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Abstract 

This study combined logistic regression, Markov chain and the Dyna-CLUE models to simulate 
land use patterns in the Bonsa catchment of Ghana, West Africa. Historical model validation 
produced Relative Operating Characteristics (ROC) statistics above 0.69; indicating a significant 
relationship between the driving factors and the land cover types, and overall accuracy of 71% as 
well as a Kappa statistic of 55%, indicating a moderate agreement between observed and simulated 
land uses. The statistics of the historical model were used to simulate three plausible future land 
use scenarios. The historical simulation revealed that increases in population density, proximity to 
roads and expansion of mines were the major drivers that significantly increased the probability of 
settlement expansion and deforestation. Simulations of future land use showed that settlement 
expansion and deforestation may increase by similar margins for all scenarios, but the increase in 
secondary forests may be higher for the economic growth and reforestation (EGR) scenario, 
compared to the economic growth (EG) and the business-as-usual (BAU) scenarios. The mining 
areas may double in the future for all the scenarios, but shrubs/farms may increase in the BAU 
scenario, but reduce marginally in the EG and the EGR scenarios. The results of this study can be 
used to support land use planning and evaluation of the impacts of different future development 
pathways. 

 
Keywords: Bonsa catchment, deforestation, driving factors, Dyna-CLUE, land use, logistic 
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1. Introduction 

Land cover/land use patterns over a period of time are determined by demographic, economic 
and environmental driving factors (Verburg et al., 1999; Castella et al., 2007) both at a national and 
global scale. An understanding of the patterns and the processes of land cover/land use changes is 
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vital for effective land use planning (Dietzel and  Clarke, 2006) and sustainable natural resources 
management (Castella et al., 2007). In Sub-Saharan African countries, such as Ghana, the majority 
of economic activities are centred on the exploitation of natural resources, which has resulted in 
rapid degradation of the natural environment over the past several decades. For example, the Gross 
Domestic Product (GDP) of Ghana increased from $8 billion in 1984 to $32 in 2010 (Kwakye, 
2012). The increase in GDP has mainly resulted from growth in mining, oil and the agriculture 
sectors, including cocoa, tuber and fruit production, which have caused substantial land cover 
changes. 

Although several land use mapping (Braimoh and  Vlek, 2004; Attua and  Fisher, 2010; FAO, 
2010; Laurin et al., 2013; Aduah et al., 2015) and a few land use modelling studies (Mertens and  
Lambin, 2000; Braimoh and  Vlek, 2005; Houessou et al., 2013) have been conducted in West 
Africa; in Ghana there is still a considerable knowledge gap on land use change processes, patterns 
and their driving forces at the local scale. In Ghana, only one study (Braimoh and  Vlek, 2005) has 
attempted a quantitative explanation of the land use change processes in relation to their driving 
forces for the northern savannah ecological zones. To the best of our knowledge, there is a lack of 
deeper understanding of the land use change processes in the rainforest regions of Ghana. Studies in 
rainforest regions of Ghana have mainly quantified the land use changes (Attua and  Fisher, 2010; 
Schueler et al., 2011; Aduah et al., 2015), none attempted to gain a quantitative and deeper 
understanding of the processes of changes in relation to their driving forces. Several case studies 
worldwide (Verburg and  Veldkamp, 2004; Verburg and  Overmars, 2009), show that there is a 
potential for a deeper understanding of the land use change processes in relation to their driving 
forces at the local scale, through spatially distributed land use modelling.  

Land cover/use models provide a means to generate multi-temporal land cover maps from which 
the dynamism in land cover can be ascertained. During the past three decades, models have been 
used to establish quantitative relationships between land cover changes and their driving factors, in 
order to generate an understanding of the change processes and to simulate dynamic land cover/land 
use (Verburg et al., 1999; Hu and  Lo, 2007), which can be used for the assessment of impacts of 
either future changes or impacts of different scenarios of changes (Robinson et al., 1994; Dietzel 
and  Clarke, 2006). Land use models also contribute to effective planning by allowing the 
evaluation of different development scenarios (Dietzel and  Clarke, 2006). This is especially 
important for data scarce regions, such as West Africa, where there is limited satellite images and 
aerial photographs, to derive land cover maps at regular time intervals.  

Land cover models can be classified as stochastic or deterministic (Park et al., 2011b). The 
stochastic models include Markov Chains (MC), logistic regression (LR) and Cellular Automata 
(CA), while the deterministic models include Agent Based Models (ABM) (Dietzel and  Clarke, 
2006; Le et al., 2012) and models based on Geographical Information Systems (GIS). Though 
stochastic models incorporate biophysical, demographic and economic driving factors to simulate 
land use changes, they have difficulty in incorporating agents (Arsanjani et al., 2013). Agents 
include factors that are based on human decisions and activities. Purely statistical models also have 
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a limitation in terms of dynamic modelling of the competition between different land uses (Dietzel 
and  Clarke, 2006). The Dynamic Conversion of Land Use and its Effects (Dyna-CLUE) model, 
however, combines features of both deterministic and stochastic modelling, as well as estimation of 
land use demands, based on a Markov chain or any other appropriate technique (Verburg and  
Veldkamp, 2004; Verburg and  Overmars, 2009; Park et al., 2011a; Hu et al., 2013).  

This study aims to extend the knowledge on spatial patterns of land use changes in relation to 
their driving forces in West Africa, by conducting an empirical spatially distributed land use 
modelling, using the Bonsa catchment in southern Ghana as a study site and it builds on a previous 
land use change analysis study by Aduah et al. (2015). The main objective of the study to determine 
the significant driving forces of land use changes and to simulate potential land use maps for the 
Bonsa catchment. The data generated can be used to gain a deeper insight into land use change 
processes, as well as guide effective land use planning and enables assessment of the impacts of 
land use changes on the environment. 

 

2. Methods and Data  
 

2.1. Description of Study Area 

The Bonsa catchment, a sub-catchment of the Ankobra River basin in Ghana, West Africa 
(Figure 1), is located between longitudes 1° 41´ and 2° 13´ West and latitudes 5° 4´and 5° 43´ 
North. The catchment straddles the intersection of four districts, namely: Twifo-Heman Lower 
Denkyira to the north, Tarkwa Nsuaem and the Prestea-Huni Valley to the west and Mpohor Wassa 
East to the east. The catchment has a generally low relief, with the elevations ranging between 30 
and 340m above mean sea level and it drains an area of 1482km2. The rainfall regime is bimodal 
and ranges between 1578mm and 1982mm per annum and the annual average minimum and 
maximum temperatures are 22ºC and 32ºC, respectively. Predominant land cover consists of 
evergreen and secondary forests, with scattered shrubs and farms. During the past 26 years, (i.e 
between 1986 and 2011), deforestation rates have been increasing: 0.33% between 1986 and 1991, 
0.70% between 1991 and 2002 and 2% between 2002 and 2011 (Aduah et al., 2015). Major 
economic activities in the catchment include open-pit gold mining, rubber cultivation and small-
scale cocoa and food crop production.  
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Figure 1: Map of the Bonsa catchment of the Ankobra basin, Ghana 
 

2.2. Model Details 
 

2.2.1. Dyna-CLUE Model 

The dynamic Conversion of Land Use and its Effects modelling frame work (Dyna-CLUE), was 
developed by the Institute of Environment at the University of Wageningen, Netherlands, to 
simulate land use change (Verburg and  Veldkamp, 2004). The model uses empirical relations 
between land use, its driving factors, as well as dynamic modelling of the competition between land 
use types. Dyna-CLUE has two modules, (i) the non-spatial and (ii) the spatial allocation module. 
The non-spatial module calculates predicted land use change areas (demand) for each land use type, 
while the spatial module allocates the predicted (demand) land use areas spatially in the study 
region. Land use demand is the area per land use type and it is associated with both potential and 
actual land use. The land use demand was predicted outside of the Dyna-CLUE model based on 
historical land use changes obtained from Aduah et al. (2015) as well as a Markov chain model 
(Robinson et al., 1994; Hu et al., 2013) shown in equation 1.  

 
                                                                [1] 

Where Xn is the computed land use demand, X (n-1) is the initial land use demand (the land use 
map of 2002) and P is the annual land use transition probability matrix, derived from the land use 
transition probability.  
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The land use transition probability between the selected initial year (2002) and the final year 
(2011), obtained from a companion paper (Aduah et al., 2015) were used in Takada’s software 
(Takada  et al., 2010) to compute the annual land use transition probability matrix (Table 1).  

 
Table 1: Annual transition probability matrix (2002 to 2011) 

 

 
The spatial allocation module in Dyna-CLUE uses the output of the non-spatial module (i.e. area 

predicted in equation 1), spatial/area policy restrictions, land use conversion sequence matrices and 
land use location suitability to predict the new location of land use types. Spatial policy restrictions 
are used to prevent land use changes in selected areas of importance such as nature reserves or 
protected areas, while land use conversion sequence matrices indicate land use transition sequences 
(Verburg and  Veldkamp, 2004), but land use location suitability indicates the probability of 
occurrence of each land use class within a study area. In this study two spatial restriction maps were 
used– i.e. one that allowed land cover changes within the whole study area and another, which 
allowed land cover conversions to urban and mining areas in  selected parts of the study area. For 
mining areas, the spatial restriction map was extracted from lease and prospecting license 
boundaries (Aduah et al., 2015), while for the settlements, the map was based on historical land 
cover trends. The conversion sequence matrix (Table 2) in this study was derived by inspecting the 
land use/cover change matrix between 2002 and 2011. In Table 2, 1 indicates that transition is 
allowed, while 0 indicates that transition is not allowed. For the location suitability, maps of 
individual land use classes, as well as the land use change driving factors (population density, 
distance from centre of town, distance from roads, distance from Tarkwa, elevation, distance from 
rivers, slope, aspect, distance from outskirts of town, distance to mining concessions etc) were 
converted to ASCII files and imported to IBM SPSS statistical software to perform binary logistic 
regression. The suitability/probability of each land use class given the driving factors was computed 
according to equation [2]. 

 
)                                        [2]                                

Where Pi is the probability of occurrence of a land use class in location i, X is the location factor 
and β is the logistic regression coefficient and 1,2…n is the number of coefficients/factors 

The Dyna-CLUE model also uses land use conversion elasticity, which controls the reversibility 
of land cover changes (Verburg and  Veldkamp, 2004) and it ranges from 0 for land cover types, 

Secondary Water Evergreen Settlements Shrubs/farms Mining 
Land cover forest forest areas
Secondary forest 0.86 0 0.01 0 0.06 0

To 2011 Water 0 0.83 0 0 0 0.01
Evergreen forest 0.03 0.03 0.98 0.01 0.02 0.01
Settlements 0 0 0 0.96 0.01 0.01
Shrubs/farms 0.11 0 0.01 0.03 0.89 0.02
Mining areas 0 0.16 0 0 0.01 0.94

From 2002
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which are easily changed (e.g. shrubs to urban), to 1 for those that are not easily changed (e.g. urban 
to forest). The binary logistic regression coefficients and the other variables calculated above were 
input in the Dyna-CLUE model, to simulate land cover/land use. Figure 2 shows how the inputs of 
the Dyna-CLUE model were organised to simulate land use/cover maps.  
 

 

Figure 2: Land use/land cover modelling procedure 
 

Table 2: Conversion matrix for 2002 to 2011 land use simulations 

Secondary Water Evergreen Settlements Shrubs/farms Mining areas
forest forest

Secondary forest 1 0 1 0 0 0
To 2011 Water 0 1 0 0 0 0

Evergreen forest 0 0 1 0 0 0
Settlements 0 0 0 1 1 0
Shrubs/farms 1 0 0 0 1 0
Mining areas 0 0 0 0 0 1

Land cover

From 2002

 

 
2.2.2. Model Validation and Future Land Use Scenarios 

The model validation was performed using two metrics; namely the relative operating 
characteristics (ROC) statistics (Verburg and  Veldkamp, 2004) of the logistic regression to test the 
validity of the relationship between the land use types and the driving factors and the Kappa statistic 
(Arsanjani et al., 2013), as well as the overall accuracy of the simulated map. After validating the 
Dyna-CLUE model for the historical land use simulation, three future scenarios/demands of land 
use changes were created to simulate potential land use in the Bonsa catchment. The land use 
scenarios were: i) the business-as-usual (BAU) scenario, where the current economic and 
environmental objectives persist, ii) the economic growth scenario (EG), where economic 
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development is assumed to be promoted through expansion in mining operations, as well as 
increased rubber production and (iii) the economic growth and reforestation (EGR), which is similar 
to the EG, but prescribes higher rates of forest rehabilitation into the future. 

 

3. Results 
 

3.1. Model Validation and Simulated Land Use Maps 

The logistic regression results are shown in Table 3 for the eleven independent driving factors 
and the six land cover classes in the Bonsa catchment. The ROC statistics ranged from 0.69 for the 
secondary forest to 0.98 for the settlements and mining areas. The regression coefficients, as well as 
the constants, were significant at the 95% confidence level, indicating that the logistic regression 
model is capable of predicting the probability of occurrence of the land covers in the catchment. 
The positive coefficients show that the probability of observing the land covers increase for the 
independent factors, while the negative coefficients show the opposite. Table 3 shows that with 
increasing population density, the probability of occurrence of secondary forest and evergreen 
forest; reduces, while the probability increases for settlements and shrubs/farms. This indicates that 
population growth contributes to deforestation, as a result of increasing area of shrubs/farms and 
settlements in the catchment. 

 
Table 3: Binary logistic regression statistics of 2011 land cover and driving factors 

Factor Secondary forest Water Evergreen forest Settlements Shrubs/farms Mining areas
Coefficient* Coefficient* Coefficient* Coefficient* Coefficient* Coefficient*

2002 population density -0.0060 -0.0191 0.0078 0.0051
Distance from centre of towns 0.0002 -0.0001 -0.0009 -0.00001
Distance from roads -0.0003 0.0005 -0.0019 -0.0004
Distance from Tarkwa -0.00001 -0.0001 0.00004 0.00003
Elevation 0.0018 0.0263 0.0013 -0.0110 -0.0009 0.0161
Distance from rivers 0.0001 0.0001 0.00002 -0.0001
Aspect 0.0001 -0.0007
Distance from outskirts of towns -0.00001 0.0001 -0.0032 -0.0002
Easting coordinates -0.0001 0.00002 0.00001 0.00002
Northing coordinates 0.00003 0.00003 -0.0001
Distance from mining concessions -0.0014 -0.0020
constant 14.0627 -5.4279 -29.0138 -5.5325 21.2753 -0.2289
ROC statistic 0.6908 0.9746 0.8247 0.9844 0.7881 0.9820
*all coefficients significant at p < 0.05  
 
Furthermore, the probability of observing settlements and shrubs/farms increases with proximity 

to centre of towns, roads and outskirts of towns, but increasing elevation has the opposite effect. 
Additionally, the logistic regression model shows that for mining and water (mainly mining tailings 
dams), the probability of their occurrence increased with elevation, but decreased with distance 
from mining concessions.  

Validation of the historical model indicated that the simulation corresponded well with the 
historical land use, resulting in an overall accuracy of 71% and a Kappa statistic of 55% (Table 4), 
after comparing the observed and the simulated land use map of 2011(Figure 3). According to 
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Landis and  Koch (1977), a Kappa of 55% demonstrates that the model’s predictive power is 
moderate. The moderate performance of the model in the Bonsa catchment can be attributed to 
inadequate data and lack of information on land use decisions of individuals and organisations. 
Generally, information on the land use plans in the catchment was not available, although this type 
of information is necessary for projecting changes in the land cover/land use (Verburg and  
Veldkamp, 2004). Furthermore, the land use maps of 2002 and 2011 also introduced uncertainties 
into the modelling. This is because the discrimination between secondary forest and shrubs/farms 
was poor; although the overall mapping accuracies of the land use maps were acceptable (Aduah et 
al., 2015). Therefore the potential future land use maps used for analysis in this study was limited to 
the near future (2030, 2040) time slice only, as the uncertainties in simulation increases with time. 
Figure 3 and 4 show the results of future land use projections. The figures show that the settlement 
areas in the scenarios increased by almost the same margin, while secondary forests decreased in 
the BAU scenario, it increased in the EG and the EGR scenarios, with higher increases in the EGR 
than the EG.  

 
Table 4: Error Matrix for observed and simulated 2011 land cover map 

Land cover Secondary Water Evergreen Settlements Shrubs/ Mining areas Total
forest forest farms

Secondary
forest

Simulated 2011 Water 0 2 0 0 1 5 8
land cover Evergreen forest 177 0 2540 0 238 4 2959

map Settlement 13 0 15 63 54 0 145
Shrubs/farms 375 0 205 19 938 22 1559
Mining area 3 1 6 1 5 69 85
Total 1167 3 3026 84 1544 105 5929

Overall  accuracy= Total diagonal elements 4211
Kappa = 55%

No. of points on reference data (observed 2011 land cover map)

599 0 260 1 308 5 1173

(4211/5929)*100= 71%  
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Figure 3: Observed (a) and simulated (b) land cover maps for 2011 and (c) predicted land cover 
maps for 2030 and 2040 
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Figure 4: Total projected population of Bonsa catchment (1986 to 2070), land cover  areas from 

1986 to 2011 (observed) and simulated land cover areas from 2020 to 2070 for the BAU scenario 
 

4. Discussion 

This study has demonstrated a moderately successful modelling of land cover/use changes for 
both historical and future scenarios, using a combination of logistic regression, Markov chain and 
the Dyna-CLUE models. Logistic regression modelling was able to identify eleven driving factors 
(Table 3) in the Bonsa catchment which significantly influences occurrence of the land use types, 
while the Dyna-CLUE model successfully allocated the land use types spatially by modelling the 
dynamic competition between the different land use types. The dynamic competition was controlled 
by the statistics of the regression model, the demand, the change matrix (transition sequences) and 
the elasticity of the land cover (Verburg and  Overmars, 2009). As a result of data scarcity and poor 
accuracy of the available data, comparison of simulated and observed land cover of 2011 resulted in 
only a moderate overall accuracy of 71% and a Kappa of 55%. However, there is confidence in the 
model for projecting near future land uses as the logistic regression coefficients involving the 
driving factors and land uses is significant at the 95% confidence level and since the overall trend 
(Figure 3) in land cover changes is well simulated. Also since the purpose of the modelling was to 
provide plausible pathways of land cover changes under several scenarios, the modelling approach 
is consistent with previous studies (Park et al., 2011a).  

For the future scenarios of land cover changes (BAU,EG, EGR), the study reveals that in the 
future, there may be extensive land cover/land use changes in Bonsa catchment (Figure 3 and 4), 
through population growth and increased surface mining activities(Aduah et al., 2015). The 
simulated increase in mining areas is not surprising because several mining leases and prospecting 
licenses have been granted for mining to start in the near future (Aduah et al., 2015). The historical 
(Aduah et al., 2015) and predicted land uses (2030 and 2040) indicates that the Sahel Syndrome 
(Petschel-Held et al., 1999) may exist in the southern part of Ghana, as the increasing poor 
population of Bonsa catchment, who have no other livelihoods, convert forested lands into 
agriculture, thereby contributing significantly to degradation of the environment. With regards to 



South African Journal of Geomatics, Vol. 7. No. 3, November 2018 

289 

influence of population size on deforestation, results of this study are similar to those for the 
Eastern province of Cameroon (Mertens and  Lambin, 2000) and the West Biosphere reserve in 
Northern Benin (Houessou et al., 2013), but contradict that of Braimoh and  Vlek (2005), where 
population did not contribute significantly to deforestation in the northern Savannah of Ghana. 
However, accessibility factors had significant influence on deforestation, similar to the results of 
previous studies in West Africa (Braimoh and  Vlek, 2005; Houessou et al., 2013). 

It is important to state that the maps generated under the land use scenarios in this study do not 
represent real land uses. The maps are only a projection of different development pathways for the 
catchment and are intended to be used to support the formulation/revision and evaluation of land 
use policies. Simulating land use is important in providing data to gain a deeper understanding of 
the land use change process, as well as for effective land use planning and natural resources 
management. It appears that the plethora of economic, environmental, health, social and health 
problems facing West African countries is largely the result poor land use planning, as the causes of 
these problems are linked to land use decisions at the local scale. Settlement expansion as urban 
sprawl, for example, does not only lead to potential pollution of surface and ground water through 
nonpoint source pollution and increases in carbon emissions with removal of vegetation and 
burning of fossil fuels (Randolph, 2012), it also makes it challenging to provide social services and 
amenities to citizens as the urban area increases at a rate faster than the planning and execution of 
development by government authorities. Hence, adoption of consistent evaluation and simulation 
techniques will provide planners in West Africa with the requisite information to assess different 
development scenarios, which account for important variables such as population growth and 
changes in per capita incomes, far into the future, and so control land use changes and plan 
development sustainably. The methodology adopted in this study was consistent and considered 
reasonable, as it ensured that multiple land use classes were simulated spatially, based on 
biophysical and socio-economic drivers. The adopted methodology also ensured that simultaneous 
removal and regeneration of vegetation at different parts of a catchment, which occurs in reality, 
was taken into account.  

Although as the period of simulation exceeds ten years, the credibility of land use projections 
starts to reduce with time (Robinson et al., 1994). The long-term projections of land use, which 
were made in this study are necessary because they lead to understanding of any feedbacks beyond 
the historically observed land use change process. Long-term simulations of land use also produce 
long-term data, consistent with GCM climate projection time scales, which are required for 
assessment of Global Change impacts far into the future. Furthermore, regardless of the 
deficiencies, projections of land use using consistent techniques as demonstrated in the study, is 
superior to ad hoc predictions using expert judgement or the use of assumed land use scenarios. 
This study has emphasised the importance of adequate information on drivers of land use changes 
to successful simulation, as the lack of adequate data in the Bonsa catchment resulted in only a 
moderately successful simulation. However, the use of multiple land use scenarios (BAU, EG and 
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EGR) is a way to quantify the uncertainties associated with relying on a single scenario and use of 
inadequate as well as poor data, thereby enhancing the applicability of simulation results. 

 

5. Conclusion 

The study has demonstrated a successful combination of logistic regression, Markov chain and 
the Dyna-CLUE models to simulate land cover/land use in the Bonsa catchment, Ghana, West 
Africa. The study has identified eleven driving factors, which significantly influence land cover 
changes in the Bonsa catchment and has generated land cover maps for both the historical, as well 
as future time slices. The results of the study reveal that increases in population density, proximity 
to roads and increase in surface mining activities are the major drivers of deforestation and 
settlement expansion in the catchment. It is therefore suggested that in order to promote sustainable 
development, land use planning in the Bonsa catchment should not be for the urban areas alone, as 
is the case in many districts in Ghana, but for the entire catchment and should incorporate 
protection of forests and promotion of sustainable mining operations. Although the accuracy of the 
simulation for the 2011 land cover was only moderate, spatially explicit and dynamic simulation of 
multiple land cover changes is a far more realistic way to generate potential future land use data 
than the use of extreme assumptions of land changes. The dynamic land use simulation accounts for 
both biophysical and socio-economic driving forces, as well as enforcement of known trends of 
land cover changes within the study area in a spatially explicit manner. Therefore the maps and 
statistics generated in this study can be used to support land use planning, as well as assess the 
impacts of potential future land cover changes on the environment. 
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