
South African Journal of Geomatics, Vol. 11. No. 1, February 2022 

13 

Detecting land use and land cover change for a 28-year period using 
multi-temporal Landsat satellite images in the Jukskei River 

catchment, Gauteng, South Africa. 
 

Tshepo Mawasha1 and Wilma Britz2   
 

1Department of Geoscience, Nelson Mandela University, Gqeberha, South Africa 
s212355686@mandela.ac.za 

2Department of Geoscience, Nelson Mandela University, Gqeberha, South Africa 
wilma.britz@mandela.ac.za  

 

DOI: http://dx.doi.org/10.4314/sajg.v11i1.2 
 

Abstract 

The Jukskei River catchment is one of the urban catchments in the central part of Gauteng province 
covering a large part of City of Johannesburg Metropolitan Municipality and small part of Tshwane 
and Ekurhuleni Metropolitan Municipalities that have witnessed tremendous land use/land cover 
(LULC) change over time. Jukskei River catchment is one of the fastest growing catchments in terms 
of population and change in LULC over time. Therefore, it is very important to detect the nature and 
extent of these changes in order to identify the direction and future expansion of LULC within the 
catchment area. To accomplish that, multi-temporal satellite remotely sensed data acquired from 
Landsat-5 Thematic Mapper (TM) 1987, Landsat-5 Thematic Mapper (TM) 2001 and Landsat-8 
Operational Land imager (OLI) 2015 were used to detect LULC change in Jukskei River catchment 
area. The Jukskei River catchment was classified into four major LULC classes including: Built-up 
area, bare surface, sparse vegetation and intact vegetation. The analysis of the results revealed that 
for the past 28 years (i.e., 1987-2015), built-up and bare surface areas have increased by 56.2% 
(42713.1 ha) and 8,2% (6225.1 ha) while intact and sparse vegetation have decreased by 9.8% 
(7455.0 ha) and 25.8% (19659.6 ha), respectively. The overall accuracies for 1987, 2001, and 2015, 
were 85.9%, 87.5%, and 92.5% respectively, with Kappa Index of Agreement (KIA) of 81.3%, 83.3%, 
and 90% which indicates the accuracy of classified images with the reference images.  The results 
revealed by this study can be used for decision-making activities and policy development regarding 
land use management within the catchment. 
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1. Introduction 

Land use/land cover (LULC) change is one of the most important processes related to global 
change (Foley et al., 2005). LULC has been acknowledged as chief drivers of environmental change 
at all spatial and temporal levels (Mishra et al., 2014). Humans play a major role as forces of change 
in the environment, influencing changes at all levels ranging from local to global (Paiboonvorachat 
and Oyana, 2011). Among others, there are many driving forces contributing to LULC change which 
could be social, economic, institutional, political or geographic in nature (Lepers et al., 2005).  These 
direct drivers impact at several levels such as local conditions (subsistence livelihood, poverty and 
culture); at national levels (population growth, domestic markets, state policies, legislations and laws) 
and at the international level (world markets’ demands, commodity prices for goods and services) 
(Koranteng et al., 2016). Therefore, reliable and updated information on the LULC maps and their 
dynamics can help to provide base information for further decision-making in catchment management 
activities (Alphan, 2003). 

Long-term image archives of the earth resource satellites are a useful resource for LULC change 
detection studies. Yuan et al., (2005) developed a methodology to map and monitor LULC change 
using multi-temporal Landsat TM data in the seven-county Twin Cities Metropolitan Area of 
Minnesota for 1986, 1991, 1998 and 2002. Their result showed that between 1986 and 2002 the 
amount of urban land increased from 23.7% to 32.8% of the total area, while rural cover types of 
agriculture, forest and wetland decreased from 69.6% to 60.5%. Amin et al., (2012) carried out a 
study on LULC cover mapping of Srinagar city in Kashmir Valley. They observed that the Srinagar 
city has experienced significant changes during 1990 to 2007. The analysis also showed that changes 
in land use pattern have resulted in the loss of forest area, open spaces, etc. Rawat et al., (2013) have 
carried out a study on LULC of five major towns (i.e., Ramnagar, Nainital, Bhimtal, Almora and 
Haldwani) of Kumaun Himalaya in Uttarakhand (India). Based on 20 years of satellite data from 1990 
to 2010, they found that the built-up area has been increased about 8.9% and 3.9%, respectively, while 
area under other land categories such as vegetation, agricultural land and water body have decreased 
about 9.4%, 0.7% and 2.8%, respectively. 

The Jukskei River catchment has experienced rapid industrial development, increase in built-up 
areas and population growth. Detecting the past and the present LULC conditions play a key role in 
decision-making when managing human activities within the catchment area. However, within the 
Jukskei |River catchment, there is limited number of research studies that has been made in analysing 
and detecting LULC change using GIS and RS to capture the patterns, trends and drivers of landscape 
changes over time.   However, multi-temporal remote sensing data contained much more information 
which benefit for improving LULC classification accuracy, mainly because different vegetation types 
usually had different growth characteristics and presented different spectral features in different 
periods (Shao et al., 2001; Jia et al., 2013; Odindi et al., 2012; Li et al., 2014). Therefore, this paper 
is based on application of multi-temporal remotely sensed data using a GIS and RS techniques 
approach in mapping, detecting, analysing the annual LULC change rate for the past 28 years from 
1987 to 2015. The results achieved through this study provide support for decision-making and 
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understanding of drivers that contribute to LULC change within the catchment, which are required to 
assists with LULC practices for sustainable development. 

 

2. Materials and research methods 

2.1. Description of the Study Area 

The Jukskei River catchment is one of the largest catchment areas in Gauteng Province with the 
City of Johannesburg Metropolitan Municipality covering a large portion of the catchment area 
followed by Tshwane Municipality and Ekurhuleni Metropolitan Municipality. The catchment is 
located at South Latitude 26° 08’ and East Longitude 28° 14’. The elevation of the downstream 
catchment ranges from 1319.12 m to 1497.62 m and the upstream catchment is characterised by an 
elevation ranging between 1378.08 m and 1802 m. The catchment area covers an area of 
approximately 800 km2 with the Jukskei River being the longest river among others (Figure 1). The 
catchment is characterized by a relatively dry and sunny climate. Temperatures are usually fairly mild 
due to the city’s altitude, with an average maximum daytime temperature of 25 ºC in the summer, 
dropping to around 17 ºC in winter. The study area has different land uses, including industrial, trade, 
educational facilities, tourism destinations, places of entertainment all dominated by vast areas of 
predominantly built-up areas. The Jukskei River is the largest river within the catchment area with a 
total length of about 68 km and is joined by numerous tributaries. Additionally, the catchment is 
gauged and has five gauging stations with scattered and one located at the catchment outlet: there is 
also one global weather station (i.e., Climate Forecast System Reanalysis) and two South African 
weather stations. 

 

2.2. Satellite Data Acquisition  

Landsat data provide the longest terrestrial remote sensing record and have a long history for land 
cover mapping because of their moderate spatial resolution and near global coverage (Roy et al., 
2014; Wulder et al., 2016). With the freely available Landsat data, it is now possible to reconstruct 
the history of the Earth's surface back to 1972 (Pflugmacher et al., 2012). In this study, three cloud-
free summer images acquired by Landsat satellites in 1987, 2001 and 2015 (Table 1) were 
downloaded from the U.S Geological Survey (USGS) Centre for Earth Resources Observation and 
Science (EROS) (https://earthexplorer.usgs.gov/).  
  

https://earthexplorer.usgs.gov/
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Table 1: Satellite image acquisition dates and specifications. 

 
 

 

 

 

Figure 1: Location of the study area 

2.3. Atmospheric Correction of Landsat Images 

Topographic correction is the process of reducing variation of image values resulting from 
differences in surface terrain illumination and shadows cast during image acquisition (Vanonckelen 
et al., 2013). Atmospheric correction aims at determining the true surface reflectance values by 
removing the atmospheric effects resulting from the scattering and absorption of electromagnetic 
radiation by gases and aerosols when passing through the atmosphere to the satellite sensor 
(Hadjimitsis et al., 2010). Many studies have acknowledged that atmospheric correction is one of the 
most important corrections in land cover classification, especially when working with multiple and 
multi-temporal scenes (Song et al., 2001; Young et al., 2017).  

For the purpose of this study the atmospheric correction algorithm was performed using Dark 
Object Subtraction to remove the atmospheric effects resulting from the scattering and absorption of 

Satellite Sensor Path/Row Date of 
acquisition 

Resolution 
(meters) 

Spectral 
bands 

Landsat-5 TM 170/078 06-Jan-87 30 7 

Landsat-5 TM 170/078 13-Feb-01 30  7 

Landsat-8 OLI 170/078 20-Feb-15 30 
 11 
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electromagnetic radiation by gases and aerosols when passing through the atmosphere to the satellite 
sensor (Hadjimitsis et al., 2010). The Dark Object Subtraction approach argues that there can be a 
substantial likelihood that at least a few pixels in an image should be black. (i.e., 0% Reflectance) 
(Chavez, 1988). Therefore, Semi-Automatic Classification plugin in Quantum Geographical 
Information System (QGIS) was used for pre-processing of Landsat images (i.e., Landsat-5 TM, and 
Landsat-8 OLI) by applying DOS atmospheric correction. Equation 1 illustrates the DOS atmospheric 
correction method where the lowest image digital values (DN) are subtracted from all other DN values 
across an image: 

Lλ = Lsλ  +  Lp [1] 

where:  

Lλ is the corrected DN value, Lsλ is the original DN value and Lp is the DN value of the dark pixels 
(Chavez, 1988; Song et al., 2001). 

 

2.4. Image Classification and Change Detection Techniques  

In this study image classification was performed by capturing different pixels and assigning them 
to certain classes in accordance with the information categories provided by the users (Perumal & 
Bhaskaran, 2010). Anderson et al., (1976) point out that there is no ideal classification for LULC, the 
process is subjective, depending on the different perspectives in the classification process. For this 
study, a supervised maximum likelihood classification method was applied. The maximum likelihood 
method is a common method in remote sensing owing to its robustness and was therefore 
implemented to classify the images (Strahler, 1980; Ediriwickrema & Khorram, 1997; Zheng et al., 
2005; Mawasha & Britz, 2020).  

Prior to image classification, training areas were captured using a false colour composite for each 
of the satellite images of 1987, 2001 and 2015 by selecting a minimum of 10 pixels per polygon. In 
this study, four classes of LULC (i.e., built-up area, degraded vegetation, bare surface, and intact 
vegetation) were selected with the use to google earth image (see Table 2). To determine the changes 
in LULC in different years, a post-classification change detection algorithm was used in this study. 
Post classification comparison is a common method used for change detection (Alphan et al., 2009; 
Mas, 1999; Chen et al., 2003). This method detects changes in land cover type by comparing pixel 
by pixel for the classified images. The use of the post classification comparison technique resulted in 
a cross-tabulation matrix (i.e., LULC change transition matrix) which was computed using the 
CROSSTAB module in the TerrSet Geospatial Monitoring and Modelling software. A transition 
matrix is a fundamental starting point for the analysis of land change (Pontius et al., 2004). Gross 
gains and losses were calculated for one period covering 28 years (i.e., 1987-2015) to detect changes 
and LULC transformation among LULC classes and to identify.  
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Table 2: Description of LULC classes in the Jukskei River catchment area. 

LULC type Description 

1. Built-up area This group applies to regions of high population growth, suburban, commercial 
and business areas, roads / flooring and leisure facilities. 

2. Bare surface This group covers regions not protected by trees, fields with exposed soils, 
degraded soils and mined areas. 

3. Intact vegetation This category applies to areas covered by dense vegetation, cropland, agricultural 
land and natural landscaping. 

4. Sparse vegetation 
It consists of areas of scattered vegetation, areas of shrubs covering and small 
wooded trees mixed with grasses. This group applies to areas with very little 
vegetation coverage. 

 
Table 3: LULC change transition matrix for comparing two maps between observation times 

(Source: Munthali, Botai, Davis, & Abiodun, 2019). 

Time 2 (T2) 

 LULC1 LULC2 LULC3 LULC4 LULC5 Total T1 Loss 

T
im

e 
1 

(T
1)

 

LULC1 A11 A12 A13 A14 A15 A1+ A1+ - A11 

LULC2 A21 A22 A23 A24 A25 A1+ A2+ - A22 

LULC3 A31 A32 A33 A34 A35 A1+ A3+ - A33 

LULC4 A41 A42 A43 A44 A45 A1+ A4+ - A44 

LULC5 A51 A52 A53 A54 A55 A1+ A5+ - A55 

Total T2 A+1 A+2 A+3 A+4 A+5 1  
Gain A+1 - A11 A+2 - A22 A+3 - A33 A+4 -A44 A+5 - A55   

As shown in Table 3, the computed LULC change transition matrix consisted of rows (displaying 
LULC class category for time 1, T1) and columns (displaying LULC class category for time 2, T2). 
The notation A12 denotes the proportion of the landscapes which experiences a transition from 
LULC1 to LULC2. The diagonal entries indicate the total amount of persistence, which dominates 
most landscapes, including those where authors claim that the change is important and/or large (Wear 
& Bolstad, 1998; Mertens and Lambin, 2000; Geoghegan et al., 2001; Chen et al., 2002). In the Total 
column (i.e., total T1), the notation A1+ denotes the proportion of the landscape in LULC1 in time 1, 
which is the sum over all 1. In the Total row, the notation A+ 1 denotes the proportion of the landscape 
in LULC1 in time 2, which is the sum over all 1. The additional column on the right indicates the 
proportion of the landscape that experiences gross loss of LULC1 between time 1 and time 2. The 
bottom row indicates the proportion of the landscape that experiences gross gain of LULC1 between 
time 1 and time 2. 
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2.5. Annual LULC change rate for the period of 1987–2001, 2001–2015, and 1987–2015 

After classifying all the images, the trend and rate of LULC changes in the catchment area was 
determined by subtracting the total area for each identified classes of 1987 from 2001, 2001 from 
2015 and 1987 from 2015 which the outcomes could be positive (increasing) or negative (decreasing). 
The percentage and rate of LULC change were computed by the following formula (Kindu et 
al., 2013; Demissie et al., 2017): 

 

Percentage of change = A − B
B� × 100 [2] 

Rate of change (ha/year) = A − B
T�  [3] 

where: 

 A and B are the final and initial area coverage of LULC types during that specific period, and T 
represents year difference between the initial and final period. A LULC classified image for 1987 
was used as the initial image and the 2015 image as the final image and a change statistics table was 
created for analysis. 

 

2.6. Accuracy Assessment 

In remote sensing, accuracy assessment is mandatory and is important for providing information 
about the quality of the produced classification (Okeke & Karnieli, 2006; Rwanga & Ndambuki, 
2017). For the purpose of this study, a confusion error matrix was used for the assessment. The 
confusion matrix shows errors resulting from missing and mixing of information, various accuracy 
measurements, such as the overall accuracy, producer’s accuracy, user’s accuracy and Kappa Index 
Agreement (KIA) (Zhou & Xiong, 2012). In order to assess the accuracy of the classification method, 
a stratified random sampling method was applied to select 50 points per class i.e., 200 points for each 
classified image. With the aid of the aerial photo mosaic (1:25 000), invariant feature points and 
topographic sheets, the accuracy of the images was assessed using the error matrix technique 
described by Congalton & Plourde (2002). The user's accuracy, producer's accuracy, overall accuracy 
as well as Kappa coefficient were calculated as follows:  

User accuracy is the likelihood that a pixel relates to a certain group of LULCs as defined by 
Petropoulos, Kalaitzidis & Vadrevu (2012); the algorithm properly identifies the pixels within the 
same class. It displays the percentage of likelihood the that class on the ground is actually defined by 
the class in which a pixel is identified into an image (Story & Congalton, 1986). The sum of the row 
is calculated by dividing each diagonal part into one confusing matrix: 

User Accuracy = Total number  of correctly correct pixels in a category
Total reference pixels (i.e.,   column total)

× 100   [4] 

https://environmentalsystemsresearch.springeropen.com/articles/10.1186/s40068-019-0148-y#ref-CR56
https://environmentalsystemsresearch.springeropen.com/articles/10.1186/s40068-019-0148-y#ref-CR27
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Although the accuracy of the producer is an indicator of the accuracy of a specific classification 
system, it indicates the correctly categorized percentage of a particular ground class. The diagonal 
elements in the table are divided by the sum of each column by dividing: 

Producer Accuracy = Total number of correct pixels in a category
Total reference pixels (i.e.,   row total)

× 100   [5] 

Overall accuracy is the number of pixels that have been accurately identified from the validity data 
collection over the overall number of pixels used as a percentage for the accurate measurement 
(Petropoulos, Kalaitzidis & Vadrevu, 2012).  

Overall Accuracy = Total number of pixels accurately classified
Total number of referenced  pixels 

× 100   [6] 

The Kappa Index of Agreement (KIA) is the most widely used metric to determine the degree of 
agreement between the comparison and validation datasets, as stated by Foody (2010). It indicates 
the degree of reliability of image classification. The KIA statistical range is between zero and one. 
The KIA is determined according to Congalton (1991) formula: 

KIA = N∑ xii  k
i=1  −  ∑ (xi+ x+i)k

i=1  
N2 − ∑ (xi+ × x+i)k

i=1
    [7] 

where:    

N = Total sum of correct pixels, xii = Diagonal cells of the error matrix, xi+ = Total of observation 
in row i (right of matrix), x+i = Total of observations in column i (bottom of the matrix). Kappa values 
have also been categorized into three possible ranges; value greater than 0.80 (i.e., > 80%) signifies 
strong agreement; between 0.40 and 0.80 (i.e., 40 – 80%) signifies moderate agreement; below 0.40 
(i.e., < 40%) signifies poor agreement (Congalton and Green, 2009), and this ranges were employed 
in this study to assess the accuracy. 

 
3. Results and discussion 

3.1. Spatio-temporal distribution of LULC Change from 1987 to 2015 

Figure 2 (a-c) shows the LULC classification maps for 1987, 2001 and 2015 that were generated 
by using the maximum likelihood method. Four distinguishable LULC classes were identified in this 
study, these are built-up area (BA), bare surface (BS), intact vegetation (IV) and sparse vegetation 
(SV). From the classified images, the results indicated that there were noticeable changes in the built-
up areas, intact vegetation and sparse vegetation LULC classes within the Jukskei River catchment 
area over the last 28 year period. Large portions of sparse and dense vegetation declined and were 
converted into built-up areas.  

Between 1987 and 2015, the built-up area increased from 28700.4 ha (37.7%) in 1987 to 36313.6 
ha ,47.8% of the total catchment area in 2001; and increased to 56.2%, covering an area of 42713.1ha 
in 2015 indicating 18.5% of an areal increment of the total catchment area (Table 4). The total area 
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of the catchment area covered by bare surface was 3482.9 ha (4.8%) in 1987, however, in 2001 the 
coverage increased to 6550.3ha (8.6%). This declined again to 6225.1ha (8.2%) in 2015. A change in 
the total area of sparse vegetation was also observed. Classification indicated that the sparse 
vegetation covered 27715.4 ha in 1987 constituting about 36.4% of the total area of the catchment 
area and this area was reduce to 14621.4 ha in 2001 covering 19.2% and increased again in 2015 by 
25.8% covering an area of 19659.6 ha of the catchment area. Thus, approximately 10.6% of the sparse 
vegetation diminished in 28 years. This might be due to an increase in anthropogenic activities that 
led to gradual conversion of other LULC classes into built-up areas or human development areas as 
the area faced significant increase in population during the past decades within the catchment area. 
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Figure 2: LULC change maps over time for the study area (a) 1987; (b) 2001; and (c) 2015. 
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Table 4: LULC change of the Jukskei River catchment area during 1987–2015 

LULC 

Classes 

LULC area (ha) and %   Change in LULC (ha) and %  

1987 2001 2015  1987-2001 2001-2015 1987-2015 

Area (ha) % Area (ha) % Area (ha) %  Area (ha) % Area (ha) % Area (ha) % 

BA 28700.4 37.7 36313.6 47.8 42713.1 56.2  +6399.5 17.6 +7613.2 26.5 +14012.7 48.8 

BS 3482.9 4.6 6550.6 8.6 6225.1 8.2  +3067.7 88.1 −325.5 −5 +2742.2 78.7 

IV 16154.1 21.2 18567.3 24.4 7455.0 9.8  +2413.2 14.9 −11112.3 −60 −8699.1 −53.9 

SV 27715.4 36.4 14621.4 19.2 19659.6 25.8  −13094 −47.2 +5038.2 34.51 −8055.8 −29.1 

Total 76052.8 100 76052.8 100 76052.8 100  - - - - - - 

− Indicates loss in LULC class 

+   Indicates gain in LULC class 
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3.2. Accuracy assessment of the classified images 

The classification accuracy for the LULC maps derived from satellite data was assessed using 
three different time periods by means of a confusion error matrix. Assessment of the classification 
results proved that the supervised maximum likelihood classification produced valid and reliable 
LULC maps since all the overall accuracies and the KIA were higher than 80% (Congalton and Green, 
2009). The overall accuracies for 1987, 2001, and 2015, were 85.9%, 87.5%, and 92.5% respectively, 
with KIA of 81.3%, 83.3%, and 90% which indicates the accuracy of classified images with the 
reference images. Producer’s and user’s accuracies were also high, ranging from 70% to 100%. The 
Landsat-5 TM data resulted in the lowest overall accuracy (85.9%) and KIA (81.3%) of the three 
datasets. The low spatial resolution combined with the spectral similarity of built-up and bare surface 
areas made it difficult to separate these two classes on the Landsat-5 TM imagery. Furthermore, a 
decrease of image spatial resolution leads to spectral mixing of different categories which produce 
spectral confusion between cover materials (Yang and Lo, 2002).  As stated by Anderson et al., (1976) 
a reliable land cover classification needs the minimum overall accuracy value computed from an error 
matrix to be 85%. Therefore, the overall accuracies for the study periods are in agreement with 
findings of other studies.  Hence, the results revealed by this study can be used by land use policy 
makers and catchment managers for decision-making activities and policy development regarding 
land use management within the catchment. 

 

3.3. Spatio-temporal changes over time (1987-2001, 2001-2015 and 1987-2015) 

In this study, LULC change detection of each LULC for the last three decades was examined 
between years (i.e., 1987-2001, 2001-2015 and 1987-2015) and the relative changes were obtained 
in both hectares and percentage see Table 4 and Figure 3. The analysis of the results reveals that there 
was increase in areal coverage of built-up areas during 1987–2001 (Table 4) – from 6399.5 ha (26.5%) 
to 7613.2 ha (17.6%) during 2001 to 2015. The analysis of LULC change for the last 28-years 
(between 1987 and 2015) shows a remarkable areal increment of 14012.7ha (48.8%) for built-up area 
class. This increase in built-up area may possibly be the result of the growing demand for new housing 
and settlements, as well as other administrative developments within and surrounding the study area 
(see Figure 2 & 4). There was an increase of bare surfaces by 3067.7ha in the first period between 
1987 and 2001 that is a gain of 88.1%.  
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Figure 3: LULC change from 1987 to 2015. 

However, in the second period between 2001 and 2015 the share of bare surface coverage 
decreased slightly by 325.5 ha (5% lost). Therefore, over the 28-year period, that is from 1987 to 
2015, the share has increased by 78.7% (2742.2 ha). Intact vegetation was increased by 2413.2 ha 
(14.9%) during the first period from 1987 to 2001. However, an intensive decline was observed 
during the second period from 2001 to 2015 by 11112.3 ha (60% lost). Furthermore, in the last 
28years, about 53.9% (8699.1ha) of intact vegetation land was lost and changed into other LULC 
classes. The sparse vegetation during the first period 1987 and 2001 decreased by 13094 ha (47.2% 
lost). However, in the second period between 2001 and 2015 the share of sparse vegetation coverage 
has increased by 34.5% due to shrinkage of intact vegetation and bare surface during the same periods. 
These radical changes in natural land cover are mostly attributable to human activities and 
urbanization and may have resulted in an increase in demand for arable land for administrative or 
settlement development, as is common practice in the study area (see Figure 2 & 3). 

 

3.4. Annual LULC Change rate for the period 1987-2015 

Table 5 represents annual LULC change rate for built-up areas, bare surface, intact vegetation and 
sparse vegetation between studied periods of 1987-2001 (first period), 2001-2015 (second period) 
and 1987-2015 (whole period). In terms of annual change rate, the built-up area shows a very high 
positive increase compared to other LULC types during the study period (Table 5). The analysis 
indicated that during the second study period 2001 and 2015, built-up area and sparse vegetation has 
increased at a rate of 543.8 ha\year (26.5% gain), 359.9 ha\year (34.1% gain), in the same period bare 
surface and intact vegetation decreased by 23.25 ha/year (5% loss) and 793.7 ha/year (60% loss) 
respectively. Likewise, during first study period 1987 and 2001 an expansion of built-up area with an 
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increase rate of 457.8 ha\year (17.6 % gain) was noticed. This might be due to residential development 
within the catchment area because during the same period, sparse vegetation rapidly decreased by 
935.3 ha\year (47.2% loss).  

Table 5: Annual LULC change rate in hectares as a percentage  

LULC Classes 

Annual LULC change rate (ha\year) 

1987-2001 2001-2015 1987-2015 

Area (ha) % Area (ha) % Area (ha) % 

Built-up area 457.1 17.6 543.8 26.5 500.5 48.8 

Bare surface 219.1 88.1 -23.25 − 5 97.9 78.7 

Intact vegetation 172.4 14.9 − 793.7 − 60 -310 − 

53.9 

Sparsed vegetation − 935.3 − 47.2 359.9 34.5 − 287.7 − 

29.1 

− Indicates loss in LULC class               

Over the last 28 year (i.e., 1987-2015) period, expansion of built-up areas and bare surface 
increased at a rate of 500.5 ha/year (48.8% gain) and 97.9 ha/year (78.7% gain) respectively, contrary 
to this the intact vegetation and sparse vegetation shrunk with a rate of 310 ha/year (53.9% lost) and 
287.7 ha/year (29.1% lost), respectively (Table 5). The annual LULC change rate for built-up area 
during 1987-2001 period is higher with 543.8 ha/year (26.5%) compared to period during 1987-2015 
with 500.5 ha/year (48.8%). This might be attributed by differences of years (i.e., 28 years) between 
the initial (i.e., 2015) and final period (i.e., 1987) compared to 1987-2001 and 2001-2015 which yield 
difference of 14 years. Within the Jukskei River, built-up area compared to other LULC classes shows 
a positive growth which will have an effect on catchment hydrological response and other associated 
environmental problems. 

 

3.5. LULC Transformation for the past 28-years (1987-2015) 

The classified images of 1987 and 2015 were further analysed using a cross-tabulation 
(CROSSTAB) module of TerrSet software to detect LULC transformation that occurred within the 
Jukskei River catchment area. Table 6 shows the result of LULC transformations which denotes the 
amount of area in LULC features transformed from pre-existing state to another in the study area 
during 1987–2015. The matrix is comprised of the early year (1987) in the column axis with similar 
classes from the later year (2015) on the row axis. The matrix provides probabilities that reflect the 
statistics of the direction of LULC change. The higher transformations were experienced in sparse 
vegetation and intact vegetation. During the study period, out of 10574 ha that was built-up area in 
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1987, 7737 ha was still built-up area in 2015 but 1390 ha was converted to sparse vegetation, and the 
rest to bare surface and intact vegetation by 153 ha and 1294 ha respectively. At the same time the 
increase of built-up area, from 1987 to 2015, was mainly from sparse vegetation (5218 ha). The 
analysis of the study further revealed that intact vegetation decreased from 6016 ha in 1987 to 2684 
ha in 2015. It retained 159 ha of it and was mainly replaced by built-up area and sparse vegetation. 
The class which replaced intact vegetation in 2015 was built-up area with an aerial coverage of 1294 
ha. Bare surface class retained 13183 ha, almost 75% of the total 14369 ha in 1987. It was reduced to 
1037 ha and mainly replaced by sparse vegetation, intact vegetation and built-up area in 2015 (Table 
6). The analysis of the classified images over time revealed that, built-up areas are generally expected 
to increase in aerial coverage compared to other LULC classes due to residential development or 
demand within the Jukskei River catchment. 

Table 6: LULC Transformation matrix for the past 28-years (1987-2015) 

Fi
na

l s
ta

ge
 2

01
5 

LULC classes 
Initial stage 1987 Area (hectares)  

BA             BS IV SV Total 

BA 7737 524 2494 5218 15973 

BS 153 13183 962 1037 15335 

IV 1294 461 159 770 2684 

SV   1390 201 2401 3225 7217 

Total 10574 14369 6016 10250 41209 

Class difference + 5399 + 966 −3332 −3033 0 

 No change 

 Change 

 

4. Conclusion 

This study demonstrated the efficiency of remote sensing Landsat data and GIS tools to develop a 
model that was used to detect LULC changes for a period of 28 years (i.e., 1987-2015). The analysis 
of the study revealed that there has been a change in LULC classes within the catchment area. 
Compared to other LULC classes such as bare surface, sparse vegetation and dense vegetation, the 
built-up area class increased in spatial extent throughout the period. This was due to industrial and 
residential development that is continuously increasing due to increase in population density and 
industrial development where impervious surfaces are replaced by pervious surfaces. The trend 
however, shows that sparse vegetation and intact vegetation has no potential to recover to its original 
state, as revealed by high conversion of sparse and intact vegetation to built-up area for the last 28-
years. Additionally, the analysis of the results revealed that more than half of the total catchment area 
is covered by built-up area in 2015 compared to 37.7% in 1987. This increases environmental risk 
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such as flash floods due to high surface runoff due to LULC change. The multi-temporal classified 
images provides details of the spatial distribution of LULC change that can be used for decision-
making for developing policies for land use practices within the catchment area. 
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