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Abstract 

William Sealy Gosset, otherwise known as “Student”, Fisher's disciple, was one of the pioneers 
in the development of modern statistical method and its application to the design and analysis of 
experiments. Although there were no computers in his time, he discovered the form of the “t 
distribution” by a combination of mathematical and empirical work with random numbers. This is 
now known as an early application of the Monte Carlo simulation. Today with the fast computers 
and large data storage systems, the probabilities distribution can be estimated using computerized 
simulation. Here, we use Monte Carlo simulation to investigate the efficiency of the Baarda’s 
iterative data snooping procedure as test statistic for outlier identification in the Gauss-Markov 
model. We highlight that the iterative data snooping procedure can identify more observations than 
real number of outliers simulated.  It has a deserved attention in this work. The available 
probability of over-identification allows enhancing the probability of type III error as well as 
probably the outlier identifiability. With this approach, considering the analysed network, in 
general, the significance level of 0.001 was the best scenario to not make mistake of excluding 
wrong observation. Thus, the data snooping procedure was more realistic when the over-
identifications case is considered in the simulation.  In the end, we concluded that for GNSS 
network that the iterative data snooping procedure based on Monte Carlo can locate an outlier in 
the order of magnitude 4.5σ with high success rate. 

1. Introduction 

The reliability of outlier identification is one of the major challenges in the quality control of 
geodetic measurements. In the sense of Least Squares Estimation (LSE), the outliers are nuisance 
observations that spoil both estimated parameters and their standard deviations, causing incorrect 
results.  Thus, we often try to minimize the magnitude of undetectable outliers in the observations 
as well as to reduce the effect of the undetected ones on the estimated parameters. Two categories 
for the treatment of observations contaminated by outliers have been developed: robust adjustment 
procedures (for an overview see e.g. Wilcox, 2012; Klein et al. 2015a) and outlier detection based 
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on statistical tests (e.g. Baarda, 1968; Pope, 1976; Lehmann and Lösler, 2016; Klein et al. 2017). 
The first one is outside the scope of this paper. Besides the undoubted advantages of robust 
adjustment, the outlier tests are also used. The following advantages of outlier analysis are 
mentioned by Lehmann (2013): 

• Detected outliers provide the opportunity to investigate causes of gross measurement errors; 

• Detected outliers can be re-measured;  

One of the best methods for outlier identification in geodetic data analysis is Baarda’s testing 
procedure. This method is due to Baarda (1968). This method consists of three steps (see e.g. 
Teunissen 2006): detection (also known as overall model test), identification (also known as data 
snooping) and adaption (a corrective action, such as elimination of identified observation as an 
outlier).  

 At each iteration, only a single observation can be identified in the data snooping procedure. 
Once an identified observation is excluded, the LSE adjustment is restarted without the rejected 
observation and again the identification step (data snooping) is applied. Of course, if redundancy 
permits, this procedure is repeated until none identification. This procedure is called “iterative data 
snooping” (e.g. Teunissen, 2006). In this paper we are exclusively concerned with iterative data 
snooping procedure.  

Since data snooping is based on a statistical hypothesis testing with an alternative hypothesis for 
each observation, it may lead to a false decision as follows: 

• Type I error or false alert (probability level α) – Probability of identifying an outlier when 
there is none; 

• Type II error or missed detection (probability level β) – Probability of non-identifying an 
outlier when there is at least one; and 

• Type III error or wrong exclusion (probability level κ) – Probability of misidentification a 
non-outlying observation as an outlier, instead of the outlying one. This type of error decision was 
introduced by (Hawkins 1980; Förstner 1983). 

The rate of type I decision error in a binary hypothesis test (i.e., with a single alternative 
hypothesis) can be selected by the user. The rate of type II decision error cannot. Lehmann and 
Voß-Böhme (2017) also point out that a test statistic with a low rate of type II is said to be powerful 
in the binary hypothesis case, when only a single alternative hypothesis is considered. However, in 
case of multiple alternative hypotheses (i.e., data snooping), without considering the Type III error, 
there is a high risk of over-estimating the successful identification probability (see e.g. Yang et al. 
2013). On other hand, the confidence level is the probability that a non-outlying observation is 
correctly ignored; the power of the test is the probability that an outlier is correctly identified. 
Therefore, the confidence level and the power of the test are the probabilities of the test result 
leading to correct decisions, as opposed to the occurrence of type I, II and III errors (see, for 
example, Förstner, 1983; Teunissen, 2006; Klein et al. 2015b).  
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Here, we extended the decision errors above; we highlight that “iterative data snooping” 
procedure can identify more observations than real number of outliers (we call here “over-
identification”). The later has a deserved attention in this work. The aim of this paper is to compute 
the statistical quantities (Power of test, type II error, Type III error and “over-identification”) for 
iterative data snooping by means of the well-established Monte Carlo Simulation (MCS). This 
simulation technique in geodesy has been widely applied since the pioneering idea of Hekimoglu 
and Koch (1999). 

Many of the relevant probabilities in this contribution are multivariate integrals over complex 
regions (Teunissen, 2017). They therefore need to be computed by means of numerical simulation 
such as MCS. MCS methods are used whenever the functional relationships are analytically not 
simple tractable, as is the case for data snooping testing procedure (Lehmann, 2013). MCS method 
replaces random variables by computing excessive random experiments. In other words, the 
statistical quantities can be determined by frequency distributions of computer random experiments 
performed using random numbers. The MCS has already been applied in outlier detection (e.g. 
Lehmann and Scheffler, 2011; Lehmann, 2012; Klein et al. 2012; Klein et al. 2015a, 2015b; 
Erdogan, 2014; Niemeier and Tengen, 2017). Following this line of thought, here our goal was to 
apply the MCS to analyse the efficiency of the iterative data snooping procedure for the correct 
identification (or not) of a single simulated outlier at time. 

 The rest of the paper is organised as follows: Section ‘Theoretical overview’ brings a theoretical 
background about data snooping statistical tests for outlier identification in the LSE. Section ‘Monte 
Carlo approach for data snooping procedure’ presents the method for determining the statistical 
quantities numerically. Section ‘Experiments and results’ contains the experiments setup, results 
and discussions. Finally, last section offers conclusions and recommendations for future studies. 

2. Theoretical overview 

The mathematical model generally adopted in geodetic data analysis is the linear(ised) Gauss-
Markov model, given by (Koch, 1999): 

e y A x= −           [1] 

Where e is the n x1  random error vector, A  is the design(or Jacobian) matrix, x  is the u x1 
unknown parameters vector and y   is the n x1   observations vector. The most employed solution 
for a redundant system of equations ( r a n k  ( A )n > ) is the weighted least squares estimator 

(WLSE) for the vector of unknowns ( x̂ ): 

1ˆ ( ) ( )T Tx A W A A W y−=          [2] 
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W is the n x n weight matrix of the observations, taken as 2 1
0 ( )yW σ −= Σ , where 2

0σ  is the variance 
factor and yΣ is the covariance matrix of the observations. Teunissen (2003) demonstrates the 

geometric interpretation of the WLSE. More details about WLSE estimation can be seen in Ghilani 
(2010). 

If there are only random errors in the observations, the WLSE is the best linear unbiased 
estimator (BLUE) for the unknown parameters; if the observational errors follow the multivariate 
normal distribution with mean [0]µ = and covariance matrix yΣ , the WLSE coincides with the 

maximum likelihood estimator (Teunissen, 2003). However, the WLSE is no longer optimal in the 
presence of systematic and/or gross errors (blunders) in the observations. In other words, despite 
optimal properties for WLSE, they lack robustness or insensitivity to outliers in observations 
(Huber, 1964; Rousseeuw and Leroy, 1987; Lehmann, 2013). Therefore, statistical testing 
procedures for detection and identification of outliers have been developed. 

Quality control to identify outliers in geodetic measurements has been widely investigated since 
the pioneering work of Baarda (1968). In the sense of LSE, statistical testing procedures for 
detection and identification of outliers are based on maximum likelihood ratio. Consider a null 
hypothesis H0 for the parameters of the population probability distribution of an observation vector 
y. Consider further an alternative hypothesis HA for these parameters, constructed in a way that H0 
is a subset of HA. Thus, in the general case, the maximum likelihood ratio between H0 and HA is 
given by (Larson, 1974): 

0max ( | )( )
max ( | )A

p y Hy
p y H

λ =           [3] 

 
Where 0max ( | )p y H is the maximum of the probability density function (pdf) of y under H0 and 

max ( | )Ap y H is the maximum of the pdf of y under HA. As the null hypothesis is defined so that 

its sample space is contained in the sample space of the alternative hypothesis, the ratio in Equation 
3 lies in the interval of 0 ( ) 1yλ≤ ≤  (Teunissen, 2006). The test criterion for the maximum 

likelihood ratio is given by (Larson, 1974): 

 0Do not reject H  if (y) cλ ≥         [4] 

Where c > 0  is the critical value for the test according to the significance level α stipulated (for 
more details, see Larson, 1974; Teunissen, 2006). 
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Assuming normally distributed observation errors, a general case of hypothesis testing in linear 
models is formulated as Teunissen (2006): 

0 : { }       vs      : { } ; 0A yH E y Ax H E y Ax C= = + ∇ ∇ ≠      [5] 

Where H0 is the null hypothesis (namely, absence of outliers in the observations) and HA is an 
alternative hypothesis (presence of “q” outlying observations in at certain known locations). The 
quantity Cy defines the non-random error model (in this context called outlier model) with 
dimension n x q and ∇ is the corresponding vector of q outliers. The dimension of ∇should be 
comprised between1 q n u≤ ≤ − . For example, if n = 5 and q = 2, then a possible outlier model is 

5 2

1 0 0 0 0
0 0 1 0 0xyC  

=  
 

and 1
2 1

3
x

∇ 
∇ =  ∇ 

. (one outlier in each observation 1y  and 3y ). For more 

details about error models, see e.g. Lehmann and Lösler (2016). 

Considering the maximum of the pdf of y under H0 and HA, the maximum likelihood ratio λ 
between the two hypotheses becomes (Teunissen, 2006): 

0

1 1 1 1 1
ˆ0 0 0ˆ ˆReject H  if: T ( )T T T

q y y y y e y y y ye C C C C e Kα
− − − − −= ∑ ∑ ∑ ∑ ∑ >    [6] 

Where 0ê  and 
0ê∑  is the estimated random error vector and a posteriori covariance matrix of the 

estimated random error computed by LSE into H0, respectively. Κα is the critical value for the test 
according to the significance level α. For more details see Koch (1999) and Teunissen (2003). 
Under the null hypothesis, the test statistic Tq follows the central chi-squared distribution with q 
degrees of freedom; under the alternative hypothesis, the test statistic Tq follows the non-central 
chi-squared distribution with q degrees of freedom and non-centrality 
parameter

0

1 1
ˆ

T T
y y e y yC Cδ − −= ∇ ∑ ∑ ∑ ∇ . 

Data snooping procedure is a particular case of maximum likelihood ratio test when only one 
outlier (i.e. q = 1) is present in the data set at a time (see e.g. Baarda, 1968; Pope, 1976; Berber and 
Hekimoglu, 2003; Lehmann, 2012). Thus, it is formulated by the following test hypotheses (called 
individual model test or w-test) (Baarda, 1968; Teunissen, 2006): 

0 : { }       vs      : { } ; 0A yH E y Ax H E y Ax c= = + ∇ ∇ ≠      [7] 

Where cy is outlier model for q=1, i.e. the n x 1 unit vector with 1 in its ith entry and zeros in the 
remaining (e.g. [ ]

1
0 0 1 0 0 0

nx

T
yc =    ), and ∇ is a scalar value with the gross error 

(outlier) at ith observation being tested. Therefore, in the null hypothesis (H0), it is assumed that 
there are no outliers in the observations, while in the alternative hypothesis (HA), is it assumed that 
the ith observation being tested (  i 1, ,for n=  ) is contaminated by gross error of magnitude ∇.  
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If we consider one outlying observation in at certain known locations (q = 1), then the maximum 
likelihood ratio test for data snooping (Tq = 1) is given by (Teunissen, 2006): 

0

1 1 1 1 1
ˆ1 0 0ˆ ˆT ( )T T T

q y y y y e y y y ye c c c c e− − − − −
= = ∑ ∑ ∑ ∑ ∑       [8] 

Under H0, observation errors are zero-mean (multivariate) normally distributed. The null 
hypothesis is rejected if the following test statistic (Tq= 1) of the ith observation being tested exceeds 
a given critical value Κα , i.e.: 

0

0 1

2 2 1 1 2
ˆ0 1 (1,0) 1 (1, )

Reject H  if: T

: T ~ ; : T ~ ,  with 
q

T
q A q y y e y y

K

H H c c
α

δχ χ δ
=

− −
= =

>


= ∑ ∑ ∑ ∇
   [9] 

It should be noted that the test statistic Tq in Equation [8] is a particular case of generalized test 
statistic, when q=1. Important to mention also that the critical value follows from a chi-squared 
distribution with one degree freedom at a significance level of  in a one-tailed test. Baarda (1968) 
and Teunissen (2006) demonstrate that if q = 1, then the test statistics (Equation 9) can also be 
formulated based on a standard normal distribution in a two-tailed test (so-called w-test). Both the 
chi-squared and normal distribution tests are equivalent. Usually in geodesy, the value of  is set 
between 0.1% and 1% (Kavouras, 1982; Aydin and Demirel, 2004; Lehmann, 2013). Furthermore, 
data snooping contains multiple alternative hypotheses, as each observation is individually tested. 
Therefore, the only observation considered contaminated by outlier is the one whose test statistic 
satisfies the inequalities Tq=1 > Κα. In the case that two or more observations exceed the critical 
value Κα only the observation with the largest Tq=1 is flagged as an outlier. After having identified 
the observation most suspected of being an outlier (at given ), it is excluded usually from the 
model, and WLSE and data snooping are applied iteratively until there are no further outliers 
identified in the observations (iterative data snooping procedure) (Teunissen, 2006; Berber and 
Hekimoglu, 2003).  

However, three types of incorrect decisions may occur into data snooping and its occurrence 
rates are associated with probability levels: the significance level α is the probability (when Ho is 
true) of a non-outlying observation be misidentified as an outlier (type I error or false positive); β is 
the probability that an outlying observation not be identified as outlier (type II error or false 
negative); finally, a non-outlying observation is misidentified as an outlier, instead of the outlying 
one (type III error given by κ). On other hand, the confidence level (CL) is the probability that a 
non-outlying observation is correctly ignored, therefore, CL = 1 – α; the power of the test (γ) is the 
probability that an outlier is correctly identified, i.e. γ = 1 – (β + κ). Therefore, the CL and the γ are 
the probabilities of the test result leading to correct decisions, as opposed to the occurrence of type 
I, I and III errors (see, for example, Förstner, 1983; Teunissen, 2006; Klein et al. 2015b). For 
example, the Figure 1 shows these relationships in the data snooping procedure (considering a 
single HA) for CL=0.999, 0γ = 0.80, so 0α = 0.001 and 0β = 0.20, leading to a pre-set non-centrality 
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parameter 0 17.075δ =  and a pre-set critical value of 
0

Kα = 10.83. The type III error does not 

appear in Figure 1; it would be linked with another alternative hypothesis concerning another 
observation. 

 
Figure 1. Probability levels related to testing hypotheses of data snooping. 

Analyzing Figure 1, it can be concluded that the non-centrality parameter 0δ as function of the 
significance level 0α , power of the test 0γ , and degree of freedom (or number of outliers 
considered). The 0γ decreases with the significance level 0α for a given value of 0δ . On the other 
hand, the 0γ increases with the non-centrality parameter 0δ . Baarda (1968) provides the monograms 
for those interested in obtaining 0δ values as a function of 0α and 0γ (for a given degree of 

freedom). Alternatively, Aydin and Demirel (2004) presented a procedure to obtain the same 
through approximations of the non-central chi-squared distribution. The necessity of obtaining the 
non-centrality parameter is widespread in Geodesy (Baarda, 1968; Kavouras, 1982; Teunissen, 
2006; Knight et al. 2010). 

In addition to these probabilities, the iterative data snooping procedure can identify more 
observations than real number of outliers (here we call “over-identification”). The “over-
identification” may contain one or more observations correctly identified or, in the worst case 
scenario, all erroneously identified.   

3. Monte Carlo approach to analyse the iterative data snooping procedure 

The MCS is applied to compute the probabilities levels. To do so, a sequence of m random errors 
vector ,  1, ,=Ke k m  of a desired statistical distribution is generated. The “m” is known as the 

number of Monte Carlo experiments. Usually, assume that the random errors of the good 
measurements are normally distributed with expectation zero. Thus, we generate the random errors 
using the well-known Box-Muller method (Box and Muller, 1958) based on multivariate normal 
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distribution, since the assumed stochastic model for random errors is based on matrix covariance of 
the observations, i.e. 2

0~ (0, )Σ ye N σ  . 

On the other hand, an outlier (q=1) is selected based on magnitude intervals of the outliers for 
each m Monte Carlo experiments. We use the standard uniform distribution to select the outlier 
magnitude. The uniform distribution is a rectangular distribution with constant probability and 
implies the fact that each range of values that has the same length on the distributions support has 
equal probability of occurrence (see e.g. Lehmann and Shuffler, 2011). For example, for 10,000 
Monte Carlo experiments, if the one choices a magnitude interval of the outliers of |3σ to 9σ|, the 
probability of a 3σ error occurring is virtually the same as -3σ, and so on. At each iteration of the 
simulation, a specific observation is chosen to receive a gross error based on the discrete uniform 
distribution (i.e., all observations have the same probability of being selected).  

Random and gross errors are assumed to be independent (by definition) and both are combined 
to the total error as follow (see e.g. Kavouras, 1982): 

,  0ye cε = + ∇ ∇ ≠          [10] 

Where ε is the n x 1 total error vector, e is n x 1 random errors vector and cy is outlier model for 
q=1, and ∇ is a scalar value with the outlier at ith observation being tested. Here, we assume that 

∇>e. In order to avoid the compensation and potentiation problems, i.e.  and e e∇− ∇+ , 

respectively, the observation selected to contain a gross error has its random error removed in the 
Equation 10. Before computing statistical test Tq=1 it is necessary to relate the random error vector 
e and total error vector ε, since this statistical test depends on the estimated random error vector 0ê . 

In the sense of LSE, this relationship is given by: 

e Rε∇ =                 [11] 

In the Equation 11 the reader should note that the multiplication of the redundancy matrix (R) 
and the total error ε provides a total error vector e∇ . The total error vector is not only composed by 

random errors, but also it has one of its elements contaminated by an outlier. 

Now it becomes possible to compute the test statistic Tq=1 considering e∇  instead of 0ê  in the 

Equation 8 for all observations and perform the iterative data snooping procedure and qualify the 
efficiency in identifying simulated outlier The whole procedure described so far is performed again 
until the m Monte Carlo experiments are completed.  

The redundancy matrix R in Equation 11 is based on the network geometry and covariance 
matrix. The redundancy matrix is given by: 

1( )T TR I A A WA A W−= −         [12] 

Where R is the n x n redundancy matrix and I is the n x n identity matrix. The diagonal elements 
of R are the local redundancy numbers (r). The local redundancy numbers indicate the fraction of 
a possible outlier on the observation, which is reflected in the respective residue of this observation. 
Reliability measures such as local redundancy numbers are intrinsically related to the network 
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geometry/configuration and observation weights. Such measure is widely used for quality analysis 
of geodetic networks, both in the design stage as well as for quality control (Kuang, 1991; Klein et 
al. 2012). It is desirable to have approximately a constant value for all redundancy numbers so that 
the ability of detecting outliers will be the same in every part of the network. In other words, one 
seeks to minimize the magnitude of undetectable outliers in the observations by increasing the 
redundancy numbers in order to have an optimal network configuration (see e.g. Amiri-Seemkooei, 
2001a, 2001b). Furthermore, the redundancy numbers are correlated with the robustness parameters 
proposed by Vaníček et al. (1990) and Vaníček et al. (2001). 

Note that the method described here for evaluating the iterative data snooping depends only on 
the matrix A and W, and the magnitude of the desired outlier. 

4. Experiments and results 

In this study, the previously described method was applied considering a GNSS (Global 
Navigation Satellite System) network, with one control station (fixed) and five u stations with 
unknown 3D positions (X,Y,Z), totalling six minimally constrained stations (see Figure 2). For each 
pair of stations, there are four or five baseline vectors (ΔX, ΔY, ΔZ components). Thus, there are n 
= 13 × 3 = 39 observations (baseline vector components), u = 5 × 3 = 15 unknowns and n − u = 39 
− 15 = 24 redundant observations. The stations are taken from the Brazilian Network for 
Continuous Monitoring of GNSS. Baseline vectors, free of outliers, consist in differences between 
the stations official coordinates in the SIRGAS2000 reference frame. The observation covariance 
matrix is obtained through data processing of 6-hour sessions for each baseline vector, resulting in a 
3 × 3 full matrix, combined in a 13 × (3 × 3) = 39 × 39 block diagonal matrix. More details about 
network can be found in Klein (2014).  

 

 

Figure 2. GNSS network analysed by means Monte Carlo approach for data snooping procedure 
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It is important to mention that the design matrix defined initially must have a minimum 
configuration to avoid rank deficiency as well as being able to identify at least one outlier as 
mentioned by Xu (2005) that ‘in order to identify outliers, one also has to further assume that for 
each model parameter, there must, at least, exist two good data that contain the information on such 
a parameter’. For example, consider the one unknown height into a leveling network (one-
dimensional - 1D). Two observations would lead to different solutions and allow the detection of an 
inconsistency between them. Three observations would lead to different solutions and the 
identification of one outlying observation, and so on. Thus, in a general case, the value for ‘q’ equal 
to the minimal number of redundant observations across each and every point, minus one. For more 
details on the choosing the number of outliers to be considered, see Klein et al. (2017).  

We highlight that the redundancy numbers (diagonal elements of Equation 12) were between 
0.43 (minimum) and 0.78 (maximum) for the network, being classified as a good controllability; 
further considerations about GNSS networks are outside the scope of this study. 

Here, the significance level for iterative data snooping is varied, taken as α = 0.001 (0.1%), α = 
0.005 (0.5%), α = 0.01 (1%), α = 0.025 (2.5%) and α = 0.05 (5%). Each Monte Carlo simulation has 
a unique combination of significance level and magnitude of outliers. We ran 10,000 experiments 
for each simulation and compute the rate of type II error, type III error, the power of the test and the 
over-identification in iterative data snooping, totaling 12 x 4 x 10,000 = 480,000 Monte Carlo 
simulations. It is important to emphasize that the proposed method does not depend on the unknown 
parameters vector or the vector of observations as can seen in the section 3.  

Random errors and outliers are synthetically generated and added to the observations. Each 
unknown station is involved in at least four baseline vectors; thus, the local-scale redundancy equals 
three. Positive and negative outliers are clipped between 3σ and 3.5σ, 3.5σ and 4σ; 4σ and 4.5σ; 
4.5σ and 5σ; 5 and 5.5σ; 5.5σ and 6σ; 6σ and 6.5σ; 6.5σ and 7σ; 7σ and 7.5σ; 7.5σ and 8σ; 8σ and 
8.5σ; 8.5σ and 9σ in each experiment.  

Figure 3 shows the success rate (number of experiments that only outlying observation was 
identified), i.e. the power of the iterative data snooping testing procedure for one simulated outlier 
in the GNSS network (γ). The misidentifications rates are showed in the Figures 4-5. The 
misidentifications are divided in two types of classes are counted in the simulations: number of 
experiments where the procedure yielded none observation identification (type II error - β); number 
of experiments in which the procedure identified a single observation but wrong localization (type 
III error - κ). In addition to these classes, we consider “over-identification” case (more identified 
observation than one) and divided it into two categories: number of experiments where the 
procedure identified the outlying observation and others (“over-identification +”) – see Figure 6; 
number of experiments where the procedure identified only non-outlier observations (“over-
identification –”) – see Figure 7. 
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Figure 3. Power of the data snooping testing procedure for GNSS network vs. magnitude 

intervals of the outliers for each probability level α 

  
Figure 4. Type II error for GNSS network vs. magnitude intervals of the outliers for each 

probability level α 
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Figure 5. Type III error for GNSS network vs. magnitude intervals of the outliers for each 

probability level α 

 
Figure 6. “Over-identification+” for GNSS network vs. magnitude intervals of the outliers for 

each probability level α 
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Figure 7. “Over-identification–” for GNSS network vs. magnitude intervals of the outliers for 

each probability level α 

The “over-identification –” was also added to type III error case (k) (see Figure 8). Tables 1-5 
show the success (γ), misidentifications (β and κ) and over-identifications rates for the various 
significance levels and intervals of the outlier size considered in this work. 
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Figure 8. “Over-identification–” added to type III error for GNSS network vs. magnitude 
intervals of the outliers for each probability level α 

Table 1. Success (γ), misidentifications (β and κ) and over-identifications for α = 0.001 

Outlier 
Magnitude 

γ  
%  

β  
% 

κ 
% 

Over-
identification(+) % 

Over-identification 
(–) %  

3 - 3.5 60.06 33.67 4.29 1.85 0.13 
3.5 - 4 76.89 17.81 2.62 2.51 0.17 
4 - 4.5 87.39 8.38 1.49 2.62 0.12 
4.5 - 5 92.64 3.18 0.76 3.38 0.04 
5 - 5.5 95.5 0.89 0.29 3.32 0 
5.5 - 6 96.12 0.19 0.15 3.53 0.01 
6 - 6.5 96.41 0.08 0.03 3.47 0.01 
6.5 - 7 96.33 0.04 0.02 3.61 0 
7 - 7.5 96.43 0 0.01 3.56 0 
7.5 - 8 96.3 0 0 3.7 0 
8 - 8.5 96.1 0 0 3.9 0 
8.5 - 9 96.73 0 0 3.27 0 

Table 2. Success (γ), misidentifications (β and κ) and over-identifications for α = 0.005 

Outlier 
Magnitude 

γ  
%  

β  
% 

κ 
% 

Over-
identification(+) % 

Over-identification 
(–) %  

3 - 3.5 65.39 15.79 6.93 10.77 1.12 
3.5 - 4 76.3 6.78 3.66 12.6 0.66 
4 - 4.5 81.09 2.6 1.8 14.17 0.34 
4.5 - 5 84.13 0.77 0.81 14.09 0.2 
5 - 5.5 84.76 0.25 0.27 14.65 0.07 
5.5 - 6 84.41 0.02 0.11 15.43 0.03 
6 - 6.5 85.24 0 0.01 14.75 0 
6.5 - 7 84.54 0 0 15.46 0 
7 - 7.5 83.95 0 0.02 16.03 0 
7.5 - 8 84.77 0 0 15.23 0 
8 - 8.5 85.18 0 0 14.82 0 
8.5 - 9 84.97 0 0 15.03 0 

Table 3. Success (γ), misidentifications (β and κ) and over-identifications for α = 0.01 

Outlier 
Magnitude 

γ  
%  

β  
% 

κ 
% 

Over-
identification(+) % 

Over-identification 
(–) %  

3 - 3.5 59.2 10.26 7.81 20.7 2.03 
3.5 - 4 67.55 4.06 3.66 23.58 1.15 
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4 - 4.5 70.04 1.5 1.51 26.38 0.57 
4.5 - 5 72.18 0.4 0.67 26.5 0.25 
5 - 5.5 72.59 0.04 0.14 27.14 0.09 
5.5 - 6 72.44 0.01 0.03 27.48 0.04 
6 - 6.5 73.52 0 0.01 26.47 0 
6.5 - 7 73.04 0.01 0 26.95 0 
7 - 7.5 73.18 0 0 26.82 0 
7.5 - 8 72.46 0 0 27.54 0 
8 - 8.5 73.31 0 0 26.69 0 
8.5 - 9 72.51 0 0 27.49 0 
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Table 4. Success (γ), misidentifications (β and κ) and over-identifications for α = 0.025 

Outlier 
Magnitude 

γ  
%  

β  
% 

κ 
% 

Over-
identification(+) % 

Over-identification 
(–) %  

3 - 3.5 42.21 3.91 5.61 43.13 5.14 
3.5 - 4 45.8 1.37 2.53 47.87 2.43 
4 - 4.5 47.35 0.39 1.17 49.95 1.14 
4.5 - 5 48.29 0.14 0.26 50.92 0.39 
5 - 5.5 48.38 0.02 0.12 51.24 0.24 
5.5 - 6 47.69 0 0.04 52.22 0.05 
6 - 6.5 47.13 0 0 52.87 0 
6.5 - 7 48.53 0 0 51.47 0 
7 - 7.5 47.72 0 0 52.28 0 
7.5 - 8 48.18 0 0 51.82 0 
8 - 8.5 48.63 0 0 51.37 0 
8.5 - 9 47.61 0 0 52.39 0 

Table 5. Success (γ), misidentifications (β and κ) and over-identifications for α = 0.05 

Outlier 
Magnitude 

γ  
%  

β  
% 

κ 
% 

Over-
identification(+) % 

Over-identification 
(–) %  

3 - 3.5 23.7 1.17 3.52 64.68 6.93 
3.5 - 4 24.17 0.32 1.36 70.92 3.23 
4 - 4.5 24.64 0.13 0.45 73.28 1.5 
4.5 - 5 24.88 0 0.09 74.52 0.51 
5 - 5.5 24.7 0 0.04 75.1 0.16 
5.5 - 6 24.3 0 0 75.68 0.02 
6 - 6.5 24.57 0 0 75.4 0.03 
6.5 - 7 24.66 0 0 75.34 0 
7 - 7.5 24.79 0 0 75.21 0 
7.5 - 8 24.41 0 0 75.59 0 
8 - 8.5 24.97 0 0 75.03 0 
8.5 - 9 25.13 0 0 74.87 0 

In general, the greater the magnitude of outliers, the greater is the efficiency of iterative data 
snooping procedure. It is important to note that from 4.5-5σ the type II error is practically absent. 
The results show also that the probability of committing different types of error depends more on 
the critical value than outlier magnitude for one-dimensional identification and the GNSS network 
analysed.  

Iterative data snooping procedure was more efficient for outliers larger than 4.5σ. Considering 
all results for the GNSS network, the mean success rate was 90.6% for α=0.001(0.1%) and 82% for 
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α=0.005(0.5%). Thus, we consider α=0.001 and α=0.005 satisfactory significance level for the 
GNSS network analysed. Therefore, these results show the importance of a correct choice of α, as 
pointed out by Lehmann (2012); it also highlights the challenges in controlling the error rate in 
multiple hypotheses tests and iterative tests. 

Regarding the two classes of over-identification rates, in general, the influence of committing the 
“over-identification+” and “over-identification–” is directly related to probability level α, i.e. the 
greater type I error, the greater is the over-identifications case. From the 5.5-6σ the “over-
identification–” is practically null. Furthermore, if we disregard the “over-identification–” case, one 
could erroneously consider the significance level 0.05 the best scenario for type III error (see Figure 
5).  However, considering the type III error plus “over-identification–” the lowest probability of 
making a wrong exclusion is actually for a significance level of 0.001; as can be seen in the Figure 
8. Therefore, the “over-identification–” rates should be considered for a more accurate and thorough 
analysis of the type III error as well as to avoid false interpretation of the results. 

To conclude, it is always important to emphasize that the level of significance that is used to 
determine the theoretical critical value of the test is not the probability of the type I error of the 
iterative data snooping procedure. It is the only type I error of the local test (w-test) for a single 
alternative hypothesis. The type I error of iterative data snooping procedure can also be estimated 
based on Monte Carlo simulations. This topic will be covered in future work. 

5. Conclusions 

Monte Carlo methods are tools for solving problems using random numbers. Although this might 
sound somewhat specific and not very promising, Monte Carlo methods are fundamental tools in 
many areas of modern science. Here, the goal was to analyse the iterative data snooping testing  
procedure  to  locate  an  outlier  by  means  of  the  Monte Carlo Simulations (MCS).  

The MCS discards the use of the observation vector of Gauss-Markov model. In fact, the 
proposed method here depends only on design matrix A; the uncertainties of the observations yΣ ; 

and the magnitude intervals of simulated outlier. The random errors (or residues) are generated 
artificially from the normal statistical distribution, while the size of outliers is selected using 
standard uniform distribution.  

Iterative data snooping shows high success rates in the experiments of a GNSS network for a 
single outlier randomly generated between four and five standard deviations. The efficiency of the 
data snooping also depends on the significance level α. Here, the optimal value for the significance 
level was 0.001 (0.1%) for the GNSS network analysed. This value depends more or less on the 
functional and stochastic model.  

Furthermore, we note that the outlier identifiability in the iterative data snooping procedure is 
much more complex than that proposed by Prószyńsk (2015), because in our case a removal 
operation of observations is performed and we are not restricted only in the first adjustment run. 
Here the reliable identification of outlier not only depends on type III errors, but also the “over-
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identifications case”. The available probability of “over-identification–” allows enhancing the 
probability of type III error and avoids any misinterpretation. In the case of “over-identification+” 
requires further clarification in terms of theoretical basis and experiments (e.g. issues related to 
Minimal Detectable Bias and Minimal Identifiable Bias). The latter case will be investigated more 
closely in the next study. 

Finally, we show that MCS is a feasible method to compute the probabilities level associated to a 
statistical testing procedure regardless of the statistical tables.  Future studies should consider the 
case of multiple outliers which is a much more complicated problem and will be a topic of the next 
research. 
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