation period 

after which chlorophyll fluorescence can first be detected. This will assist environmental managers 

in determining the efficacy of bio-control agents at the initial stages of the infestation. In this 

manner bio-control strategies can be adapted accordingly by releasing more bio-control agents onto 

AIAP that require additional stress.  

 

2.3. Remote sensing chlorophyll content 

Leaf chlorophyll content is one of the most important bio-indicators of plant physiological state 

because of its direct role in photosynthetic processes. A number of studies have linked responses in 

leaf chlorophyll content to plant physiological stress (eg. Curran et al., 1990; Carter and Knapp, 

2001). Quantitative estimates of leaf chlorophyll content from remote sensing platforms can provide 

a useful means of assessing vegetation stress induced by bio-control agents (Zhang et al., 2008). 

Decades of research has been undertaken to identify biochemically sensitive regions that can be 

exploited to form vegetation indices (Main et al., 2011). Differences in reflectance between healthy 

and stressed vegetation due to changes in chlorophyll content primarily occur in the green region 

and red-edge region (Ustin et al., 2009). Stressed vegetation exhibit less overall absorption in the 

VR with the position of the red-edge position inflection point shifting towards shorter wavelengths. 

Consequently, chlorophyll indices have been developed from leaf optical properties that exploit 

differences in reflectance between healthy and stressed vegetation in the VR and red-edge region 

(Datt et al., 1999; Ustin et al., 2009). 

 

NDVI is a popular vegetation index that has been used as a proxy for chlorophyll content 

estimation and vegetation stress assessment. A study conducted by Dennison et al. (2009) 

monitored tamarisk (Tamarix spp.) defoliation by applying an NDVI to multispectral Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Results showed that 

NDVI values decreased within riparian areas between 2006 and 2007. The decrease in NDVI 

caused by defoliation was apparent despite partial defoliation within the study area. However, the 

application of broadband NDVIs are limited by their instability owing to variations in canopy 

structure, illumination and viewing angle (Main et al., 2011). Additionally, broadband NDVIs 

asymptotically approach a saturation level after a Leaf Area Index (LAI) of approximately four; 

therefore overestimating the vegetation condition (Seller, 1985; Mutanga and Skidmore, 2004). 

Despite these limitations, future studies should investigate the potential of using chlorophyll indices 

to estimate leaf chlorophyll content on AIAP species as no studies have attempted to do so thus far.   
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The significance of assessing chlorophyll content within physiological studies has prompted the 

development of numerous chlorophyll indices for chlorophyll content estimation. However, 

chlorophyll indices are generally species specific as the size, shape, surface and internal structure of 

the leaves vary from one plant species to another (Zhang et al., 2008). Ideally, the goal for 

researchers would be to develop vegetation indices that are not only as sensitive as possible to the 

desired parameter, but also robust across plant species and leaf structures (Main et al., 2011). In-

order to improve the robustness and generality of chlorophyll indices it is important to test their 

performance over a range of species (Zhang et al., 2008). Main et al. (2011) assessed the robustness 

of 73 published chlorophyll spectral indices using leaf level hyperspectral data collected from three 

crop species and a variety of savannah tree species. The authors identified two red-edge derivative 

based indices (red-edge position via linear extrapolation index and the modified red-edge inflection 

point index) that were the most consistent and robust. Despite their applicability, the performance of 

spectral indices would need to be assessed and calibrated when applied to specific AIAP species 

under bio-control at the leaf, canopy and airborne level (Zhang et al., 2008). Wu et al. (2010) 

evaluated the potential of chlorophyll content estimation using spaceborne EO-1 Hyperion 

hyperspectral data. Wavelengths in the red-edge region were selected to test a range of vegetation 

indices for chlorophyll content estimation in different canopy structures. Results showed that 

chlorophyll content can be successfully estimated by vegetation indices derived from Hyperion data 

with a Root Mean Square Error (RMSE) of 7.20–10.49 mg cm-2 for chlorophyll content. The 

(Modified Chlorophyll Absorption Ratio Index [MCARI]/Optimized Soil-Adjusted Vegetation 

Index [OSAVI705]) index provided the best estimation of the chlorophyll content (RMSE of 7.19 mg 

cm-2). This is promising as environmental managers can produce regional maps of chlorophyll 

content thus determining the extent of physiological damage caused by bio-control agents on AIAP 

species. However, it is evident that there is a lack of studies that have investigated the potential of 

estimating chlorophyll content on AIAP species under bio-control stress. A suite of chlorophyll 

indices needs to be tested and compared to identify indices that perform well at the leaf, canopy and 

airborne level for specific AIAP species. Integrating chlorophyll content estimation with 

chlorophyll fluorescence estimation will form a critical component in providing a comprehensive 

physiological assessment of AIAP plants under bio-control to environmental managers. 

 

3. The detection and mapping of bio-control damage  
 

3.1. The detection and mapping of bio-control damage using multispectral remote sensing 

Over the past few decades, great advances in sensor technologies have resulted in a suite of 

available data sources at a range of spectral, spatial and temporal resolutions deployed on either 

airborne or satellite platforms. Multispectral radiometers and multispectral imaging spectrometers 

(ASTER, Landsat 7 (ETM+), QuickBird, IKONOS, SPOT 5, WorldView, GeoEye), capture data 

between three to eight broad spectral bands from the VR, NIR and SWIR of the electromagnetic 
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spectrum. However, multispectral sensors average reflectance spectra over broad spectral bands 

lacking the detailed reflectance spectra required to accurately discriminate different severities of 

insect damage (Carson et al., 1995; Qin and Zhang, 2005). Multispectral remote sensing has been 

widely applied to detect insect damage as imagery is commercially available (Figure 2) (Franklin et 

al., 2003; Qin and Zhang, 2005; Meigs et al., 2011). However, few studies have applied the use of 

multispectral remote sensing to detect and map bio-control damage on AIAP species with studies 

mainly being focused on mapping bio-control damage on giant salvinia (Salvinia molesta) (Everitt 

et al., 2005). 

 

 

Figure 2: Number of published papers using various multispectral satellite sensors to detect insect 

damage and disease infection 

 

Initially, studies that investigated the potential of mapping bio-control damage on AIAP species 

used multispectral radiometers coupled with aerial photographs (Everitt et al., 2005). Aerial 

photographs are expensive to purchase and incorporate a range of distortions from platform 

instability and variations in sun angle at different capture dates. However, the use of aerial 

photographs allow for small areas to be captured when required. Everitt et al. (2005) detected the 

bio-control damage on the AIAP species Salvinia molesta using multispectral field measurements 

and aerial photography. Field spectral measurements showed that moderately damaged and severely 

damaged plants had lower visible and near-infrared reflectance values than healthy plants (Everitt et 

al., 2005). In order to classify the aerial photographs, the image mode function in Adobe Photoshop 

was employed. Despite the basic nature of the image classification technique employed results 

showed that the three damage level classes (healthy, moderate and severely damaged) could be 

quantified and differentiated. A qualitative comparison of the computer classification to the original 

aerial photograph indicated that the image analysis technique was sufficient in identifying weevil 

0

2

4

6

8

10

12

14

16

18

ASTER IKONOS Landsat MODIS QuickBird SPOTN
o

. o
f 

p
u

b
lis

h
e

d
 p

ap
e

rs
 (

1
9

9
9

-2
0

1
4

) 

Satellite Sensor 



South African Journal of Geomatics, Vol. 4, No. 4, November 2015 
 

472 

 

damage levels on giant salvinia. This illustrates the potential of detecting and mapping bio-control 

damage on AIAP species which can only be improved upon using multispectral satellite imagery.  

 

AIAP species occur in large dense monocultures on the surface of freshwater bodies. The spatial 

resolution of satellite imagery used is highly dependent on the information needs of environmental 

managers. Moderate spatial resolution satellite imagery will be appropriate to conduct a general 

survey to ascertain the current infestation conditions. Moderate spatial resolution satellite imagery 

can be used to discriminate between healthy and damaged plants owing to distinctive variation in 

spectral reflectance. Chen et al. (2007) detected the “take-all” disease in wheat using moderate 

spatial resolution Landsat TM Imagery (30 m). An NDVI and Principal Components Analysis 

(PCA) were used to detect healthy wheat and take-all severely infected wheat canopies. Results 

showed that healthy wheat had a higher NDVI than infested wheat (healthy: 0.3864, infested: 

0.2182). However, Chen et al., (2007) did not investigate the discrimination of different disease 

severities which may require remotely sensed imagery of a higher spatial or spectral resolution or 

the application of a more advanced and robust classification methodology. Mirik et al. (2013) 

monitored Wheat Streak Mosaic (WSM) progression using moderate spatial resolution Landsat 5 

TM (30 m) imagery and a constrained energy minimization sub-pixel classifier for disease 

management in wheat. Even though moderate spatial resolution satellite imagery was used, the 

application of a sub-pixel classifier resulted in high classification accuracies. Results showed that 

the overall classification accuracies achieved were > 91% with kappa coefficients ranged between 

0.80 and 0.94 for disease detection. Omission errors varied between 2% and 14%, while 

commission errors ranged from 1% to 21%. Importantly, this study detected and mapped healthy 

wheat and wheat with moderate to severe WSM using moderate spatial resolution imagery. The 

method employed can potentially be used to map different severities of bio-control damage using 

moderate spatial resolution imagery. The method employed was simple which would be 

advantageous to environmental and freshwater resource managers that want to quickly determine 

the overall extent and severity of bio-control damage across AIAP stands. The coarse level of 

information generated from these general surveys can be used to define management zones and 

identify areas requiring more detailed surveys.  

 

Detecting low severities of bio-control damage at the initial stages of insect infestations is 

critical in assessing if insect populations are established and actively feeding. High spatial 

resolution satellite imagery could be better suited to detecting low severities of bio-control damage. 

Franke and Menz (2007) investigated multi-temporal wheat disease detection using high spatial 

resolution multispectral QuickBird images (2.5 m). A decision tree incorporating Mixture Tuned 

Matched Filtering (MTMF) and NDVI was employed which detected the early stage of crop 

infections. The overall classification accuracy of the first QuickBird scene was 56.8% whereas the 
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second scene was 88%. The use of high spatial resolution multispectral imagery was moderately 

suitable for the early detection of crop infections owing to the high misclassification rate observed 

in the early growth stages. It was recommended that the use of hyperspectral remotely sensed data 

be investigated. Qin and Zhang (2005) also concluded that higher spectral resolution is required in 

order to examine the capability of separating the light diseased plants from healthy plants. Qin and 

Zhang (2005) investigated the detection of rice sheath blight for in-season disease management 

using multispectral remotely sensed imagery. They applied a comprehensive field Disease Index 

(DI) to measure infection severity of the disease on broadband high spatial-resolution Airborne 

Data Acquisition and Registration (ADAR) (1 m) imagery. Results showed that it was difficult to 

discriminate healthy plants from light infected plants when DI < 20 because of their spectral 

similarities. It was clear that identification accuracy increased when infection reached medium-to-

severe levels (DI > 35).  

 

From the above, there is great potential to detect and map bio-control damage on AIAP species 

using moderate and high spatial resolution multispectral imagery. Spectral discrimination between 

healthy and severely damaged plants is evident; however, discriminating between healthy and early 

stage of infestations still poses a challenge when detecting low severities of bio-control damage. 

Advances in hyperspectral remote sensing, offers the high spectral resolution required which may 

assist in discriminating healthy and low severities of bio-control damage.  

 

3.2. The detection and mapping of bio-control damage using hyperspectral remote sensing 

Improvements in sensor technologies have resulted in hyperspectral sensors that capture data in 

hundreds of narrow contiguous (<10nm) bands in the VR, NIR and SWIR. The increased spectral 

dimensionality and sensitivity of hyperspectral data allow for the discrimination of spectrally 

similar but unique materials (Mutanga et al., 2009). Detecting bio-control damage using 

hyperspectral remote sensing would provide greater spectral discrimination of different severities of 

bio-control damage and infection especially between healthy and low damaged and infected plants. 

Hyperspectral field spectrometers can measure the reflectance of complex surfaces over small areas 

of known targets in situ either in the field or in a laboratory (Milton et al., 2009). Importantly, the 

main application of field spectroscopy is to perform a feasibility study to understand the spectral 

interactions of bio-control damage before upscaling to airborne or satellite remote sensing systems 

(Milton et al., 2009). Hyperspectral laboratory studies are central in determining key diagnostic 

features and spectral bands that will detect variable infestation levels for eventual inclusion on 

airborne and satellite remote sensors. Hyperspectral field spectrometers have been widely applied to 

capture and characterise the spectral profiles of different plant species under different stress 

conditions (Mirik et al., 2006; Song et al., 2011; Huang et al., 2012). However, few studies have 

investigated the use of handheld hyperspectral spectrometers to detect and discriminate bio-control 

damage on IAP species (Everitt et al., 2007; Everitt et al., 2012).  
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Everitt et al. (2012) used hyperspectral field reflectance data to assess bio-control damage 

(control, low, medium, high) on giant salvinia (Salvinia molesta). The analysis of variance and least 

significant difference comparison test results for both October and July revealed that generally the 

best bands for separating among treatments occurred in the green (505–595nm), red (605–635nm), 

red-near-infrared (695–745nm) edge and NIR (755–895nm) regions. Approximately 35 bands could 

be used to distinguish three to four treatments. Hyperspectral data allowed for the discrimination of 

healthy and low damaged giant salvinia using a relatively basic discrimination and band selection 

technique. This highlights the importance of utilizing high spectral resolution data for 

discriminating the early stages of bio-control infestations. Similarly Ge et al. (2011) carried out a 

multi-level defoliation assessment on saltcedar (Tamarix ramosisima) using hyperspectral data. The 

authors used red-edge positions and continuum-removed absorptions to discriminate four 

defoliation categories (healthy, newly defoliated, completely defoliated and refoliating). A 

classification tree was employed to integrate the red-edge positions and their derivatives with the 

central band depths of five continuum-removed absorptions. The overall classification accuracy was 

87.5% with producer’s accuracy varying between 70 and100% and user’s accuracy ranged between 

77.78 and 100%. The authors concluded that single spectral dataset failed to separate the four stages 

but a combination of the two continuum-removed absorptions located in the red absorption (570-

716nm) and the first water absorption (936-990nm) in the NIR improved the identification of 

defoliated canopies. This study combined the use of hyperspectral data with the implementation of a 

robust classification algorithm therefore achieving high classification accuracies. This study 

illustrates the potential of using hyperspectral field spectrometers to discriminate multi-level 

defoliation on AIAP species at the leaf level before upscaling. 

  

With the inception of hyperspectral imaging spectrometers (HyMap, Hyperion) the extent of bio-

control damage can potentially be mapped at a high spectral resolution. Hyperspectral imagery 

combines moderate to high spatial resolutions with the high spectral resolution required to map 

different severities of bio-control damage. It is evident that there is a paucity of research conducted 

on detecting and mapping bio-control damage on AIAP species using hyperspectral imagery. 

However, a study conducted by Fitzgerald et al. (2004) detected spider mite damage using AVIRIS 

hyperspectral imagery and a spectral mixture analysis. The procedure successfully distinguished 

between adjacent mite-free and mite-infested cotton fields. Similarly, Mewes et al. (2011) 

discriminated healthy and diseased wheat canopies using airborne HyMap imagery and a support 

vector machine  classification algorithm. Results showed that with the original spectral resolution of 

the HyMap image, the highest classification accuracy could be achieved by using only 13 spectral 

bands with a Kappa coefficient of 0.59. This clearly illustrates the potential of mapping bio-control 

damage on AIAP species accurately using hyperspectral imagery. Further research needs to be 

undertaken that address information gaps in detecting different severities of bio-control damage and 
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in particular early stages of vegetation stress using hyperspectral imagery. Even though the 

utilization of hyperspectral imagery is advantageous, hyperspectral imagery are expensive to 

purchase on a regular basis and require highly skilled individuals to process; therefore imposing 

operational limitations. Peerbhay et al. (2015) looked at the semi-automated classification of alien 

invasive plants using the unsupervised random forest. Analysing hyperspectral data to extract 

meaningful information presents numerous challenges including data dimensionality and data 

redundancy. There is a need to investigate the advanced machine learning statistical techniques 

available to reduce data dimensionality so that bio-control damage classification procedures can be 

executed efficiently and repeatedly.  

 

3.3. Potential classification techniques: machine learning algorithms 

Classifying different severities of bio-control damage using hyperspectral data is a challenge 

owing to the high spectral dimensionality of the dataset. Over the past decade, machine learning 

algorithms have emerged as more accurate and efficient alternative to conventional parametric 

algorithms when processing high dimensional datasets. Machine learning algorithms are 

computationally efficient, offer higher classification accuracies and can process high dimensional 

datasets. Three popular machine learning algorithms namely Artificial Neural Networks (ANN), 

Random Forest (RF) and Support Vector Machines (SVM) algorithms have mainly been 

implemented for classifying vegetation stress (Table 1). However, to our knowledge no studies have 

investigated the potential of classifying different severities of bio-control damage on AIAP species 

using machine learning algorithms.  

 

Table 1: Selected studies that have implemented machine learning algorithms for classifying insect 

induced stress and disease damage. 
Reference Algorithm Data source Type of stress Accuracy 

Singh et 

al., (2009) 

Linear discriminant 

analysis, (LDA) 

Quadratic discriminant 

analysis (QDA), 

Malhanobis 

discriminant analysis  

NIR hyper. 

imaging 

system  

Insect damage:  

Sitophilus 

oryzae,  

Rhyzopertha 

dominica,  

Cryptolestes 

ferrugineus, 

Tribolium 

castaneum 

Healthy wheat kernels and 

kernels damaged by S. oryzae, 

R. dominica, and C. 

ferrugineus were correctly 

identified with 91.7–100% 

accuracy using both LDA and 

QDA classifiers. 

Liu et al., 

(2010b)  

Artificial neural 

network (LVQ) 

Analytical 

Spectral 

Device 

(ASD) 

Disease damage:  

Rice glum blight 

disease, 

Rice false smut 

disease,   

The overall accuracies of LVQ 

derived from the raw, inverse 

logarithmic, first, and second 

derivative reflectance spectra 

for the validation dataset were 

91.6%, 86.4%, 95.5%, and 

100% respectively. 

Liu et al., 

(2010a)  

Principal component 

analysis, Support vector 

machine  

ASD Disease damage:  

Nilaparvata 

lugens,  

Ustilaginoidea 

Raw 96.55%, FDR 99.14%, 

SDR 96.55%  
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virens  

Singh et 

al., 

(2010b) 

Linear discriminant 

analysis, Quadratic 

discriminant analysis 

(QDA), Malhanobis 

discriminant analysis, 

Backward propagation 

neural network  

NIR hyper. 

imaging 

system,  

Digital color 

imaging   

Insect damage:  

Sitophilus 

oryzae,  

Rhyzopertha 

dominica,  

Cryptolestes 

ferrugineus, 

Tribolium 

castaneum 

QDA: Had the highest 

accuracy. The accuracy for 

healthy kernals was 96.3%. 

The overall accuracy in 

classifying insect-damaged 

kernels using the top 10 

features from 230 colour image 

features combined with NIR 

image features was 91.0–

100.0%. 

Singh et 

al., 

(2010a) 

Linear discriminant 

analysis (LDA), 

Quadratic discriminant 

analysis, Malhanobis 

discriminant analysis 

NIR hyper. 

imaging 

system,  

Digital color 

imaging   

Insect damage:  

Midge damage 

LDA: The NIR hyperspectral 

image features and 10 colour 

image features gave the highest 

average accuracy of 95.3–

99.3% in classifying healthy 

and midge damaged  wheat 

kernels. 

Ismail and 

Mutanga, 

(2011) 

Random Forest  ASD  Insect damage:  

Sirex noctilio  

Random Forest classification 

using bands selected by the 

backward variable selection 

method had the lowest 

misclassification rate (6.14%).  

Mewes et 

al., (2011) 

Bhattacharyya distance 

forward feature search 

strategy,  

spectral angle mapper,  

support vector machine   

HyMap  Disease damage:  

Blumeria 

graminis 

SVM: Using 13 bands at the 

original spectral resolution, the 

Kappa coeffecient was 0.59. 

Wang et 

al., (2012) 

Linear discriminant 

analysis,  

Support vector machine 

SWIR hyper 

imaging 

system  

Disease damage:  

Burkholderia 

cepacia 

LDA: The overall 

classification accuracy was 

80% when classifying healthy 

and sour skin-infected onions.  

SVM: The overall 

classification accuracy was 

87.14% when classifying 

healthy and sour skin-infected 

onions. 

Jin et al., 

(2013) 

Discriminant analysis, 

Backward propagation 

neural network, Genetic 

backward propagation 

neural network (GA-

BP),  

Support vector machine 

(SVM) 

ASD Disease damage:  

Cotton 

verticillium 

disease 

GA-BP: The average accuracy 

was 85.7%. 

SVM: The average accuracy 

was 78.5%. 

The SVM was recommended 

as it is more stable and easier 

to implement. 

Poona and 

Ismail,  

(2013)  

Artificial neural 

network 

Quickbird 

imagery  

Disease damage:  

Fusarium 

circinatum 

The multilayer feed-forward 

neural network had an overall 

accuracy of 82.15%. 

Kappa  of 0.65 optimal model  

Adelabu 

et al., 

(2014) 

ANOVA/backward 

feature elimination, 

Random Forest  

ASD Insect damage:  

Insect defoliation  

Using the ANOVA as a pre-

filtering technique the overall 

accuracy was 81.21%.  

Using the Random Forest 

variable importance as a pre-

filtering technique the overall 

accuracy was 82.48%.  
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ANN is a non-parametric classifier that makes no assumptions about the distribution of the data 

(Dixon and Candade, 2008; Song et al., 2012). ANN’s are computationally efficient, more resistant 

to noise and perform well with small training datasets (Song et al., 2012). However, the 

implementation of ANN’s is limited by the adjustment of the network parameters (network 

architecture, learning rate, and momentum). Different combinations of the model parameters lead to 

a large number of trials for network training with varying results (Shao and Lunetta, 2012). Poona 

and Ismail (2013) applied an ANN to detect Fusarium circinatum on Pinus radiata trees using 

QuickBird imagery. Several vegetation indices were calculated and incorporated into the neural 

network model. A multilayer feed-forward neural network showed high discriminatory power 

between healthy and infested tree crowns with an overall accuracy of 82.15% and Kappa of 0.65. 

Even though the study did not classify different stages of pitch canker the authors highlighted the 

importance of optimizing neural network model parameters with several runs in order for the model 

to attain good generalisation capabilities. Liu et al. (2010b) applied an ANN model to discriminate 

different fungal infection levels in rice panicles (Oryza sativa L.) using hyperspectral reflectance. A 

Learning Vector Quantization (LVQ) neural network classifier was employed to classify healthy, 

light, moderate and serious infection levels. Results showed that the overall accuracies of LVQ with 

PCA derived from the raw, inverse logarithmic, first, and second derivative reflectance spectra for 

the validation dataset were 91.6%, 86.4%, 95.5%, and 100% respectively, with corresponding 

Kappa coefficients of 0.887, 0.818, 0.939 and 1. The authors suggested that more studies need to 

explore the spectral response characteristics of rice crops under fungal stress of different levels in 

field conditions to develop a practical monitoring strategy. Despite this, the high overall accuracies 

illustrate the potential of discriminating different severities of bio-control damage using ANN.  

 

RF is a tree based ensemble classifier that is capable of producing high classification accuracies 

(Gislason et al., 2006; Rodreiguez-Galiano et al., 2012). RF is able to process high dimensional 

data sets efficiently and is robust against over-fitting the training data set (Breiman, 2001). 

Furthermore, RF is easier to implement than other ensemble classification methods as there are only 

two parameters to define. The classification results are not sensitive to the setting of the input 

parameters. In addition, RF provides a reliable estimate of error using the data that are randomly 

withheld from each iteration of tree development making it unnecessary to have an independent test 

data set (Breiman, 2001). It enables all the collected data to be used for training therefore 

potentially reducing the field work required (Lawrence et al., 2006). A study conducted by Ismail 

and Mutanga (2011) explored discriminating the early stages of Sirex noctilio infestation using 

classification tree ensembles and shortwave infrared bands. Results showed that the RF algorithm 

using bands selected by the backward variable selection method produced the lowest 

misclassification rate of 6.14%. Results from this study confirmed that RF is a robust and accurate 

method for classifying hyperspectral data in an application where (i) the number of samples is 
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limited and (ii) classes have similar spectral characteristics. Further a study by Abdel-Rahman et al. 

(2014) explored detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne 

hyperspectral data, RF and SVM classifiers. Results showed that when the most useful spectral 

bands as measured by RF were used, the overall accuracy improved from 74.50% to 78% for RF 

and from 73.50% to 76.50% for SVM. However the authors suggested the implementation of RF 

over SVM to classify hyperspectral data for several reasons including RF requires the optimization 

of two parameters only as well as the internal out of bag error rate of RF could be used for 

classification accuracy assessment when there are limited samples for independent accuracy 

assessments. In terms of bio-control damage detection, there is great potential in applying RF to 

discriminate spectrally similar damage classes owing to the high classification accuracies it 

achieves.     

 

SVM’s is a popular technique for supervised data classification that provides higher 

classification accuracies than other pattern recognition techniques. SVM’s implements a 

classification strategy that exploits a margin based geometrical criterion rather than a purely 

statistical criterion (Melgani and Bruzzone, 2004). SVM’s adopts the method of structural risk 

minimization for class member discrimination which minimizes the classification error on unseen 

data without making prior assumptions on the probability distribution of the data (Mountrakis et al., 

2011). This is advantageous as data acquired from remotely sensed imagery usually have unknown 

distributions (Mountrakis et al., 2011). SVM’s has high generalization capabilities with a relatively 

small number of training samples as well as robust against over-fitting and is less sensitive to the 

Hughes effect (Melgani and Bruzzone, 2004). However, the performance of the SVM algorithm is 

sensitive to the choice of kernel function and the setting of its associated parameters (Song et al., 

2012). A study conducted by Liu et al. (2010a) discriminated rice panicles of different health 

conditions by applying a PCA and SVM classification on hyperspectral reflectance data. Results 

showed that the overall accuracies of the SVM classifications with principle components derived 

from the raw, first, and second order reflectance spectra for the testing dataset were 96.55%, 

99.14%, and 96.55%, and the Kappa coefficients were 94.81, 98.71, and 94.82, respectively. Jin et 

al. (2013) investigated the application of hyperspectral remote sensing in identifying cotton 

verticillium disease severity. A wavelet transform was employed to extract the principal 

information and reduce the dimensions of the hyperspectral reflectance data. Subsequently, four 

identification models were built using discriminant analysis, back propagation (BP) neural network, 

genetic back propagation (GA-BP) neural network and SVM. Results showed that GA-BP produced 

the highest average accuracy of 85.7%. However, the authors recommended the use of the SVM 

model because it is more stable and better for practical application. In general the high overall 

accuracies when discriminating cotton verticillium disease severities illustrates the potential of 

discriminating different severities of bio-control damage using SVM.  
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From the above it is evident that there is great potential in implementing machine learning 

algorithms to classify hyperspectral data as they produce high classification accuracies. Further 

investigation would need to be conducted to assess and compare the performance of different 

machine learning algorithms when classifying different severities of bio-control damage on AIAP 

species. In addition, the optimization of input parameters and model efficiency would need to be 

assessed to determine the practicality of their regular application within operational procedures. 

Once operational procedures have been automated machine learning algorithms can be 

implemented efficiently to map bio-control damage.  

 

4. Challenges mapping bio-control damage and future recommendations 
 

Remote sensing is a powerful tool that can effectively replace traditional monitoring techniques 

to efficiently detect and map bio-control damage on AIAP species. Furthermore, remote sensing can 

potentially be utilised to ascertain the physiological status of AIAP species and the severity of bio-

control damage on AIAP species. There are still numerous challenges present that would impede its 

widespread adoption by bio-control initiatives.   

 

The cost associated with image acquisition and data processing is one of the key challenges that 

will limit the operational use of remote sensing within bio-control programmes in South Africa. 

Both multispectral and hyperspectral images are expensive to purchase and in some instances not 

feasible as a data collection method for some bio-control programmes. In addition, highly skilled 

personal are required to process the data which are expensive to employ permanently or on a 

contract basis. These costs will directly impact on the operational use of remote sensing to detect, 

map and monitor bio-control damage on AIAP species.  

 

Assessing the photosynthetic capacity as a pre-visual indicator of bio-control damage on AIAP 

species is a major challenge. Chlorophyll fluorescence can be used as a proxy for photosynthetic 

capacity; however, it is difficult to detect owing to the complex nature of the reflectance spectrum. 

Future research should determine if chlorophyll fluorescence signal can be detected on AIAP 

species under bio-control and its relationship with reflectance spectra. Although various chlorophyll 

fluorescence indices have been developed using plants under heat and drought stress, their strength 

in quantifying chlorophyll fluorescence on AIAP species under bio-control needs to be determined. 

Importantly, the performance of spectral indices will have to be tested at the leaf and canopy level 

before upscaling to airborne and satellite sensors.   

 

The utilization of multispectral data to detect and discriminate between healthy plants and low 

levels of bio-control damage is another research challenge. Detecting low levels of bio-control 

damage is critical in determining if bio-control agents are actively feeding. The low spectral and 
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spatial resolution of multispectral data, for example Landsat 7 (ETM+), is a limiting factor when 

discriminating between healthy plants and low levels of bio-control damage. However, 

multispectral imagery is available and accessible warranting its widespread use within bio-control 

initiatives in South Africa. Further research would need to be undertaken to investigate the potential 

of utilizing higher spatial resolution imagery and more robust classification algorithms to 

discriminate healthy and low bio-control damage in order to improve classification accuracies.     

 

Hyperspectral data can be used to discriminate different severities of bio-control damage. 

However, the high data dimensionality and strong autocorrelation between adjacent bands 

introduces significant limitations when trying to extract meaningful information on bio-control 

damage. Future research should focus on identifying key bands that discriminate different severities 

of bio-control damage which is essential in selecting bands for inclusion on airborne/satellite 

sensors and developing spectral indices. The performance of numerous band selection algorithms 

would need to be compared to identify the most efficient and effective algorithm for 

implementation. Furthermore, developed spectral indices would need to be tested to determine its 

performance in classifying different severities of bio-control damage at the laboratory, field and 

airborne level.  

Despite the challenges mentioned above, this paper has presented the potential of remote sensing 

to detect, map and monitor bio-control damage on AIAP species. It is evident that further research 

needs to be conducted to detect bio-control damage using both multispectral and hyperspectral 

remote sensing to bridge current technical and information gaps. Once remote sensing techniques 

have been fully developed and tested they can be operationally adopted to detect, map and monitor 

bio-control damage on AIAP species successfully.  
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