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Abstract 

The application of gravity to Geohydrology is reviewed. A short background and history related 

to the application of geophysics to Geohydrology is outlined. Multiple works related to ground 

based gravimetry applied to the hydrological sciences in general are examined. These include the 

possible errors which might occur when applying gravimetry to hydrological studies. Furthermore, 

the satellite based applications of gravity for hydrology are also briefly outlined in order to 

compare to the aforementioned ground based gravity. Then a review of the most recent works 

related to hydrological modelling and correlation with residual gravity signals is shown in order to 

highlight the usefulness of this geophysical tool. International as well as African case studies are 

mentioned in order to highlight applicability. Thereafter a South African context of studies related 

to gravity is shown with a focus on the South African Geodynamic Observatory at Sutherland. 

Lastly the future outlook of gravity studies is examined in order to advance work in this arena and 

guide studies to come. 

1. Introduction 

Water quantity and supply are of major concern in many parts of the world. With an ever 

increasing population and a constant water supply, it will be difficult to provide clean potable water 

for everybody (Miller, 2002). It is therefore of the utmost importance that current resources are 

managed properly and new groundwater resources are explored. 

 

Cook (2003) has listed applicable tools for maximising groundwater exploration and aquifer 

characterisation in fractured rock aquifers. Understanding these secondary fractured saturated units 

is becoming increasingly important as they underlie a large part of South Africa (Woodford and 

Chevallier, 2002). Sami and Murray (1998) have shown that these aquifers, with the right 

management, can aid in the water supply of rural areas. Xu and Beekman (2003) highlight the 

problems relating to managing groundwater in Southern Africa by examining methods for recharge 

estimation, as well as many local case studies.  

 

Kirsch (2006) has highlighted the many geophysical tools applicable to groundwater studies. It 

has been shown that resistivity, magnetic surveys and gravimetry all aid in aquifer characterisation 
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and groundwater exploration. Milsom (2003) shows that resistivity as a method can be applied 

successfully to groundwater exploration with resistivity of water being directly proportional to its 

quality, due to the lack of conducting ions. This means that the quality of the groundwater could 

also be inferred from resistivity studies. Magnetic surveys on the other hand are used in fractured 

rock environments, such as the Karoo, to target dykes, which may act as flow barriers for 

groundwater (Woodford and Chevallier, 2002).  

 

These previously mentioned tools, were initially extensively used in mineral exploration as 

shown by Kearey and Brooks (1991). With the recent advancements in technology and a greater 

understanding of the subsurface we find that the same tools are now being used in groundwater 

exploration (Kirsch, 2006). With regards to gravimetry and its applicability to groundwater, Kearey 

and Brooks (1991) mention the fact that local aquifer geometry could be inferred from mobile 

gravimetry measurements. Duque et al. (2008) further state that gravity should be used in 

conjunction with other tools, such as time domain electromagnetic soundings and stratigraphy, in 

order to improve its efficacy as a tool to delineate aquifer boundaries.  

 

The combination of the aforementioned methods has also lead to the need for more robust tools 

for understanding subsurface fluid flow. It has recently been shown that the use of gravity data 

could shed a substantial amount of light on geohydrology at the basin as well as field scale, as 

shown by Chen et al. (2016) and Christiansen et al. (2011), respectively.  

 

2. Ground based gravimetry applied to hydrology: 

The presence and occurrence of moisture in the vicinity of gravimeters has long been suspected 

to create background noise during gravity measurements (Heiskanen and Vening Meinesz, 1958). 

This led to early applications of ground based gravimetry for groundwater exploration purposes. 

Wallace and Spangler (1970), for example, applied a gravimetric and seismic survey in order to 

characterise the extent of a hydrogeological basin in an arid area of southwest U.S.A. Bulk densities 

of subsurface material as well as porosity values were utilised in conjunction with the geophysical 

parameters to determine the storage capacity of the basin. This study proved that the coupling of 

non-intrusive geophysical methods is excellent for inferring specific hydrogeological parameters on 

a groundwater basin scale (Wallace and Spangler, 1970). 

Llubes et al. (2004) compared three studies in the region of major SG (Superconducting 

Gravimetre) stations across the European continent. An important differentiation was made with 

regards to classification of groundwater flow systems relative to their proximity to the SG stations, 

namely regional and continental flow (Llubes et al., 2004).  Furthermore, the importance of 

environmental data as well as an understanding of the geology and groundwater is critical for 

interpretation of SG data, as re-emphasized by Jacob et al. (2008). In this respect assumptions that 

neglect vertical flow on a local scale in soil must be re-examined, as this has shown to be critical in 

soil moisture movement (Fetter, 1999).  
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Harnisch and Harnisch (2006) examined seven SG stations throughout the world and the gravity 

and hydrological data stemming from these facilities. They concluded that great spatial and 

temporal variation occurs at every single site. This was attributed to the variable climatic conditions 

and thus in turn hydrological regime. Furthermore, the underlying geology also plays a critical role 

in determining soil type and characteristics (Fey, 2010). In line with understanding subsurface fluid 

flow, Kroner and Jahr (2005) showed that hydrologic variations in the subsurface can greatly aid in 

geohydrological modelling. Experiments in the vicinity of the SG at Moxa, Germany, for example, 

showed that anthropogenically induced interflow caused a marked difference in the gravity field 

and in turn allowed quantification of subsurface moisture differences.  

Naujoks et al. (2007) also examined the hydrological variations in the vicinity of the 

superconducting gravimeter in Moxa, Germany, using mobile gravimetres. 17 monitoring 

campaigns were completed between November 2004 to April 2007, using 9 Lacoste and Romberg 

relative gravimeters. The small-scale study area, in the immediate vicinity of the SG, meant that the 

precision of the measurements was less than 1microgal. The most important conclusion drawn is the 

fact that a greater understanding of the geohydrology is needed in order to fully appreciate the 

application of gravimetric data to hydrological studies. Naujoks et al. (2007) have shown that the 

standard deviations, in the vicinity of the Moxa SG station, could be as much as 14nm/s2 for a 

specific point. The spatial variation on the other hand was much greater and standard deviations 

measured up to 171nm/s2. 

A dolomitic aquifer, in the south of France, formed the focus of a gravity study by Jacob et al. 

(2008). A simple conservation of mass energy could be applied to this scenario to ascertain inputs 

by precipitation and outputs as spring flow ( Xu and Beekman, 2003). Three absolute gravimeters 

with rainfall stations at each location were utilised for data generation (Jacob et al., 2008). Gravity 

variation is considered to be a major factor for soil moisture at the local scale, and it was concluded, 

verifying observations by Cook (2003), that multiple parameter modelling is important for 

removing uncertainty with regards to variables affecting groundwater flow. The frequency of 

gravity measurements, as also shown by Naujoks et al. (2007), aids in capturing the seasonal 

hydrological signal and thus the variation in subsurface moisture storage. This in turn aids with 

correlation of the gravity signal to the hydrological modelling. Jacob et al. (2008) have shown that 

gravity is an excellent tool for determining mass movement of fluids in the subsurface. 

Wziontek et al. (2009) examined the relationship between the distance from the SG and the 

cumulative gravity effect. They concluded that site specific studies are critical for understanding 

local hydrological effects and their relationship to gravity residuals. Boy and Hinderer (2006) 

validated this work, and emphasise further that greater understanding of every single aspect of the 

water balance and its relationship to the SG was needed in order to correctly quantify and remove 

the hydrological signal of the SG. A study of soil profiles, surface water, ground water, as well as 

mobile gravimetry highlighted the spatial and temporal variation within the vicinity of the SG at 
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Moxa and emphasises the complex task of hydrological modelling in order to understand the 

gravimetric signal (Krause et al., 2009).  

Whilst it can clearly be seen that the applications for gravity in the field of hydrology have great 

potential, problematic issues arise around scale, calibration and correlation with numerical 

modelling. Furthermore, a good understanding of the geology and soils of the area is also critical, as 

previously mentioned. All of these issues are highlighted in the above listed studies. It can also be 

seen how the knowledge related to the relationship between hydrology and gravity has evolved over 

the past few years. Initially it was thought that only variations in groundwater levels could be 

detected (e.g Howle et al., 2003), but soil moisture as well as the spatial and temporal variations in 

gravity are now also being observed. This is due to the increased understanding of gravity 

applications in hydrology (Christiansen et al., 2011) and the increase in precision of instruments 

like the SG (Kennedy et al., 2014). 

With all this said, one also has to take cognisance of the possible errors that can arise and how 

they might be mitigated. Christiansen et al. (2011) have compiled many of the possible errors, the 

estimated amplitude for error, as well as mitigation measures which could be taken in order to 

reduce error. All of these were extracted from literature, including personal experience. These 

possible errors should be noted when attempting to complete any gravity survey as well as in the 

interpretation of the data in order to not adversely affect the results. Some of these errors include, 

but are not limited to : 

 Unexplained background drift 

 Calibration errors 

 Ocean loading effects 

 Spring hysteresis 

The work of Duque et al. (2008) has shown that the application of gravity, in conjunction with 

time domain electromagnetic soundings, was useful in determining the freshwater interface in a 

aquifer in the south of Spain. This study also highlights the fact that multiple tools are required in 

order to properly calibrate the results stemming from gravity. Duque et al. (2008) also applied 

geological mapping, well logging as well as groundwater geochemistry in order to properly 

delineate the aquifer and the freshwater interface.  

 

3. Satellite based gravity applications related to geohydrology 

 

In the past the tedious task of hydrologic and hydrogeological monitoring was done only via 

insitu point sources, and from which the data was then extrapolated over larger areas, by means for 

example of kriging (Schultz and Engman, 2000). The use of satellite applications has greatly 

stimulated the evolution of more rapid monitoring in recent times. Furthermore, Meijerink (2007) 

produced an all encompassing practical manual on remote sensing applications for hydrogeology. 
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Neumeyer et al. (2006(a)) compared Gravity Recovery and Climate Experiment (GRACE) and 

SG data from the major SG stations, which form part of the GGP. (Global Geodynamics 

Programme) The WaterGAP Global Hydrological Model (WGHM) and the Land Dynamics Model 

(LaD) (Table 1), were then correlated to the GRACE and SG data at each station. The Leaky 

Bucket model, also known as the H96 model, was also utilized in the previous study.  Despite a few 

outliers at specific stations, there seems to be a general agreement between the GRACE, SG and 

hydrological model time series for the various SG stations. Correlation values as high as 0.75 and 

0.72 were calculated between the SG and H96 as well as the GRACE and H96, respectively. Major 

differences in the models lie in the method used to calculate snow cover and the depth to 

groundwater (Neumeyer et al., 2006(a)). Boy and Hinderer (2006) drew similar conclusions when 

comparing the GLDAS (Global Land Data Assmilation System) and LaD (Land Dynamics) global 

hydrological models to the hydrological gravity residual of 20 SG stations all over the world. 

Suggestions were made that groundwater measurements, soil moisture as well as precipitation 

measurement instrumentation should installed at all the stations in order better understand the local 

hydrological effect on the SG readings (Neumeyer et al, 2006(a)). This has shown to increase the 

understanding of the hydrological regime and thus in turn better model it and correlate to the gravity 

residual. 

Table 1 : Comparison of global hydrological models used in major Satellite gravimetry studies  

Model  

Name 

Meaning of  

Abbreviation 

Developer Spatial Resolution 

(cell grid size) 

Temporal 

Resolution 

Global Distribution 

maps 

WGHM WaterGAP 

Global 

Hydrological 

Model 

Döll et al., 

(2003) 

0.5ºx0.5º 24 hours (one day) Soil (FAO, 1995) 

Drainage (Döll and 

Lerner, 2002) 

 

 

LaD Land 

Dynamics 

Model 

Milly and  

Shmakin 

(2002) 

1ºx1º Minutes to an hour Soil (Zobler, 1986) 

Vegetation (Matthews, 

1983) 

GLDAS Global Land 

Data 

Assimilation 

System 

Rodell et al. 

(2004) 

0.25º; 0.5º ;1.0º; 

2.0ºx2.5º 

Adjustable  

time step and output 

Soil (Reynolds et al. 

1999) ; 

Vegetation (Hansen et al. 

2000) 

 

Werth and Güntner (2010) utilised GRACE data in order to calibrate a global hydrological 

model for 28 of the world’s major river basins (Figure 1). The major aim of the study was to 

calibrate the WGHM model with GRACE data and the groundwater, surface water, soil moisture 

and precipitation were the major model inputs. The study showed that hydrogeologic data was 

sorely lacking in hydrology models. Furthermore, model calibration is critical, specifically under 

certain climatic conditions due to the role of hydrological parameters being highly variable in 

differing environmental circumstances (Werth and Güntner, 2010). The GRACE data added value 

to the calibration of most of the basins, but further work is needed in order to validate the individual 

water storage components. 
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Figure 1. The 28 of the World’s major River basins used by Werth and Güntner (2010) in their 

study used to calibrate the WGHM. The Tigris and Euphrates, as well as Ganges and 

Brahmaputra, have been grouped into single basins. (UNEP, 2008) 

Hinderer et al. (2009) argue that GRACE estimates for changes in terrestrial water storage are 

not comparable to ground based SG measurements. It has been argued therefore that the choice of 

hydrological model, model calibration and scale play a major role in determining the value of the 

results (Leavesley et al., 2002). More recently this has been re-examined by Krause et al. (2009), 

who concluded that the soil moisture model results correlated well with the gravity residual for the 

SG at Moxa, for a small catchment of approximately 2km2. 77% of the variability stemming from 

the SG residual could be explained by changes in soil moisture.  Niu et al. (2007) further illustrate 

that simple large scale hydrogeological modelling has had greater success with GRACE 

correlations. Neumeyer et al. (2006(a)) have shown up to 75% correlation between large scale 

models and GRACE. 

Fukuda et al. (2009) also compared GRACE and hydrological modelling. They raised the point 

that a groundwater component should be included in the hydrological modelling due to the increase 

in groundwater storage and therefore gravity variability. It was also emphasized again that GRACE 

is more applicable on a regional scale (Werth and Güntner, 2010). Total Water Storage (TWS) from 

Global hydrological models were compared to GRACE measurements and it can be clearly seen 

that the differences between the two methods is small. Thus, the resolution between the various 

hydrological modelling methods is steadily improving. This is especially true for larger 

hydrological basins with a definite seasonal pattern in terms of hydrology (Chen et al., 2016).  
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When comparing multiple studies using ground and satellite based gravity to hydrological 

models, it seems as if the SG stations in areas of relatively stable seasonal weather conditions have 

a stronger correlation to the GRACE signal than those in areas of erratic changes in climate. 

Examples of these are included in the studies of Harnisch and Harnisch (2006) as well as by 

Neumeyer et al. (2006(a)). This also depends on the hydrological model used, model inputs and 

calibration methods..  

In East Africa Becker et al. (2010) studied the water balance in the great lakes using GRACE, 

satellite altimetry and precipitation data. Lakes Victoria, Tanganyika, Malawi and Turkana were 

examined by Becker et al. (2010), whilst the last large lake was excluded from a similar study 

undertaken by Swenson and Wahr (2009). Another major difference is the fact that Swenson and 

Wahr (2009) utilised LEGOS as well as ICESat for altimetry, instead of Envisat, Jason 1 and 

Poseidon, which was used by Becker et al. (2010) for the same purpose. Furthermore, Becker et al. 

(2010) used the WaterGAP global hydrological model in order to better understand the variation in 

the levels of the lakes in the area. Swenson and Wahr (2009) on the other hand applied a water 

balance equation and included the calculation of evaporation from the lake surface. Both studies 

conclude that GRACE, in conjunction with other satellite tools, is useful for calibrating remotely 

sensed water storage. 

Güntner (2009) tabulated most of the major work related to GRACE and hydrology prior to 

2006. Therefore these works were omitted and the reader is referred to this comprehensive study. 

The most pertinent factors to consider when using GRACE to calibrate hydrological studies were 

compiled in the aforementioned work and include : 

 Consistency of water storage components 

 Error estimates for GRACE data 

 Consistency of the water balance multi-criterial evaluation 

 Signal separation 

 Multi model comparison 

 Longer time scales 

These suggestions were noted and the study of Jiangcun et al. (2009) compares multiple large 

scale hydrological models alongside GRACE data in the immediate vicinity of SG stations globally. 

The work of Neumeyer et al. (2006(a)) was completed in a similar fashion, except that the authors 

included multiple GRACE solutions from more than one processing centre. This comparison 

,between the results from various processing centres, was also undertaken by Mahed (2012) with 

comparable results between processing centres at the Sutherland station  (Figure 2). 
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Figure 2. The results of GRACE data for the Sutherland site, processed by the various research 

centres. The Jet Propulsion Laboratory (JPL), GeoforschungsZentrum (GFZ) and the Centre for 

Space Research (CSR) all have their own solutions for the data stemming from the satellite with 

minor variations occurring. (Mahed et al., 2010) 

4. A South African perspective 

The use of the SG at South African Geodynamic Observatory, Sutherland (SAGOS) is important 

for the quantification of changes in water storage, which directly impact local economies, 

particularly in the semi-arid Karoo. Work has recently been undertaken by using the SG to 

understand subsurface water flow and storage in the semi-arid Karoo (Mahed, 2012).  This is the 

location for SAGOS, typical of a large percentage of the South African landscape in terms of 

geology, climate and hydrology.  

The installation of 4 groundwater wells was undertaken (Mahed, 2016). This is besides the one 

shallow well, which probably monitors interflow, used by Harnsich and Harnsich (2006). 

Furthermore, soil moisture sensors were also installed in the immediate vicinity of the SG at 

varying depths. Another weather station was also installed in close proximity to the soil moisture 

sensors in order to understand the impacts of weather and climate on the Vadose zone (Mahed, 

2012).  

Harnisch and Harnisch (2006) were the first to examine the data from the SG at Sutherland 

(Figure 3). The correlation coefficient between the change in groundwater level at well SA BK 07 

and the gravity residual, which can be seen as the processed signal with a remaining TWS signal, 

was computed and shown to be -0.22. This indicates an inverse relationship between gravity and the 

water level in this particular well, with a minor relationship. It should however be noted that initial 

works in the field of gravity applied to hydrology seem to assume that correlation equals causation. 

This is problematic and needs further investigation. No corrections were made to the groundwater 
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data due to the limited amount of available data, when compared to the gravity residual data. 

Furthermore, the gravity residual, which can be seen as the processed signal with a remaining TWS 

signal, and the modelled gravity effect of precipitation only had a weak correlation coefficient of 

0.041.  

 

Figure 3. The location of the Sutherland site as well as the layout of the groundwater wells, 

indicated with SA BK prior to the well number. The site also has an A pan to measure evaporation 

and the SG located on a hill. 

5. Future outlook 

The SG station at Sutherland has one SG installed and another SG in storage, which was initially 

meant for an SG station in South America. It is proposed that the inactive SG be installed at the 

newly built geodetic station at Maatjiesfontein. The ground based SG will complement the space 

geodetic instruments proposed for installation at the site (Combrinck et al., 2007). In this manner 

the measurements of two SG's could be directly compared to one another. The effect of local 

hydrology at various locations could be compared at a higher resolution and in both cases in 

fractured rock environments. Another possibility is the use of a new mobile SG in conjunction with 

Lacoste and Romberg gravimeters at various locations across the entire catchment. This has been 

done by Naujoks et al. (2007) at Moxa and highlighted the variability in gravity residual spatially as 

well as temporally. 

Hinderer et al (2009) call for a better understanding of the hydrological regime on a small scale 

in order to better examine the impact which hydrology has on the SG. This is important in order to 

remove the residual hydrological signal from the SG. This is even more important at Sutherland due 
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to the erratic nature of the rainfall, as well as high evapotranspiration. This in turn adversely affects 

runoff, recharge and soil moisture which means the variability in water storage is also erratic. This 

variability is ultimately what impacts the SG residual signal and needs to be fully understood in 

order to have a SG signal free of any “noise”. 

It is important to calibrate GRACE with other satellite tools, such as Soil Moisture Ocean 

Salinity (SMOS) and MODIS, in order to aid in precision and calibration of large scale hydrological 

models (Werth and Güntner, 2010). This inclusion of multiple tools will definitely aid in precision 

and could thus be used in order to compare to local scale models and the SG in particular. 

Furthermore, more work is required in order to better understand and calibrate the groundwater 

aspects of TWS.  
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