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Abstract  

Up to date forest inventory data has become increasingly essential for sustainable planning and 

management of a commercial forest plantation.  Forest inventory data may be collected in the form 

of traditional field based approaches or using remote sensing techniques. The aim of this study was 

to examine the utility of the partial least squares regression (PLSR), random forest (RF) and a 

PLSR-RF hybrid machine learning approach for the prediction of four forest structural attributes: 

(basal area, volume, dominant tree height and mean tree height) within a commercial Eucalyptus 

forest plantation using a combination of spectral and textural information of high spatial resolution 

(0.15m) remote sensing data. The best model for this study was produced for mature E. dunnii 

species for dominant tree height using the PLSR-RF hybrid model (R2 = 0.82 and RMSE = 2.07m). 

The results of this study highlight the robustness and potential of the PLSR-RF hybrid model for the 

prediction of forest structural attributes using high resolution imagery within a commercial 

Eucalyptus forest plantation.  

 

1. Introduction  

For sustainable plantation forest management and planning it is crucial and necessary to acquire 

up to date measurements of forest structural attributes (Dye et al. 2012). In general remotely sensed 

data has demonstrated the potential to map forest structural attributes (Gebreslasie et al., 2011; 

Nichol and Sarkar, 2011; Dye et al., 2012; Ismail et al., 2015). Satellite based remote sensing data 

have been used to predict multi-source forest structural attributes (Gebreslasie et al., 2010). Their 

advantages include large geographic coverage and a broad spectral range (Lillesand et al 2008). 

Airborne remote sensing data on the other hand offers high spatial resolution and a narrow spectral 

range. The nature of the data thus allows for the extraction of texture features in order to predict 

forest structural attributes (Tuominen and Haakana 2005). This data can also be manipulated by 

machine learning algorithms for prediction and classification applications as shown in various case 

studies (Ismail et al., 2015). Machine learning algorithms such as the Random Forest (RF) 

algorithm uses recursive binary partitioning based on the classification and regression tree (CART) 
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ruleset and is an ensemble learning algorithm that benefits from random subspace selection and 

bagging (Breiman, 2001; Abdel-Rahman, 2013). In general machine learning techniques have been 

used extensively to estimate forest structural attributes using remote sensing data.  Studies such as 

Shataee et al. (2012) compared k-nearest neighbour (k-NN), support vector machine learning 

(SVM) and RF regression using ASTER data. These authors concluded that overall SVM and RF 

produced the lowest root mean square errors (RMSE), however RF proved to be superior to the 

other methods by producing unbiased results especially for basal area and stems per hectare (RMSE 

= 18.39 and 20.64, respectively). Subsequently, owing to its promising predictive potential,  forest 

structural estimation studies such as Dye et al. (2012) used the RF algorithm with a combination of 

spectral and textural variables derived from QuickBird imagery to produce an overall model 

accuracy of R2 = 0.68. 

In contrast, certain researchers have favoured the utility of linear machine learning algorithms 

such as the Partial Least Squares Regression (PLSR) algorithm which uses an iterative process 

(Wold et al., 2001).  The algorithm can compress data which allows for the reduction in a large 

number of variables that are collinear thus allowing for the development of a few non-correlated 

latent variables also known as factors/components (Vyas and Krishnayya, 2014).  Wolter et al. 

(2009) used SPOT-5 sensor data to estimate DBH, tree height, basal area and vertical length of live 

crown within a forest using a PLSR approach. The outcome of the study showed favourable results 

for DBH and tree height estimations with R2 values of 0.82 and 0.69 respectively. A LiDAR based 

study by Nӕsset et al. (2005) used a combination of ordinary least squares (OLS), seemingly 

unrelated regression (SUR) and PLSR to estimate forest structural attributes at stand level using 

laser scanning technology and PLSR produced a best overall R2 value of 0.94.  

Research has shown that the PLSR and RF algorithms have powerful modelling potential and it 

is with this background that this study proposes a novel approach to predicting forest structural 

attributes by combining the PLSR and RF algorithms to form a PLSR-RF hybrid algorithm for the 

prediction of forest structural attributes within a commercial forest plantation. The hybrid approach 

uses the RF ensemble creating methodology with the addition of the PLSR components instead of 

using individual remote sensing variables. To the best of our knowledge, no study has assessed a 

hybrid PLSR and RF (PLSR-RF) machine learning approach to modelling forest structural 

attributes using multispectral remote sensing imagery within a commercial forest plantation. 

Therefore, our main objective was to investigate the robustness of these three (PLSR, RF, PLSR-

RF) machine learning algorithms in predicting forest structural attributes using spectral and textural 

remote sensing image characteristics extracted from high spatial resolution (0.15m) imagery.  
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2. Materials and Methods 

 Study site 

The study was conducted at the Sappi Riverdale plantation located West of the town of 

Richmond in the Midlands of KwaZulu-Natal, South Africa, located at 29° 52ʹ 0″ S, 30° 16ʹ 0″ E 

(Figure 1). The total area of the plantation spans 6200ha and is located in the upper catchment area 

along the Lovu River. The average altitude and temperature is 1190m and 16.1°C respectively. The 

area receives a mean annual precipitation and runoff of 9-16mm and 143mm respectively. The 

forested area is characterised by extensive commercial forestry dominated by Eucalyptus species 

such as Eucalyptus dunnii and Eucalyptus grandis. The Eucalyptus species are rapid growing 

species and are harvested every six to ten years (Owen and Van Der Zel 2000).  

 

Figure 1: Location of the study area; a) South Africa; b) KwaZulu-Natal; c) Riverdale Plantation 
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 Field data 

The field survey campaign was conducted between the 12th of April and the 22nd May 2014 using 

industry standard enumeration techniques. A total of 502 georeferenced 10m radius circular plots 

across 25 compartments were developed based on a systematic grid sampling technique. Selected 

tree structural attributes such as volume (Volha), tree height: (mean tree height (Htm) and dominant 

tree height (HtD)) and basal area (Baha) were measured for each circular plot. Eucalyptus dunnii 

and Eucalyptus grandis species that were between two and ten years old were considered for this 

study. The data was partitioned according to the individual Eucalyptus species. The E. grandis 

PCA(n = 288) and E. dunnii (n = 214) were processed as separate input data. The tree height and 

DBH for each plot was measured using the Vertex IV laser instrument and Haglof Digitech Calliper, 

respectively. 

 Remote sensing data 

Multispectral airborne image data was collected on the 12th April 2014 by Land Resource 

International under cloudless conditions. The image data was geometrically and radiometrically 

corrected and supplied as Geo-TIFF files. The data had an 8-bit radiometric resolution with a 0.15m 

spatial resolution and four spectral bands (Table 1).  

Table 1: Spectral characteristics of the multispectral airborne imagery 

 

 

 

 

 Texture feature extraction  

The texture features used in the present study were proposed by Haralick et al. (1973) who 

suggested that texture measures depend heavily on the spatial resolution, spectral domain and the 

object characteristics within the image (shape and dimension). Nichol and Sarkar (2011) have 

suggested that image texture may be considered as a plausible proxy for forest structural attribute 

modelling and may be extracted by means of a Grey Level Co-occurrence Matrix (GLCM) and a 

Grey Level Difference Vector (GLDV). GLCM describes the texture features by the stochastic 

properties in the image relating to the spatial distribution of the grey levels in an image (Haralick, 

1979). GLDV refers to the sum of the diagonals of the GLCM and makes reference to a pixel and 

its neighbour by counting the occurrence of the absolute difference between them (Haralick, et al. 

1973). The texture features that were extracted using GLCM method were; entropy, dissimilarity, 

contrast, second angle moment, homogeneity, mean, standard deviation and correlation. The 

Band number Colour Band configuration 

Band 1 Red 650 to 680 nm 

Band 2 Green 550 to 580 nm 

Band 3 Blue 450 to 480 nm 

Band 4 Near Infrared 720 to 750 nm 
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features extracted using GLDV were; second angle moment, mean, contrast and entropy. Using the  

first component from a principal component analysis of the multispectral image data, texture 

features were extracted from four directions (0°, 45°, 90°, 135°) thus to achieve directional 

invariance on each individual stand plot.  

 Partial least squares regression (PLSR) 

PLSR is a linear statistical method that combines and uses the theory of principal component 

analysis (PCA) with the theory of multiple linear regression (MLR) and is considered to be a very 

effective modelling tool for feature extraction and dimension reduction (Abdi, 2007). The PLSR 

linear multivariate model is useful for analysing datasets with many high dimensional and collinear 

predictors (Wold et al., 2001). The PLSR model creates orthogonal (uncorrelated) weight vectors by 

maximising the covariance between the explanatory and response variables while reducing the 

dimensionality of these x variables by sifting out the factors that explain the most information 

between all the x and y variables (Lopatin et al., 2015). The PLSR operates by transforming the 

original predictors X1, X2,…,Xp into  uncorrelated latent variables such as Z1, Z1,… ZM where M < p 

and Z is the weighted linear combinations of the original predictors (p) (Equation 1).  New variables 

that are created are denoted by Zm (m = 1, 2,….M). The X scores are estimated as linear 

combinations of the original variables Xi with the coefficient weights ∅jm (m = 1, 2,….M). 

𝑍𝑚 = ∑ ∅𝑗𝑚𝑋𝑗

𝑝

𝑖=𝑗
………………………………………………………….Equation (1) 

The linear regression model is then fit to the latent variables known as the PLS factors in an 

orthogonal space (M) (Equation 2).  

𝑌𝑖 = 𝜃0 + ∑ 𝜃𝑚𝑍𝑖𝑚 +  𝜖𝑖
𝑚
𝑚=1 …………………………………………………….Equation (2) 

I = 1,…n, θ0 is the regression intercept and θm is the regression coefficients for each of the PLS 

factor z across n observations where yi is the response variables and ϵi the residuals.  

In this study the PLSR was implemented using the R statistical software version 3.2.2 (R 

Development Core Team, 2014). During model development a 10-fold cross validation was done to 

obtain the optimum number of PLSR factors. 

 Random forest (RF) 

The basic idea behind the random forest (RF) algorithm is to achieve an improved predictive 

accuracy by growing a large number of decorrelated trees. This is done to obtain a prediction 

accuracy by averaging the prediction values from all the trees in the ensemble for each observation. 

RF is thus, especially beneficial for data sets with a large number of predictors that may be 

correlated (Breiman, 2001). The RF method is a bagging method and uses recursive partitioning to 

form regression trees. Each regression tree that is created is then independently grown until its 
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maximum size is reached based on the training data set, known as the bootstrap sample consisting 

of 66% of the total population. The RF model uses the remaining 34% of the data known as the out-

of-bag (OOB) data for the model prediction (Breiman, 2001). The RF regression algorithm was 

implemented using a package developed by Kuhn and Johnson (2013) called ‘caret’ and the 

‘randomForest’ package (Liaw ad Wiener, 2002) in the R statistical software version 3.2.2 (R 

Development Core Team, 2014).  

 Partial least squares-random forest (PLSR-RF) hybrid  

The PLSR-RF hybrid model (Figure 3) improves the random forest non-parametric methodology 

with the addition of the linear PLSR approach. The PLSR part of the hybrid algorithm creates latent 

variables from the explanatory (x) variables that are the most relevant for the response (y) variables.  

These latent variables now serve as new predictor variables that can be used by the RF algorithm. 

Subsequently, the RF algorithm (i) creates an ensemble of trees and each tree is grown from a 

sample that is randomly selected from the bootstrap sample of the training data with replacement 

and (ii) randomly selects a component from the subset of components for splitting at each node of 

the trees. The hybrid model combines the benefit of the linear regression model of the PLSR 

algorithm with the non-linear RF ensemble method. During model calibration a 10-fold cross 

validation approach was applied to ensure that the prediction accuracies were unbiased and 

accurate.  
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Figure 2: A graphical representation of the PLSR-RF hybrid model. 

 Model Validation  

To ensure that the validation results were unbiased a training-test set (66%-34% split 

respectively) partition was done as suggested by Kuhn and Johnson (2013).  

To gauge the predictive accuracy of the PLSR, RF and PLSR-RF hybrid models in predicting 

forest attributes within a commercial forest plantation the coefficient of determination (R2) and root 

mean square error (RMSE) for the validation sample data were computed (Equation 3).  
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𝑅𝑀𝑆𝐸 =
√∑ (𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1

2
…………………………………………….Equation (3) 

Xmeasured represents the measured forest attributes, Xpredicted represents the predicted values from 

the validation data and i represents the explanatory variables included in the summation process.  

 

3. Results  

The hyper-parameter optimization results for all the E. grandis and E.dunnii models developed 

in this study are shown in Table 2. For the PLSR models, between 6 and 14 latent components 

(ncomp) were selected using 10 fold cross validation. For the RF algorithm, the values selected for 

the mtry hyperparameter were between 3 and 12, while the ntree parameter was consistently set at 

500. For the PLSR-RF algorithm (i) between 6 and 12 latent components were selected (ii) the 

selected mtry hyperparameters were between 2 and 9 and (iii)  similar to the RF algorithm a ntree 

value of 500 produced the best results 

Table 2: Optimal hyper-parameters (ncomp, mtry and ntree) for the E. grandis and E.dunnii 

models. Models were optimized for estimating: volume (Volha), mean tree height (Htm), dominant 

tree height (HtD) and basal area (Baha). 

 PLSR   RF   PLSR-RF 

Forest 

attribute  
ncomp   mtry ntree   ncomp mtry ntree 

E. grandis species 

Volha 7  7 500  7 7 500 

HtD 7  12 500  10 9 500 

Htm 7  8 500  11 8 500 

Baha 14  4 500  11 5 500 

E. dunnii species 

Volha 6  6 500 
 

6 2 500 

HtD 11  5 500  11 5 500 

Htm 6  6 500  10 4 500 

Baha 6  3 500 
 

12 8 500 
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For the E. grandis species (Figure 4a), the PLSR-RF algorithm produced the best models for 

volume (R2 = 0.49 and RMSE = 38.58tons/ha), mean tree height (R2 = 0.47 and RMSE = 3.52m) 

and dominant tree height (R2 = 0.50 and RMSE = 2.37m).  For the E. dunnii species (Figure 4b), the 

PLSR-RF model produced the best result when predicting volume (R2 = 0.57 and RMSE = 

61.31tons/ha) and mean tree height (R2 = 0.57 and RMSE = 1.93m).  

 

 

 

 

  

 

Figure 4: Model predictions using individual tree species (a) E. grandis and (b) E. dunnii. The 

results are shown for the three machine learning techniques i.e. PLSR, RF and PLSR-RF hybrid 

using a combination of spectral and textural features. Models accuracies are shown for volume 

(Volha), mean tree height (Htm), dominant tree height (HtD) and basal area (Baha). 

 

This study further looked at predicting the forest structural attributes for the young and mature 

forests.  

The hyper-parameter optimization results for the young and mature E. grandis models are shown 

in Table 3. For the PLSR models, between 5 and 14 latent components (ncomp) were selected. For 

the RF algorithm, the values selected for the mtry hyperparameter were between 2 and 15, while the 

ntree parameter was consistently set at 500. For the PLSR-RF algorithm (i) between 3 and 11 latent 

components were selected (ii) the selected mtry hyperparameters were between 1 and 8 and (iii)  a 

ntree value of 500 produced the best results 
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Table 3: Optimal hyper-parameters (ncomp, mtry and ntree) for the young and mature E. grandis 

models. Models were optimized for estimating: volume (Volha), mean tree height (Htm), dominant 

tree height (HtD) and basal area (Baha).   

 PLSR   RF   PLSR-RF 

Forest 

attribute  
ncomp   mtry ntree   ncomp mtry ntree 

Young E. grandis species 

Volha 5 
 

2 500 
 

3 1 500 

HtD 7 
 

5 500 
 

6 3 500 

Htm 8 
 

5 500 
 

8 2 500 

Baha 5 
 

5 500 
 

7 2 500 

Mature E. grandis species 

Volha 12 
 

6 500 
 

9 7 500 

HtD 12 
 

2 500 
 

11 8 500 

Htm 14 
 

15 500 
 

7 4 500 

Baha 10 
 

2 500 
 

10 4 500 

 

Young E. grandis species were grouped at ages three to six years (Figure 5a) and mature E. 

grandis species were grouped at seven to 10 years (Figure 5b). The best model for young E. grandis 

species were developed for dominant tree height using the RF model (R2 = 0.79 and RMSE = 

1.76m) followed by a 10% decrease when using the PLSR-RF hybrid (R2 = 0.69 and RMSE = 

2.10m) (Figure 5a). The RF algorithm continued to produce promising results when applied to the 

mature E. grandis species with the best model being produced for dominant tree height (R2 = 0.63 

and RMSE = 2.05m) but could not explain more than 35% of the variation for the other forest 

structural attributes. The PLSR-RF model produced the best model for volume (R2 = 0.59 and 

RMSE = 51.02tons/ha) for mature E. grandis species. The PLSR algorithm could not explain more 

than 40% of variation across all forest structural attributes for both young and mature E. grandis 

species.  
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Figure 5: Model predictions shown for (a) young and (b) mature E. grandis species. The results 

are shown for the three machine learning techniques i.e. PLSR, RF and PLSR-RF hybrid using a 

combination of spectral and textural features. Models accuracies are shown for volume (Volha), mean 

tree height (Htm), dominant tree height (HtD) and basal area (Baha). 

The hyper-parameter optimization results for the young and mature E. dunnii models are shown 

in Table 4. For the PLSR models, between 5 and 12 latent components (ncomp) were selected. For 

the RF algorithm, the values selected for the mtry hyperparameter were between 3 and 16, while the 

ntree parameter was consistently set at 500. For the PLSR-RF algorithm (i) between 3 and 10 latent 

components were selected (ii) the selected mtry hyperparameters were between 3 and 10 and (iii)  a 

ntree value of 500 produced the best results 
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Table 4: Optimal hyper-parameters (ncomp, mtry and ntree) for the young and mature E. dunnii 

models. Models were optimized for estimating: volume (Volha), mean tree height (Htm), dominant 

tree height (HtD) and basal area (Baha).    

 PLSR   RF   PLSR-RF 

Forest 

attribute  
ncomp   mtry ntree   ncomp mtry ntree 

Young E. dunnii species  

Volha 6  4 500  9 7 500 

HtD 6  5 500  11 8 500 

Htm 7  3 500  7 4 500 

Baha 5  16 500  10 4 500 

Mature E. dunnii species  

Volha 12  16 500  10 10 500 

HtD 5  9 500  5 3 500 

Htm 6  3 500  10 6 500 

Baha 6  16 500  3 3 500 

 

Young E. dunnii species were grouped at ages three to six years (Figure 6a) and mature E. dunnii 

species were grouped at seven to 10 years (Figure 6b).  For the young E. dunnii species PLSR could 

not explain more than 39% of the variation for all the forest attributes considered in this study. 

When using the RF model for the young E. dunnii species, the highest accuracy was reported for 

mean tree height (R2 = 0.54 and RMSE = 1.83m) and dominant tree height (R2 = 0.51 and RMSE = 

2.23m). When considering the young E. dunnii species, the PLSR-RF model produced the highest 

accuracies for basal area (R2 = 0.55 and RMSE = 2.93ha) and dominant tree height (R2 = 0.65 and 

RMSE = 1.85m). For the mature E. dunnii species, the reported accuracies for dominant tree height 

across all three machine learning algorithms were as follows: PLSR (R2 = 0.78 and RMSE = 

2.38m), RF (R2 = 0.75 and RMSE = 2.34m) and PLSR-RF (R2 = 0.82 and RMSE = 2.07m).  
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Figure 6: Model predictions using only E. dunnii species that are (a) young and (b) mature across 

three machine learning techniques i.e. PLSR, RF and PLSR-RF hybrid using a combination of 

spectral and textural features. Models accuracies are shown for volume (Volha), mean tree height 

(Htm), dominant tree height (HtD) and basal area (Baha). 

 

The results of this study suggest that dominant tree height was the forest structural attribute that 

was the most accurately predicted using a combination of spectral and textural features.  The PLSR-

RF hybrid algorithm produced the highest model accuracies for the young and mature E. dunnii 

species (Figure 7a and b).  The RF algorithm produced the highest model accuracies for the young 

and mature E. grandis species (Figure 7c and d). Overall, the best prediction model was obtained by 

the PLSR-RF algorithm (R2 = 0.82) and could be potentially used to predict the dominant height for 

mature E. dunnii species. 
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Figure 7: Observed vs predicted graphs for the dominant height models produced in this study. 

All models produced the highest accuracies for dominant tree height a) young E. dunnii b) mature 

E. dunnii c) young E. grandis d) mature E. grandis. 
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3.34m). The results for E. grandis was relatively low when compared to E. dunnii where the highest 

accuracy was reported for volume (R2 = 0.57 and RMSE = 61.31tons/ha) using the RF method 

followed by the PLSR-RF hybrid model producing an accuracy of R2 = 0.55 and RMSE = 

62.61tons/ha. All model accuracies for E. dunnii using the RF and PLSR-RF hybrid were above 

50%. These results suggest that forest structural attributes could be estimated more accurately for E. 

dunnii and lead to the idea that accuracies could further improve once an age partition was applied 

to each individual species. Groups of trees within a forest (of all ages) result in diameter-at breast-

height and tree height increasing as the tree grows but the crown closure might remain quite small. 

Hence a commercial forest plantation of certain ages could share similar crown percentages 

resulting in them potentially having the same spectral reflectance’s but differing measurements for 

the forest structural attributes which could be a reason for poor performance of the models when the 

ages of the individual species were combined. 

Jensen et al. (1998) suggested that the phenological cycle of trees have internal structural 

changes which has a significant effect of spectral responses thus machine learning algorithms may 

be sensitive to age ranges within the data. Stand age for individual species could have significant 

effects on forest structural attribute estimation. The results of this study further improved when E. 

grandis was separated into young and mature trees within their individual compartments. Model 

performance for PLSR reached a high of 56% for dominant tree height for young E. grandis species 

and continued to improve as the PLSR-RF hybrid was applied with a high R2 value of 0.69 being 

achieved for dominant tree height. However, for young E. grandis species the RF method 

performed the best with high R2 values of 0.79 and 0.58 for dominant tree height and mean tree 

height respectively. When E. dunnii species was partitioned according to young and mature trees the 

highest model accuracies for the young trees were reported for basal area (R2 = 0.55 and RMSE = 

2.93ha) and dominant tree height (R2 = 0.65 and RMSE = 1.85m) using the PLSR-RF hybrid. Using 

the mature E. dunnii species model accuracies produced using the PLSR-RF hybrid were the best 

when being compared to PLSR and RF. This was because the PLSR-RF hybrid used the PLSR 

methodology of latent variables and converted them into components. These components then 

underwent a process of RF binary recursive partitioning to select the optimal components for 

prediction. Hence during the model development process, the PLSR-RF hybrid selected a random 

subset of the optimal components from the bootstrap sample that were defined using PLSR to allow 

for an ensemble of trees to be created using the RF methodology. Using this hybrid methodology, 

the highest model accuracies were reported for dominant tree height (R2 = 0.82 and RMSE = 2.07m) 

and mean tree height (R2 = 0.66 and RMSE = 1.90m). As the forest develops into mature trees some 

individual trees begin to die off due to competition for light, water and soil resources. Commercial 

forests often practices thinning methods which may influence crown closures and resultant canopy 

gaps (Gebreslasie et al., 2011). This could be interpreted as one of the reasons for poor regression 

models when using only young tree species for both E. grandis and E. dunnii.  
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One of the greatest challenges in predicting forest structural attributes is the species structural 

and the occurrence of dense forest canopy cover (Gebreslasie et al., 2011). It is important to use 

textural data that is capable of overcoming saturation problems in order to produce better forest 

structural attribute predictions. The hybrid model is useful and robust in the prediction of intra-

species predictions using remotely sensed data. The results of this study show that PLSR is less 

robust in predicting forest structural attributes in a mixed species environment. The promising 

results of the combination of spectral and textural information with the PLSR-RF hybrid algorithm 

is owed to the PLSR and RF methodologies. These two algorithms provide the framework for the 

integration of spectral information and texture features contrary to traditional linear statistical 

approaches that necessitate specific assumptions to be met, the PLSR and RF frameworks prove to 

be robust, versatile and capable of handling remotely sensed data that is complex in nature.  

Further research is required into the PLSR-RF hybrid model and how the amount of noise in the 

RF ensemble affects the predictive accuracy of the model. More research should be done using this 

PLSR-RF hybrid algorithm coupled with different remotely sensed data sources such as airborne 

laser scanning data to improve model predictions of forest structural attributes. In order to improve 

the limitation posed by high spatial resolution imagery and poor spectral capabilities new research 

should explore the latest generation of satellite sensors with enhanced spectral capabilities as well 

as advanced spatial properties (Momeni et al., 2016). High resolution imagery from WoorldView-2 

and WorldView-3 instruments now acquire imagery with eight spectral bands. These enhanced 

spectral capabilities may prove useful in discriminating forest structural attributes when modelled 

with machine learning algorithms. Bassa et al. (2016) used WoldView-2 image data to evaluate the 

potential of the oblique random forest (oRF) algorithm to classify a heterogeneous protected area. 

These authors examined the difference between the traditional RF approaches and suggested that 

the oRF has slight improvements compared to the traditional RF algorithm because it builds 

multivariate trees by learning the optimal split using a supervised model.  Future studies should be 

done to establish whether the hybrid method can be improved using the oRF approach instead of 

traditional RF for the prediction of forest structural attributes.  

 

5. Conclusion  

This paper investigated: (i) the performance and strength of three machine learning algorithms 

(PLSR, RF and PLSR-RF hybrid) using a combination spectral and texture features for model 

training and validation in predicting various forest structural attributes within a commercial forest 

plantation. Our results have demonstrated that: (i) the PLSR-RF hybrid model is more robust in 

predicting volume and height in various E. dunnii species when derived from the mature tree 

species within the plantation (ii) there is great potential for using the PLSR-RF hybrid algorithm 

with high resolution remotely sensing image data  
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