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Abstract 

Conducting single frame orthorectification on satellite images to create an ortho-image requires 

four basic components, namely an image, a geometric sensor model, elevation data (for example a 

digital elevation model (DEM)) and ground control points (GCPs). For this study, 

orthorectification entailed the use of a single scene Pléiades primary panchromatic image, applying 

the Pléiades rigorous geometric model, utilising a high-quality 2 m DEM and using GCPs that 

were acquired from two different collection methods. The application of these different GCPs to the 

execution of orthorectification encompassed the aim of this paper, which was to investigate and 

compare the positional accuracies of ortho-images under two scenarios. Firstly, GCPs were 

manually collected through fieldwork utilising a Trimble GeoExplorer 6000 series handheld GPS 

device and secondly, by utilising TerraSAR-X based GCPs that were acquired from Airbus Defence 

and Space. The objective of this study was to determine the geolocation accuracy of a high-

resolution satellite ortho-image when different types of ground control are used. This required the 

execution of two orthorectification tests where only the type of GCPs differed. The results of these 

tests were interesting since it highlighted the difference in positional accuracy when utilising 

various sources of ground control to perform orthorectification on satellite imagery. The 

comparison results showed that utilising the manual GCPs produced a better positional accurate 

ortho-image as opposed to using the TerraSAR-X based GCPs. Nonetheless, the TerraSAR-X based 

GCPs still produced a sub 2 m accurate ortho-image, which is more than sufficient for the 

production of most geospatial products. 

Keywords: orthorectification, digital elevation model (DEM), ground control point (GCP), high-

resolution satellite imagery, TerraSAR-X based GCPs, WorldDEM™, Airbus Defence and Space. 

1. Introduction 

The geometric correction of satellite imagery has been a pivotal topic since the launch of the first 

Earth observation satellite system in the 1960’s. Various methods exist to perform geometric 
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correction, such as georectification and georeferencing methods which focus on the horizontal 

position of image pixels. In contrast, orthorectification consider the pixel positional shift caused by 

the Earth’s curvature and provides real ground coordinates (x, y and z values) for all pixels. The 

conditions and data sources to use when performing orthorectification on high-resolution satellite 

imagery to achieve a certain level of geometric accuracy are in literature well known, but in practice 

it is more difficult to meet all conditional requirements. An ortho-image is only as accurate as the 

input and reference sources used, such as the use of digital elevation models (DEMs) and ground 

control points (GCPs). The collection of suitable GCPs presents a significant problem, as existing 

sources of GCPs may not be publicly available. However, DEMs are either easily available as 

precise and fine scale products that can be obtained from commercial suppliers (e.g. Airbus 

Defence and Space), for example the WorldDEM™ product (12 m resolution) or available as public 

products such as (Rexes and Hirt, 2014): 

a) Shuttle Radar Topography Mission (SRTM): available as 1 arc-second resolution (30 m) and 

3 arc-second resolution (90 m); 

b) Digital Terrain Elevation Data (DTED): resolution is available in levels 0 (900 m), 

1 (90 m) and 2 (30 m); and 

c) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Map (GDEM): available in 30 m resolution. 

The theoretical basis to perform orthorectification on satellite imagery is well documented in the 

literature (Petrat and Eloff, 2014, Maxwell et al., 2014, Stampoulidis, 2014). It is inevitable that 

remotely sensed imagery will inherit geometric distortions during data capturing, due to many 

influential factors that affect the positional accuracy of satellite imagery. Factors such as acquisition 

geometry, topographic properties of the image area, optical fidelity of the sensor and positional 

steadiness all play a vital role in the extent of geometric errors imbedded in remotely sensed 

imagery (Toutin, 2004, Jacobsen, 2002). Richards and Xiuping (2006) states that geometric 

correction, known as image rectification, rectifies positional distortions or errors in satellite imagery 

that are caused by sensor-Earth geometry variations. The application of image rectification entails 

the method of converting image coordinates to real-world coordinates on the Earth’s surface (Yang 

and Williams, 1997). Orthorectification is the process that eliminates the geometric distortions 

introduced during image acquisition caused by topographic relief, lens distortions and camera tilt. It 

produces a planimetric image that has a consistent image scale and which can be accurately 

registered to real-world map projections (Gao, 2008). 

Traditionally, orthorectification was a semi-automated process that required user inputs 

regarding the sensor platform, GCPs and terrain elevation to process the image data accurately 

using image processing software. However, with the recent development of newly designed sensor 

systems this traditional approach has changed dramatically. Automated orthorectification of 

imagery is now possible based on the comprehensive metadata embedded in remotely sensed data 

and by utilising new and improved sensor models and algorithms to process the image data (Hoja et 

al., 2008, Jacobsen et al., 2005, Toutin, 2006). The modernisation of satellite systems brought about 
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a new and improved dimension to the pointing accuracies of current and future generations of 

satellite systems (Petrat and Eloff, 2014, Dial and Grodecki, 2005). Currently, orthorectifications 

are more and more performed by using rational polynomial coefficients (RPCs), elevation data and 

optional GCPs to achieve highly accurate ortho-images, due to the fact that not all 3rd party image 

processing software have extended sensor model libraries to include all rigorous sensor models. The 

RPC method is a coordinate transformation that converts pixel coordinates of the satellite image to 

latitude and longitude coordinates relating to an elevation data source covering the same scene on 

the Earth (Okeke, 2010). 

This method of using RPCs (non-parametric approach) employs simpler empirical mathematical 

models, compared to using rigorous sensor models (parametric approach) which entails complicated 

mathematical modelling (Dial and Grodecki, 2005). The non-parametric approach is usually 

followed due to the lack of suitable auxiliary data such as the non-availability of sensor specific 

parameters. However, when highly accurate ortho-images are required and auxiliary data are readily 

available, then the use of rigorous sensor models will be the most suitable option. Most ortho-image 

applications require very high registration accuracy. For instance, a registration error of less than 

1/5 of a pixel will produce a change detection error of less than 10% and for measurement 

accuracies of less than 1 m (e.g. measurements of ice flow and cosmic ground deformation) even 

better registration accuracy is required (Leprince et al., 2007). In practice, the acquisition of raw 

image data with detailed sensor information and sufficient elevation data to achieve high 

registration accuracy is not problematic. However, the collection of ground control points poses a 

significant problem when performing single frame orthorectification. The objectives of this paper 

are to compare the positional accuracies of ortho-images created by utilising two different GCP 

collection/acquisition scenarios: 

a) Firstly, using GCPs that were manually collected through fieldwork utilising a Trimble 

GeoExplorer 6000 series handheld GPS receiver device (model: GeoXH 3.5G) and 

b) Secondly, using TerraSAR-X-based GCPs that were acquired from Airbus Defence and 

Space. 

The study area identified for conducting the orthorectification tests was the City of Tshwane, 

which is located within the South African borders (Figure 1). The City of Tshwane area was 

deliberately selected to be the study area to perform the orthorectification tests, because this area is 

characterised by a diverse topographical layout with up to 375 m between the lowest and highest 

locations. This layout of the land ranges from mountainous areas to relative flat plateaus, 

characterised by typical urban activities and land uses. It also made logistical and economic sense to 

conduct the study close to where the researcher resides due to the required field data collection and 

verification activities. 
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Figure 1. Geographical study area in the City of Tshwane Metropolitan Area 

2. Datasets Applied 

2.1 Satellite based image data 

This study was conducted by utilising a Pléiades primary panchromatic image which was 

acquired from Airbus Defence and Space. This image has a spatial resolution of 50 cm and covers 

an area of approximately 400 km2. The Pléiades primary product can be described as the processing 

level closest to the natural image acquired by the sensor. This product restores perfect collection 

conditions, in other words, the sensor is placed in rectilinear geometry and the image is clear of all 

radiometric distortions (Airbus Defence and Space, October 2012). The primary product is based on 

the Digital Image Map (DIMAP) Version 2 structure and consists various auxiliary files (Panem et 

al., 2012). The DIMAP format is a public format for describing geographical data. 

2.2 Ground control points 

2.2.1 GPS device based GCP collection 

A manual collection of 25 GCPs were captured using a Trimble GeoExplorer 6000 series 

handheld (GeoXH 3.5G) device. The Trimble GeoExplorer 6000 series handheld GPS device uses 

both EVEREST and H-Star technology to obtain 10 cm accuracy during real-time operation or after 

post-processing (Trimble, February 2011). 

South African TrigNet data were utilised to achieve extremely accurate GCPs after post-

processing. TrigNet consists of Global Navigation Satellite Systems (GNSS) base stations that are 

permanently and continuously in operation to record 1-second epoch data on both L1 and L2 GPS 
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frequencies. These data are streamed in real-time to the TrigNet control centre situated in the 

offices of the Chief Directorate: National Geospatial Information located in the Western Cape. 

In South Africa, there are currently three TrigNet Network Real Time Kinematic (RTK) 

solutions generated within a Virtual Reference Station (VRS) network available within the Western 

Cape, Gauteng and Kwa-Zulu Natal provinces (Figure 2). The following real-time data are provided 

(National Geospatial Information, 2014a): 

a) Differential GPS (DGPS) at ~35 cm, 

b) RTK at ~5 cm and 

c) Network RTK at ~3 cm. 

 

Figure 2. South African TrigNet Stations (Copyright 2014, Trimble Navigation Limited) 

Adapted from National Geospatial Information (2014b) 

The distribution of the manually collected GCPs were pre-determined by identifying the precise 

locations on the Earth’s surface where the GCPs need to be collected. This was done by evaluating 

the satellite based image data of the geographical area of interest in order to achieve a uniform 

distribution of GCPs covering the entire sample area (Figure 3). The centre and four corners of the 

image were used as the starting point for determining the position of the GCPs. Post-processing of 

the GCPs consisted of differential correction by utilising the TrigNet Pretoria GNSS data as the 

base and reference provider. One-second epoch data were downloaded in Receiver Independent 

Exchange (RINEX) format from the TrigNet Web Application for the specific period during the 

capturing of the GCPs. The post-processing was performed by importing the data into the Trimble 

Pathfinder Office 5.6 software. 
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Figure 3. GPS device based GCPs distribution 

(Copyright © CNES 2013, Distribution Airbus Defence and Space / SPOT Image, all rights 

reserved) 

The accuracy results of the GCPs achieved from performing the post-processing shows that 

85.63% of all GCPs have a 3-D (vertical and horizontal) positional accuracy between 5 – 50 cm and 

14.37% of the GCPs have a 3-D positional accuracy between 0.5 – 1.0 m (Figure 4). It can therefore 

be stated that all GCPs have a positional accuracy of less than 1.0 m and since 85% of all GCPs 

have an accuracy of less than 50 cm, the error measurements considered during this study are 50 cm 

with a Circular Error probability of 85% (CE85). 

 

Figure 4. Differential correction summary 

2.2.2 TerraSAR-X collected GCPs 

The TerraSAR-X satellite provides accurate and outstanding quality GCPs from space. The 

accuracy of these GCPs is achieved based on the TerraSAR-X orbit accuracy, the precise radar X-
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band beam, its high-resolution and location accuracy of the imagery, which is up to 0.25 m in range 

and azimuth for both Staring Spotlight and Stripmap products. In a study conducted by Hummel 

(2011), using HR Spotlight scenes acquired from a four-flight TerraSAR-X data acquisition flight-

plan, it is stated that TerraSAR-X GCPs are delivered with an unrivalled accuracy where GCPs 

have a horizontal accuracy of 1.0 m and a vertical accuracy of 0.5 m. 

These accuracies were achieved by measuring the data against GPS measurements and the 

precise coordinates of corner-reflectors in a very diverse topographical area. TerraSAR-X-based 

GCPs are delivered as two standard accuracy products (Airbus Defence and Space, 2016), namely: 

a) TerraSAR-X GCP-1: multiple Spotlight scenes are used to extract 5 GCPs with an accuracy 

of approximately 1 m, covering an area of roughly 20 km². 

b) TerraSAR-X GCP-3: multiple Stripmap acquisitions are used to deliver 10 GCPs with an 

accuracy of approximately 3 m, covering an area of roughly 1 000 km². 

This study used the TerraSAR-X GCP-3 product. Airbus Defence and Space was requested to 

provide a random distribution of the 10 points that covers the entire 400 km2 sample area (Figure 5) 

to create a near ideal distribution for creating an ortho-image. 

 

Figure 5. TerraSAR-X GCP-3 distribution 

(Copyright © CNES 2013, Distribution Airbus Defence and Space / SPOT Image, all rights 

reserved) 

It is stated in the TerraSAR-X GCP-3 Coordinate Specification and Accuracy Assessment file 

that was received from Airbus Defence and Space on 18 August 2014 for this study that the 

accuracy of each of the 10 GCPs acquired are 1 m for x, y and z locations (Table 1). This is very 

good accuracy to achieve from multiple Stripmap acquisitions, which is equivalent to the stated 

TerraSAR-X GCP-1 product accuracy. 
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Table 1. TerraSAR-X GCP-3 coordinate specification and accuracy assessments 

Point 

ID 

UTM 

(m) Ellipsoid 

Height 

(m) 

UTM 

Zone 

Latitude 

(DD) 

Longitude 

(DD) 

Accuracy 

(m) 

Easting Northing Horizontal Vertical 

1 629581.679 7139801.673 1527.505 35S -25.85440758 28.29315271 1 1 

2 610787.24 7158649.929 1458.289 35S -25.68578606 28.10404905 1 1 

3 629691.94 7158772.17 1284.251 35S -25.68313520 28.29239641 1 1 

4 620748.943 7149146.143 1402.556 35S -25.77080309 28.20416964 1 1 

5 620354.913 7158978.25 1275.77 35S -25.68206919 28.19934997 1 1 

6 614590.54 7154449.11 1329.238 35S -25.72342109 28.14230690 1 1 

7 626106.521 7144871.115 1531.991 35S -25.80894594 28.25799534 1 1 

8 625004.879 7154260.968 1330.711 35S -25.72426897 28.24612224 1 1 

9 616815.37 7140615.775 1464.359 35S -25.84813641 28.16570215 1 1 

10 610634.665 7142848.078 1402.269 35S -25.82846428 28.10384714 1 1 

2.2.3 Digital Elevation Model 

The DEM used in this study was derived from LiDAR data collected over the entire City of 

Tshwane during August 2013 (Figure 6). 

 

Figure 6. DTM with 2 m spatial resolution created from LiDAR point data 

Captured at ± 8 observations per square meter using a Leica ALS50 sensor and thirty percent 

overlap, the point cloud returns were subsequently classified into ground and non-ground layers. 

These classified x, y, and z measurements (ground and non-ground) formed the primary input when 

generating both a seamless 32-bit DTM and DSM base product at two meter Ground Sample Data. 

This was achieved mainly by executing the well-known ANUDEM algorithm (Hutchinson, 2011) 

and other DEM quality enhancements, such as terrain filtering, interpolation and removing noise 

(e.g. spikes and sinks). It is stated in the ANUDEM Version 5.3 User Guide (Hutchinson, 2011) that 

the ANUDEM a program is which was developed by Professor M. F. Hutchinson (Professor of 
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Spatial and Temporal Analysis, Fenner School of Environment and Society, Australian National 

University, Canberra). It “calculates values on a regular grid of a discretised smooth surface fitted 

to large numbers of irregularly spaced elevation data point, contour lines, streamlines, sink points, 

lake boundaries and cliff lines. The program imposes a global drainage condition that 

automatically removes spurious sinks where possible.” 

3. Methodology 

3.1 Software 

It is important to realise that no processing or analysis of satellite imagery can be performed 

without the use of appropriate image processing software. This software enables the import, store, 

retrieve, manipulation, processing and analyses of the satellite imagery. There are various 

commercial (e.g. PCI Geomatica, ERDAS IMAGINE and ENVI) and open source (e.g. Orfeo 

Toolbox) Geographic Information Systems (GIS) and image processing systems available for 

working with image data and performing orthorectification. To perform orthorectification using 

these types of software requires the application of specific photogrammetry tools and functions that 

consist of all important geometric sensor models to manipulate or alter input parameters and input 

sources as required (Chmiel et al., 2004). For this study, the ERDAS IMAGINE 2015 image 

processing system was selected to perform the orthorectification tests, due to the fact of the 

extensive knowledge and skills acquired over numerous years in operating this system. This system 

includes all necessary transform and ortho-correct tools and functionalities as well as a 

Photogrammetry module to work with high-quality 3D data. 

3.2 Orthorectification tests 

The two scenarios described in Section 1 were executed by performing two orthorectification 

tests. Both tests were conducted by utilising a very high-quality elevation data source that was 

derived from a Light Detection and Ranging (LiDAR) point dataset to create the 2 m digital terrain 

model (DTM), described in Section 2.2.3. 

Test 1 was executed by utilising 25 GCPs that were evenly distributed across the entire image 

scene and the elevation source, previously mentioned. The GCPs consisted of ground control that 

were collected with the use of a GPS device, as explained in Paragraph 2.2.1 and the location of the 

GCPs was predetermined to ensure an even and uniform distribution across the image. 

Test 2 was executed using the already mentioned 10 TerraSAR-X based GCPs. These GCPs are 

also evenly distributed across the entire image scene and the same 2 m elevation source is used as in 

Test 1. 

Both these tests utilised the Pléiades rigorous geometric model to perform orthorectification. 

This model is sensor specific and requires the input of internal and external orientation parameters 

which are distributed by image vendors in the form of image acquisition metadata that are usually 
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included in raw image delivery packages or as an occupying file with certain processing level 

products. These types of sensor models can be described as 2D/3D physical and deterministic 

models that consists of complicated mathematical modelling algorithms for considering physical 

geometry components (Toutin, 2004). These mathematical equations are based on collinearity 

equations, which include parameters for camera timing, alignment, focal plane and satellites altitude 

and ephemeris (Aguilar et al., 2008). Collinearity equations (Liang et al., 2012) refer to a set of two 

equations to transmit sensor coordinates (2D) to object coordinates (3D). 

The results of both these tests were analysed in terms of the RMSE achieved as well as based on 

measurements received from utilising the ERDAS IMAGINE 2015 Metric Accuracy Assessment 

(MAA) tool. 

a)  RMSE: to calculate RMSE, known GCP coordinates are compared to retransformed 

coordinates of the same points of the introduced reference GCPs by calculating a 

transformation matrix (a set of numbers computed from the GCPs that can be plugged into 

polynomial equations) from the GCPs (Hexagon Geospatial, 2015). The reference GCPs are 

converted to the input coordinate system and the distance between these retransformed 

coordinates and the original input coordinates is the RMSE (Hexagon Geospatial, 2015). 

The ERDAS IMAGINE 2015 software reports the RMSE for each respective GCP and 

indicates the total RMSE when utilising the GCP tool. 

b)  MAA tool: this tool allows the user to utilise control points (CPs) to measure and report the 

accuracy of an image. Each control point entered is measured by calculating the error 

between the image coordinates and coordinates of the matching CP. This report contains the 

errors and statistics of each measured individual point, illustrated below by Figures 7 and 8. 

4. Results and Discussion 

4.1 Test 1 – Orthorectification utilising 25 manually collected GCPs 

The RMSE achieved from performing Test 1 was measured at 0.632 m and the MAA report 

created for this test, indicates an accuracy of 0.718 m (Figure 7). 

 

Figure 7. MAA report for ortho-image created from utilising 25 manually collected GCPs 
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4.2 Test 2 – Orthorectification utilising TerraSAR-X GCP-3 product 

The RMSE achieved from conducting Test 2 was 1.61 m. The MAA tool indicates that an 

accuracy of 1.821 m was achieved (Figure 8). 

 

Figure 8. MAA report for ortho-image created from utilising 10 TerraSAR-X-based GCPs 

In the first test, 25 manually collected GCPs were provided to the model and for the second test, 

10 automatically acquired GCPs, extracted from the TerraSAR-X satellite. Both tests had an even 

distribution of GCPs that covered the entire sample area. It is evident by comparing Figure 7 with 

Figure 8 that utilising 25 GCPs (GPS device based GCP collection) yielded a more accurate ortho-

image than utilising only 10 GCPs (TerraSAR-X collected GCPs), even though the same elevation 

source was used. The geolocation accuracies (metres) are summarised in Table 2. The 

measurements indicate the following accuracy results (Figure 9): 

a) RMSE: the RMSE of the ortho-images are 0.632 m for Test 1 and 1.609 m for Test 2. 

b) MAA tool: the MAA measured deviations are 0.718 m for Test 1 and 1.821 m for Test 2. 

 

Figure 9. Measured geolocation accuracy results 
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The fact that the majority of the 25 manually collected GCPs had a positional error of less than 

50 cm CE85 (see Section 2.2.1 and Figure 4) compared to the 1 m of the TerraSAR-X-based GCPs 

(see Section 2.2.2) made a significant difference in the location accuracies of the ortho-images.  

Table 2. Comparison of geolocation accuracies for GCPs and CP 

Ortho 

Tests 

GCP Measurements CP Measurement 

Residual 

(m) RMSE 

(m) 

Min 

(m) 

Max 

(m) 

Mean 

(m) 

Standard 

Deviation 

(m) 
MAA 

(m) 

x y x y x y x y x y 

Test 1 0.804 0.975 0.632 -2.053 -1.819 2.470 2.920 0.021 -0.039 0.295 0.357 0.718 

Test 2 2.197 1.609 1.609 -5.253 -3.490 3.617 4.053 0.214 -0.143 0.997 0.645 1.821 

When comparing the results of these tests, it is evident that both ortho-images were produced 

with a very high relative accuracy. However, there is a significant difference in the absolute 

accuracy between these images. Utilising more GCPs with higher accuracy and distribution, does 

create a more accurate ortho-image. A practical point that can be highlighted is that when it is 

suitable to collect well distributed GCPs manually over the project area then a very accurate result 

can be expected, yet it is also important to note that if it is not possible/practically to achieve the 

latter, satellite based GCP collection do provide a very good alternative. 

5. Conclusion 

This article studied the influence of two types of GCP collection methods on the accuracy of 

orthorectification based on the parametric approach. One collection was based on a manual field 

based GCP collection and the other satellite based collection. Both tests made use of the same 

elevation source, which allowed for determining the effect of the geolocation accuracy of the ortho-

image based only on the GCP collection method, distribution and number. 

The first test made use of 25 GCPs that were collected during fieldwork with the use of a GPS 

device. The locations of these GCPs were pre-determined through evaluating the sample area to 

acquire a uniform distribution of the entire area. The accuracy of these GCPs was determined to be 

50 cm (CE85). The ortho-image produced from using these GCPs had a RMSE of 0.632 m and a 

geolocation accuracy of 0.718 m. 

The second test was performed with the use of 10 GCPs, evenly distributed to cover the sample 

area, that were acquired from Airbus Defence and Space. The TerraSAR-X based GCPs used 

during this test are claimed to have a horizontal and vertical accuracy of 1 m (Airbus Defence and 

Space, 2016). This test created an ortho-image with a RMSE of 1.609 m and a geolocation accuracy 

of 1.821 m. 
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It is evident from the results that the GPS device based GCP collection method produced a better 

geolocation accuracy ortho-image as compared to the TerraSAR-X automatic GCP collection 

method. However, it should be noted that manually collecting new GCPs for a specific area might 

be an expensive exercise. In some cases, areas are inaccessible, which make it impossible to collect 

new GCPs due to environmental conditions, security and mobility restrictions. In such cases, the 

acquisition of TerraSAR-X based GCPs will be a feasible alternative. TerraSAR-X produces 

unrivalled accuracies of 1 m and 3 m for the two automatic extracted GCP products available, as 

was indicated by this study. Therefore, in the event of producing a highly accurate ortho-image, the 

GPS device based GCP collection method should prevail, but the TerraSAR-X-based GCPs can 

certainly be used as an alternative to manually collecting GCPs using a GPS device. 
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