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Abstract 
Human settlement expansion is one of the most prominent types of land cover change in South 

Africa. These changes typically occur in areas that are covered by natural vegetation. Methods that 
can rapidly indicate areas having a high probability of change are very valuable to analysts as this 
can be used to direct their attention to high probability change areas for further evaluation. 
MODIS time-series data (8-daily composite) at a resolution of 500 m has been proven to be an 
effective data source for detecting human settlements in South Africa and it was proposed in 
Kleynhans et al., 2012 that a Temporal Autocorrelation Change detection method (TACD) be used 
to detect the formation of new settlements in the Gauteng province of South Africa. In this paper, 
the TACD that was proposed by Kleynhans et al., 2012 is adapted to be usable with variable 
sampled temporal resolutions for 250m MODIS data by using a novel framework for parameter 
selection. The proposed method is applied to variably sampled 250m MODIS time-series data 
ranging from daily to semi-annually and a comparison of change detection accuracy vs. false alarm 
rate is done in each instance. Key results indicate that there is little difference in performance 
between daily sampled and 2-monthly sampled 250m MODIS time-series data for the use case 
evaluated in this paper. 

1. Introduction 
The most pervasive form of land cover change in South Africa and many other developing countries 
around the world is human settlement expansion. In many cases, new human settlements as well as 
existing settlements expand informally and these expansions occur in areas that were previously 
covered by natural vegetation. Satellite time-series data has proven to be an effective data source for 
change detection (Verbesselt et al. ,2010;Lunetta et al., 2006;de Beurs and Henerby, 2005) and in 
particular, time-series analyses of hyper-temporal satellite data has been successfully applied to 
land cover change detection in South Africa (Kleynhans et al., 2012; Kleynhans et al., 2015, 
Salmon et al. 2013; Grobler et al., 2012, Grobler et al., 2013). In Kleynhans et al., 2012 a temporal 
Autocorrelation change detection (TACD) method was demonstrated to detect the development of 
new informal settlements in South Africa. The method uses the Autocorrelation Function (ACF) of 
a MODIS time-series to provide an indication of the level of time-series stationarity (by considering 
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the stability of the time-series mean and variance over time) which is consequently used as a 
measure of land cover change. This TACD method demonstrated that by using an 8-daily composite 
MODIS time-series at a resolution of 500 m, new informal settlements could effectively be 
identified. The objective of this paper is to expand the TACD method developed in Kleynhans et al., 
2012 to be usable with MODIS 250 m data having variable temporal resolution. To achieve this, a 
novel input parameter selection framework had to be developed to enable the method to work for 
variable temporal resolutions (i.e. daily, weekly etc.) as opposed to the fixed 8-daily temporal 
resolution used in the original formulation. As a case study, the exact same time period and study 
area was used as in the original TACD formulation presented in Kleynhans et al., 2012. The two 
main questions set out to be answered in the study were (1) how does the TACD method applied to 
daily 250 m data compare to the same area using the 8-daily 500 m data used in the original study 
and, (2) as the daily time series is available and can be sub-sampled to any temporal frequency, 
what is the subsequent performance of the method in terms of the change detection accuracy 
(percentage of change examples correctly detected) and false alarm rate (percentage of no-change 
examples incorrectly detected as change) as a function of the temporal frequency. For example, 
would there be a significant difference in the performance of the method when presented with a 
daily sampled time-series as opposed to a monthly sampled time-series. Although the false alarm 
rate of the method can be set to any percentage depending on the requirement of the operator, in our 
use case the false alarm rate requirement was low (< 1%) as the area on which the change algorithm 
is run is large and the validation of a large number of false alarms could be very costly and time 
consuming. 

 

2. Data Description 

2.1. MODIS data 

 
The time-series data used in this study was derived from the MODerate-resolution Imaging 
Spectroradiometer (MODIS) instrument. Two time-series cubes were generated using MODIS data 
and formed the basis for all analytic results presented in this paper. Each cube was constructed as a 
single HDF5 file containing a surface reflection value for each band at a specific (x,y) location of a 
tile (in our case the h20v11 tile was used) at a particular date. Data for the first cube were obtained 
from the MCD43A4 product (sampled 8-daily at 500 m resolution) and is exactly the same as in the 
original study in Kleynhans et al., 2012. Data for the second cube were similar to that of the first 
cube with the key difference being (1) the spatial resolution was 250 m as opposed to 500 m, (2) the 
temporal resolution was daily as opposed to 8-daily and (3) only two bands were available as 
opposed to seven (due to fact that only the first two MODIS bands have a spatial resolution of 250 
m). It was shown in Kleynhans et al. (2015), where a similar land cover change was considered, that 
multiple band combinations as well as vegetation indices including NDVI and EVI were not able to 
provide significant improvement over that of using only band 1. Band 1 is the red band in the 
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visible spectrum range 620-670 nm and is known to be very sensitive to changes in vegetation. 
Since band 1 is a common band between the two dataset, the remainder of the analysis was focused 
on the analysis of band 1 time-series data. Both datasets are bi-directional reflectance distribution 
function (BRDF) corrected and the time-period for both datasets is 2001/01 to 2008/01. Quality 
control (QC) flags were not explicitly used in the pre-processing of the time-series data but it should 
be noted that the study area that was considered does not have prolonged time periods of cloud 
cover which results in a limited number of missing values (typically less than 4% of samples). In 
the rare occurrence of missing values, cubic spline interpolation was used to infer these missing 
values 

2.2. Study Area 

The study area considered in this study was the Gauteng province of South Africa (figure 1).  

 

Figure 1: Gauteng province located in the central-northern part of South Africa 

 
A dataset of no-change pixel time-series was identified at both 500 m and 250 m resolution using 

two steps. First, using visual interpretation, the 500 m pixel grid were overlaid on high resolution 
images in 2001 and 2008 respectively. The 2008 imagery over the study area were compared to that 
of 2001 and change areas were rapidly determined. A total of 180 pixels (with reference to the 500 
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m pixel grid) that changed from natural vegetation to informal settlement developments were 
identified. For a pixel to have been included as a change example, at least 70% of the pixel had to 
have changed. Second, as each of the 500 m pixels consisted of exactly four pixels at 250 m 
resolution, these four pixels were then included in the 250 m change dataset resulting in a total of 
720 changed pixels being identified (with reference to the 250 m grid). The procedure to identify 
no-change pixel examples was similar to the procedure to identify change pixels. A total of 964 no-
change pixel examples were identified for the 500 m resolution case with 3856 pixel examples 
identified for the 250 m resolution case. An example of the aforementioned methodology is shown 
in figure 2 where a change area is shown overlaid with a 500 m and 250 m grid respectively. The 
pixel indicated as (1) and (2) in figure 2 corresponds to a 500 m pixel footprint that changed from 
natural vegetation to settlement whereas (3) and (4) shows the 250 m pixel corresponding to the top 
left corner of the 500 m pixel that was confirmed to have changed.  

 

 

Figure 2: Quickbird imagery showing a change area (courtesy of Google Earth) overlaid with a 500 
m and 250 m grid respectively. The pixel indicated as (1) and (2) corresponds to a 500 m pixel that 
changed from natural vegetation to settlement whereas (3) and (4) shows the 250 m pixel 
(corresponding to the top left corner of the 500 m pixel) that consequently was also confirmed to 
have changed. 
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Table 1: 250m and 500m dataset properties. 
 250m 500m 

Resolution 250m 500m 
Bands 2 7 

Temporal resolution Daily 8-daily 
# change pixels 720 180 

# no-change pixels 3865 964 
Use of dataset Parameter selection and 

performance evaluation at 
multiple subsampled 

frequencies 

Used for comparison with the  
daily sampled 250m dataset. 

 
For simplicity the two datasets will be referred to as the 500 m and 250 m dataset for the 

remainder of the document. A summary of the datasets is provided in table 1. 
 
From the following sections it will be shown that the primary function of the 250m dataset is to 

formulate the parameter selection framework (selection of the k and   parameter) by making use 
of various subsampled temporal frequencies (i.e daily, monthly, quarterly etc.) and to also test the 
subsequent change detection and false alarm rate performance at each of these subsampled temporal 
frequencies 

3. Temporal ACF Change detection method 
The temporal ACF change detection (TACD) method proposed in Kleynhans et al.(2012) with a 

slight generalization provided in Kleynhans et al. (2015) was developed specifically using an 8-
daily 500 m MODIS time-series based on the MCD43A4 product and can be defined as: 
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where  is the observation from an arbitrary spectral band at time n, τ is the ACF lag, E denotes 
the expectation and k is the total number of lags of the ACF to be summed. The mean of X is given 
as µ and the variance, which is used for normalization, is defined as . In essence equation 
(1) calculates the autocorrelation of the time series  and then sums the first k lags of the 
autocorrelation output. This summation (δ) is then used as a change metric and compared to a 
threshold value ( ) to determine whether a pixel is classified as change of no change: 
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Figure 3: Change detection accuracy at a false alarm rate of 1% for each k value ranging from 1 

to 365, vertical line corresponds to k = 183 

3.1. Selection of the TACD algorithm parameters to be used on each of the datasets 

With reference to equations (1) and (2) it is clear that the k and δ parameters should individually be 
selected when used with the 250 m and 500 m datasets. For simplicity, the TACD parameters to be 
used with the 250 m and 500 m datasets will be indicated as TACD250m and TACD500m 
respectively. It was shown in Kleynhans et al., 2012, where an 8-daily sampled time-series was  
used that a k value of 23 was optimal. This was determined by sweeping all possible k values and 
selecting the best performing value. In the current study it was found by empirical evaluation that 
the optimal k value can more formally be derived as half of the period of the time-series and can be 
expressed as  
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where S is the temporal acquisition rate of the satellite in days. In the case of 8-daily data k can be 
calculated from (3) to be k = 23 whereas in the case of daily temporal frequency k = 183. To test the 
validity of the k value for daily data, the change detection accuracy was evaluated at a false alarm 
rate of 1% for each k value ranging from 1 to 365, effectively covering the entire period of the  
annual cycle. The results are shown in figure (3) where it can be seen that the k value shows near  
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Table 2: Change Detection Accuracy (CDA) , False Alarm Rate (FAR), k and δ ∗ values for both 
datasets  

Method CDA FAR k δ∗ Sampling 
frequency 

TACD250 67.81% 1.1% 183 52.94 Daily 
TACD500 67.40% 1.1% 23 6.78 8-daily 

 
optimal performance when considering the change detection accuracy at a 1% false alarm rate thus 
validating the selected value of k. The same procedure was also done to validate the selection of k 
using equation (3) for the case of monthly, 2-monthly, quarterly as well as semi-annually temporal 
acquisition rates and produced similar results. As for the selection of the δ∗ parameter, there is a 
requirement to produce a false alarm rate of ≤ 1% as discussed in section 1, this is due to the fact 
that the change algorithm is run over large areas and the validation of a large number of false alarms 
could be costly and time consuming. To determine the threshold value that would yield a false 
alarm rate in this range, a similar approach was used as in Kleynhans et al. (2015) where the 
Bayesian decision error was evaluated based on the distribution of the inferred change index (δ) 
using a training no-change dataset as follows: 
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where δ∗ is the decision threshold value and  is the false alarm rate. It can be seen from (4) 
that only no-change examples are required to determine the threshold value δ∗. The training set that 
was used constituted 20% of the no-change examples in each of the datasets and was calculated 
directly using equation (4). 
 

4. Results and discussion 
Using the k and δ values determined in section 3.1, change was declared on a per pixel basis for 

each of the datasets. It was found that there was a good correlation between the false alarm rate of 
the training (1%) versus the unseen datasets (1.1%) which implies that the in-sample and out-of-
sample errors based on the value of δ∗ were roughly similar indicating good generalization of the 

method for both datasets. At a false alarm rate of ±1% the change detection accuracy was shown to  
be 67.81% in the case of TACD250 m with the change detection accuracy of 67.40% at a similar 
false alarm rate for the TACD500 m case (table 2). From the aforementioned it is clear that the 
performance of the TACD was virtually identical for both datasets . The next question that arises is 
how much the temporal frequency affects the performance of the method as the 250 m data was 
sampled at an eight times higher rate. To answer this question, the daily TACD250 m dataset was 
sampled 2-daily, 8-daily, monthly, 2-monthly, quarterly and semi-annually and in each of these 
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cases the change detection accuracy at 1% FAR was calculated (table 3). From the results shown in 
table 3 it is clear that the performance does not significantly change when varying the temporal  

Table 3: Change Detection Accuracy (CDA) and False Alarm Rate (FAR) at variable temporal 
frequencies indicated as TACDi where i is the temporal sampling in days, i.e. TACD8 is every 8’th 

sample in the TACD250 m dataset. 
Method CDA FAR k δ∗ Sampling 

frequency 
TACD1 67.40% 1% 183 53.58 Daily 
TACD8 67.54% 1% 23 6.33 8-daily 
TACD31 68.09% 1% 6 1.14 monthly 
TACD62 67.82% 1% 3 0.41 2-monthly 
TACD122 61.88% 1% 2 0.26 Quarterly 
TACD183 42.27% 1% 1 0.15 semi-annually 

 
sampling frequency between daily and 2-monthly but only starts to significantly reduce when 
sampling at less than a 2-monthly rate. It might seem counter intuitive that by sampling every two 
months as opposed to daily that there is no significant performance variation when using the TACD 
method but this does however make sense when considering the total time-series length and the 
typical duration of the development of a new or expanding settlement. It was shown in Kleynhans et 
al. (2012) that the expected duration of the development can vary significantly but typically ranges 
between 6 months and 24 months. When considering the total length of the study period (7 years) it  
follows that the study period is significantly longer than the duration of the typical change event 
evaluated in this study. Even when sampling at a much reduced rate, the underlying time-series is 
still represented adequately by using more than 6 samples per year with an insignificant loss in 
performance for our specific use case. This finding has a significant impact on the dataset 
requirements as the number of images required to generate a daily sampled vs. a 2-monthly sampled 
time-series varies by a factor of approximately 62. 
 

5. Conclusion 
In this paper, an extension is formulated to the temporal autocorrelation change detection (TACD) 
method proposed in Kleynhans et al. (2012) by formally defining the selection process of one of the 
parameters as a function of the sampling rate of the time-series. This enables the method to be used 
with variable temporal resolutions as opposed to the fixed 8-daily temporal resolution that was 
introduced in the original formulation. The modified algorithm was applied to variably sampled 
MODIS 250 m time-series data ranging from daily to semi-annually and the change detection 
accuracy and false alarm rate were computed for each instance. As the algorithm is intended to be 
run over potentially large areas (regional scale), a primary objective was to ensure that a low false 
alarm rate should be maintained (≤ 1%) and consequently a threshold was chosen to maintain this 
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false alarm requirement. It was shown that the daily temporal frequency of the 250 m dataset that 
was used did not play a significant role in improving the change detection accuracy and that even 
when sampling up to an interval of 2-monthly (i.e 6 yearly observations), there were no 
performance decrease. There was however a reduction in performance when sampling at a lower 
rate than 2-monthly. For comparison, the TACD method was applied to both 250m daily sampled 
and 500m 8-daily sampled MODIS data for the same area and it was found that that near identical 
change detection accuracy was obtained at a FAR of 1% using both datasets. 
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