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Abstract  

Remote sensing provides a valuable tool for monitoring land cover across large areas of land. 
A simple yet popular method for land cover classification is Maximum Likelihood Classification 
(MLC), which assumes a single normal distribution of the samples per class in the feature space. 
Mixture Discriminant Analysis (MDA) is a natural extension of MLC which can be used with 
varying distributions and multiple distributions per class, which simplifies the classification 
process tremendously. We compare the accuracies of MLC and MDA (using a Gaussian and t-
distribution) as the number of training points are systematically reduced in order to simulate 
varying reference data availability conditions. The results show that the more robust t-distribution 
MDA performs comparatively with the Gaussian MDA and that both outperform MLC when 
sufficient training points are available. As the number of training points increases the MDA 
accuracies increase while the MLC accuracy stagnates. At very low numbers of training samples 
(ranging from 22 to 169 dependent on the class), there is more variability in terms of which 
method performs best.  

  

1. Introduction  

Remote sensing offers a cost effective manner in which to monitor large stretches of land 
(Khatami et al., 2016) and has found use in many fields including forest monitoring, land change 
classification and change detection, natural hazard assessment, agriculture, climate dynamics, urban 
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monitoring and ship monitoring (Khatami et al., 2016; Deng & Wu, 2013; Brusch et al., 2010). 
Given the current challenges relating to climate change and urban expansion, this ability to perform 
large scale land cover monitoring is becoming increasingly important for both environmental and 
spatial planning (Dewan & Yamaguchi, 2009).  

While many land cover classification approaches exist, one of the most popular is Maximum 
Likelihood Classification (MLC) (Al-Ahmadi & Hames, 2009). MLC is an older classifier, 
however, it remains popular due to its simplicity. MLC does however suffer from issues relating to 
the assumptions of unimodality and often a Gaussian distribution of the data (Campbell & Wynne, 
2011). These issues hinder the accuracy and effectiveness of the method. While some studies have 
made use of modified MLC methods (Mather, 1984; Maselli et al., 1995), a simple alternative, 
which can be seen as an extension of MLC, is Mixture Discriminant Analysis (MDA) which 
addresses the issues of  assumed unimodality and Gaussian distribution (Ju et al., 2003).   

There also exists, however, a challenge of training and validation data availability as field data 
may be expensive and/or time-consuming to obtain (Campbell & Wynne, 2011) and this may result 
in a low number of reference points which may affect the validity of the study (Congalton, 1991). 
Thus, it is important to understand how various levels of data availability affect the accuracy of the 
methods to be used. While many studies have considered effect of training sample selection on 
accuracy (Li et al., 2014; Jin et al., 2014; Millard & Richardson, 2015), this study focuses on 
assessing the accuracy of both MLC and MDA (using Gaussian and t-distributions) across varying 
levels of data availability in order to make recommendations regarding their use under such 
conditions. This study aims to make recommendations regarding the thresholds for the number of 
training points required to make the most of the advantages that MDA has over MLC. 

 

2. Maximum Likelihood Classification (MLC) 

MLC is a parametric pixel-based classifier which assigns classes based on the probability of 
belonging to a class. The training data are used to generate a single distribution (Gaussian is 
traditional especially in remote sensing software) to represent each class. Bayes’ rule is then used to 
generate the posterior probability of belonging to each class. The class which has the highest 
probability for a pixel is the class to which that pixel is assigned (Tso & Mather, 2009).  

Mathematically the posterior probability for an observation y belonging to a class k can be 
calculated using Bayes’ rule as:  

 

 

where observation y is the vector of spectral bands for the observed pixel, P(K=k) is the prior 
probability of class k, P(Y=y|K=k) is the probability that observation y belongs to class k. This 
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probability is calculated from the probability density function which is fitted to each class (Tso & 
Mather, 2009). The prior probabilities are often taken to be non-informative, that is every pixel has 
an equal probability of belonging to each class. 

MLC does, however, come with the assumptions that each class is unimodal and distributed 
according the class chosen (usually Gaussian) (Campbell & Wynne, 2011). In practice, this is not 
always the case as even within a single plant species you can have variation due to age and/or 
canopy illumination effects (shadows) (Ju et al., 2003).  To meet the assumptions within MLC, the 
user would need to split the training data for each class into separate classes but as this is 
impractical, it is often ignored, violating the assumptions which leads to lower accuracies (Hogland 
et al., 2013). Alternative methods such as the use of multiple endmembers in Spectral-Angle-
Mapper have also been used to address this variation (Cho et al., 2010). 

  

3. Mixture Discriminant Analysis (MDA) 

MDA is a classifier which can be seen as an extension of MLC (Ju et al., 2003). In MDA, the 
observed classes (i.e. the land cover classes) are treated as mixtures of unobserved sub-classes. The 
method fits a single distribution to each of these sub-classes rather than to each class as in MLC.  
The mixture of the sub-class distributions is known as a finite mixture model. Various distributions 
can be fitted and the user is not limited to the Gaussian distribution. MDA addresses the 
disadvantages of MLC relating to unimodal and Gaussian distributed data while maintaining the 
simplicity of interpretation and implementation (Ju et al., 2003). The finite mixture models used 
within MDA are capable of modelling arbitrarily complex distributions (Figueiredo & Jain, 2002).  

Considering a more general case of MDA than the Gaussian case considered by (Hastie & 
Tibshirani, 1996), we suppose we have K  classes and each class can be divided into kG  sub-
classes.  Suppose we also have training data, , for each class and a set of observations 

 for which the true class is unknown and that we wish to classify. Thus the 

problem is to create a classifier using the training data to label the observations Y. 

As mentioned, MDA makes use of a finite mixture model to generate a multi-modal distribution 
for each class. The resulting probability of an observation y given class k is calculated as: 

 
where  is the mixing proportion of sub-class j of class k and  is the probability density 

function associated with subclass j of class k (MacLachlan & Peel, 2000).  

As with MLC, the EM algorithm is often used to estimate the probability density functions using 
the training data , however, other options such as numerical optimisation are available 

(MacLachlan & Peel, 2000; Adortse, 2016). The resulting probabilities are used in conjunction with 
Bayes’ rule (Equation [1]) to calculate the posterior probability of class membership for an 
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observation. The class assignment works as in MLC where the pixel is assigned to the class with the 
highest posterior probability. 

In this study, we consider both a Gaussian MDA and a t-distribution MDA, as the t-distribution 
is known to be more robust to outliers due to its heavier tails (Peel & McLachlan, 2000). 

 

4. Methodology 

4.1   Study Area 

The study area for this project extends from the edge of Khayelitsha to Gordon’s Bay, in the 
Municipality of Cape Town, South Africa (Figure 1). This area falls within the Cape Floristic 
Region – one of six plant kingdoms in the world – with high levels of biodiversity (City of Cape 
Town, 2012). However, much of the natural vegetation in this area has been degraded or lost due to 
the high human pressure in that area (City of Cape Town, 2012).  

 

 
Figure 1. The study area location within South Africa and the False Bay area of Cape Town, 

South Africa 

This area is also representative of urban coastal areas in South Africa and contains the land cover 
classes expected of this type of area. These classes are described in Table 1.  

4.2  Data 

This study makes use of Level 2a WorldView-2 satellite image acquired on the 2nd October 2014 
provided by the South African National Space Agency. The image has a spatial resolution of 2m 
and consists of eight spectral bands, namely, coastal, blue, green, yellow, red, red edge, near 
infrared 1 and near infrared 2.  The image was obtained in tiles and was mosaicked before 
atmospheric correction using ATCOR-2 software embedded in IDL (Richter & Schläpfer, 2017).  
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Table 1. Land Cover Class Descriptions 

  

4.3  Training and Validation Data 

Due to the large extent of the study area, ten sub-sites were selected as core sites for selection of 
training and validation points (Figure 2). Pixels of each land cover type were identified in a desktop 
approach (digitised from the screen) for each sub-site from the WorldView-2 image based on the 
analyst’s prior knowledge of the study area. This approach is consistent with that of Otukei and 
Blaschke (Otukei & Blaschke, 2010). It is noted that not every sub-site contains all the land cover 
classes. The samples from each sub-site are randomly split into 70% training and 30% validation. 
This random split is performed 10 times to allow for 10 different runs of the methods.  

To maximise the representability of the training and validation data for the classification of the 
whole image, the training and validation sets are composed of the previously split training and 
validation sets from the sub-sites. That is, the training and validation set for classifying the whole 
image for run one is composed of the training and validations sets for run one from each of the sub-
sites. The maximum total number of training samples per class ranged from 580 to 6531. The 
minimum number of points per class after training point reduction was 21 (see section 4.4 below). 

Class Description 

Algae Any vegetation growing on beach rock (partly submerged or not) 

Bare Ground Any kind of uncovered soil 

Built Up/Urban Any man-made structure including but not limited to buildings, roads and bridges 

Herbaceous 

Vegetation 

Grass and other herbaceous i.e. non-woody vegetation  

Shadow Shadow caused by tall buildings and steep relief  

Sparse Vegetation Mixture of herbaceous and/or woody vegetation and bare ground and/or built up/urban 

and/or beach sand 

Water Any kind of open water bodies  

Woody Vegetation Trees and shrubs  
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Figure 2. Sub-site locations with study area (WorldView-2 image) 

 
4.4  Systematic Reduction of Training Points 

The initial number of training points per land cover class (i.e. reduction level 0) can be seen in 
Table 2. This level of high training point availability is taken as the most desirable case for 
classifications. This high amount of training data is usually not available in real-world applications. 
Thus, to assess the accuracy over smaller training sets, every third point was deleted from each land 
cover class’s training set to generate the next reduction level. The deletion of every third point was 
chosen as an attempt to maintain variability amongst the training points during the reduction 
process. Once a further reduction would result in a training set of 20 or less points, the reduction 
was halted for that land cover class and its training set remained the same until all classes reached 
that point. This is done as a minimum of 21 points is required per sub-class by the EMMIXSkew 
plugin (Wang et al., 2013) used to fit the distributions. This process can be seen in the pseudo-
algorithm found in Algorithm 1. 

The number of training points per land cover class for every reduction level can be seen in Table 
2.  The halting of the reduction can be seen for Algae at reduction level 8, where the training set 
remained the same until all classes reached their lowest allowable number of training points. 

Due to the minimum of 21 points per sub-class, the maximum number of sub-classes (which we 
cap at ten) changes as the level of reduction is increased, this can be seen in Table 3. It is noted that 
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reduction levels 13 and 14 only allow one sub-class per class which effectively reduces the 
Gaussian MDA to the standard conditions of a MLC.  

 
Algorithm 1. Reduction in training points 

  

 

 

 

 

 

 

 

 

 

 

 

4.5  Expectation Maximisation (EM)-Algorithm 

The EM-Algorithm is used within the EMMIXSkew plugin (Wang et al., 2013) in R (R Core 
Team, 2014) to fit the Gaussian and t-distribution MDA models. Each land cover class was fitted 
with a range of sub-classes from one to the number found in Table 3. In order to increase the 
probability of the EM algorithm converging to a global maximum rather than a local maximum or 
saddle point, the training was run 100 times using varying starting values. The default settings of 
"nrandom=10" initialisation and a maximum of 1 000 iterations per EM algorithm run were used.  

 
Table 2. Number of training points available per class for each reduction level 

Reduction  

Level/Class Built Up Bare Herb. Veg Sparse Veg Water Woody Veg Shadow Algae 

0 6531 4592 1851 1964 3277 2277 704 580 

1 4354 3061 1234 1309 2184 1518 469 370 

-2 2902 2040 822 872 1456 1012 312 257 

3 1934 1360 548 581 970 674 208 171 

4 1289 906 365 387 646 449 138 114 

5 859 604 243 258 430 299 92 76 

for run in 1:maxruns{ 

 for class in 1:number_of_classes{ 

 reduction_level=0 

 import training_data 

 save training_data as run_class_reduction_level 

 while (2/3)*length(training_data)>20 { 

  reduction_level+=1 

  training_data=training_data with every third row deleted 

 save training_data as run_class_reduction_level 

 } 

 } 

} 
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6 572 402 162 172 286 199 61 50 

7 381 268 108 114 190 132 40 33 

8 254 178 72 76 126 88 26 22 

9 169 118 48 50 84 58 26 22 

10 112 78 32 33 56 38 26 22 

11 74 52 21 22 37 25 26 22 

12 49 34 21 22 24 25 26 22 

13 32 22 21 22 24 25 26 22 

14 21 22 21 22 24 25 26 22 

 
Table 3: Maximum number of sub-classes per class for each reduction level 

 

Reduction  

Level/Class Built Up Bare Herb. Veg Sparse Veg Water Woody Veg Shadow Algae 

0 10 10 10 10 10 10 10 10 

1 10 10 10 10 10 10 10 10 

2 10 10 10 10 10 10 10 10 

3 10 10 10 10 10 10 10 8 

4 10 10 10 10 10 10 6 5 

5 10 10 10 10 10 10 4 3 

6 10 10 8 8 10 9 2 2 

7 10 10 5 5 9 6 1 1 

8 10 8 3 3 6 4 1 1 

9 8 5 2 2 4 2 1 1 

10 5 3 1 1 2 1 1 1 

11 3 2 1 1 1 1 1 1 

12 2 1 1 1 1 1 1 1 

13 1 1 1 1 1 1 1 1 

14 1 1 1 1 1 1 1 1 
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4.6  Choosing the Number of Sub-classes 

For the MLC, the model fitted was the Gaussian MDA with a single sub-class per class, as these 
are equivalent when the assumptions of MLC are ignored as is often done. However, for the 
Gaussian MDA and t-distribution MDA, the optimum number of sub-classes per class was chosen 
using the Bayesian Information Criterion (BIC) and the Integrated Likelihood Criterion (ICL). This 
generated four models namely Gaussian MDA with BIC (GMM BIC), Gaussian MDA with ICL 
(GMM ICL), t-distribution MDA with BIC (TMM BIC) and t-distribution MDA with ICL (TMM 
ICL). Biernacki et al., 2000 compared ICL and BIC and found that while BIC provided a sufficient 
estimation of the distribution, it over-estimated the number of sub-classes, while ICL provided a 
better estimate of the true number of sub-classes (Biernacki et al., 2000).  

4.7  Classification 

To convert the trained models into classifications, Python was used to assign each pixel to the 
land cover class for which it had the highest posterior probability. To generate the posterior 
probabilities, non-informative priors were used (a pixel has the same probability of being each class 
before any spectral information is considered). This was done for both MDA and MLC.  

4.8  Validation 

The validation points are taken as those remaining after the random selection of the training 
points (70% of all the samples). The number of validation points per class is kept constant as the 
number of training points is systematically reduced. The number of validation points per land cover 
class can be seen in Table 4.  

 
Table 4. Number of validation points per land cover class 

Class Number of Validation Points 

Algae 249 

Bare Ground 1968 

Built Up/Urban 2799 

Herbaceous Vegetation 793 

Shadow 301 

Sparse Vegetation 844 

Water 1404 

Woody Vegetation 975 
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For assessment of the overall performance of the different classification approaches, the Kappa 
statistic (Campbell & Wynne, 2011), the total disagreement, quantity disagreement and allocation 
disagreement statistics (Pontius & Millones, 2011) were generated from the confusion matrix.  

An overview of the workflow followed can be seen in Figure 3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Workflow for generation of results 

 

5. Results and Discussion 

Each of the algorithms was run ten times, corresponding to the ten random splits of the sampled 
data into training and validation points. For both MDA algorithms, both BIC and ICL were used to 
determine the optimal number of sub-classes. For comparison of the methods, we consider the 
average accuracy statistics per method. These statistics are the average of the statistics across the 
ten runs. It is important to note that in all Figures below the number of training points decreases 
with increased reduction level, this means that results on the left of the graph have been trained with 
more points than those on the right. The number of training points available per land cover class at 
each reduction level can be seen in Table 2. The average Kappa statistic, average total 
disagreement, average quantity disagreement and average allocation disagreement can be seen in 
Figures 4, 5, 6 and 7 respectively. 
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Figure 4. Average Kappa accuracy statistic per method across all training point reduction (see 

Table 2) 

 

 
Figure 5. Average total disagreement statistic per method across all training point reduction (see 

Table 2) 

 

Figure 6. Average quantity disagreement statistic per method across all training point reduction 
(see Table 2) 
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Figure 7. Average allocation disagreement statistic per method across all training point reduction 

(see Table 2) 

When considering the Kappa statistic, the Gaussian MDA and t-distribution MDA methods give 
similar results and as reduction level increases they converge to the MLC method. The MLC 
method appears to have a limited capacity for accuracy and as the reduction level increases, the 
accuracy slowly decreases. Total disagreement shows similar trends to the Kappa statistic. From 
reduction level 9 there appears to be more variability in terms of the best performing method and 
this may be due to the small number of sample points per class, as well as the associated limiting of 
the maximum number of sub-classes that MDA can produce for many of the land cover classes. 
Majority of this variation appears to come from the quantity disagreement as the allocation 
disagreement remains smoother in its increase.  

It is interesting to note that while the total disagreement for MLC slowly increases with 
reduction level, the quantity disagreement decreases and the allocation disagreement increases. That 
is, as the number of training points is increased, the allocation disagreement is lowered but the 
quantity disagreement is increased. With regards to MDA, the general trend is that the increase in 
total disagreement (as the number of training points is reduced) is composed of increases in both the 
quantity and allocation disagreements. Conversely, when the number of training points is increased, 
both the quantity and allocation disagreements decrease. 

   

(a) (b) (c) 
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(d) (e) (f) 

   

(g) (h)  
Figure 8: (a) WorldView-2 image, (b) GMM MLC run one reduction level 0 classification, (c) 
GMM BIC run one reduction level 0 classification, (d) GMM ICL run one reduction level 0 
classification, (e) TMM BIC run one reduction level 0 classification, (f) TMM ICL run one 
reduction level 0 classification, (g) GMM MLC, BIC and ICL run one reduction level 14 

classification and (h) TMM BIC and ICL run one reduction level 14 classification for an area 
around sub-site two 

For visual comparison, the classified images for run one at reduction levels 0 and 14 around sub-
site two are shown in Figure 8 along with the WorldView-2 image for the same area. At reduction 
level 0, images for all five classifications are shown, while at reduction level 14, there are only two 
images as GMM BIC, GMM ICL and GMM MLC are identical as are TMM BIC and TMM ICL. 
These images demonstrate the increase confusion between classes when fewer training points 
(reduction level 14) are available.  

6.  Conclusion 

To obtain the best results from MDA (both Gaussian and t-distribution), it is important to have 
sufficient training points to allow for a reasonable number of sub-classes per class. With lower 
numbers of training points, there is more variability between the MDA methods, however, the 
differences in accuracy between the MDA and MLC methods at these levels is much smaller than 
when more training points are available. The results of the Gaussian MDA and t-distribution MDA 
are comparable, however, the t-distribution MDA is known to be more robust than the Gaussian and 
as such, we recommend the use of t-distribution MDA when a reasonable number of training points 
is available.  
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The number of training points deemed to be reasonable would vary depending on the variability 
within the spectral signatures of a class. For a class such as built up/urban which comprises of many 
different surface types and colours, 150 training points may be deemed reasonable, however for a 
class such as herbaceous vegetation, 60 training points might be deemed reasonable. We 
recommend that if possible a minimum of 100 training points per class be used to allow MDA to fit 
at least 4 sub-classes. However, a minimum of 50 training points per class will still allow MDA an 
advantage over MLC as it can fit two sub-classes per class.  When very few training points (less 
than 50) are available it is recommended to test all the methods due to variability across the runs at 
these levels.  

In this study we ignored the unimodal Gaussian assumptions of MLC and this will have an effect 
on accuracy, however, this is often done in practice due to the difficulty and time taken to split the 
classes. In contrast, MDA performs the splitting of the classes within the algorithm itself making it 
easy to fit and saving on analyst time (versus splitting of classes for MLC) making it more user 
friendly than MLC. While this splitting of classes within the algorithm does make training slower 
than MLC, the time taken is not from the analyst but rather computational time.  
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