
South African Journal of Geomatics, Vol. 11. No. 1, February 2022 

65 

Estimating the performance of multi-rotor unmanned aerial vehicle 
structure-from-motion (UAVsfm) imagery in assessing homogeneous 
and heterogeneous forest structures: a comparison to airborne and 

terrestrial laser scanning 

 
Kenechukwu C. Onwudinjo1, Julian Smit2 

 
Geomatics Division, Department of Architecture, Planning and Geomatics, Faculty of 

Engineering & the Built Environment, University of Cape Town, Cape Town, South Africa,  
1kconwudinjo@outlook.com, 2Julian.Smit@uct.ac.za 

 

DOI: http://dx.doi.org/10.4314/sajg.v11i1.6 
 

Abstract 

The implementation of Unmanned Aerial Vehicles (UAVs) and Structure-from-Motion (SfM) 
photogrammetry in assessing forest structures for forest inventory and biomass estimations has 
shown great promise in reducing costs and labour intensity while providing relative accuracy. Tree 
Height (TH) and Diameter at Breast Height (DBH) are two major variables in biomass assessment. 
UAV-based TH estimations depend on reliable Digital Terrain Models (DTMs), while UAV-based 
DBH estimations depend on reliable dense photogrammetric point cloud. The main aim of this study 
was to evaluate the performance of multi-rotor UAV photogrammetric point cloud in estimating 
homogeneous and heterogeneous forest structures, and their comparison to more accurate LiDAR 
data obtained from Aerial Laser Scanners (ALS), Terrestrial Laser Scanners (TLS), and more 
conventional means like manual field measurements. TH was assessed using UAVSfM and LiDAR point 
cloud derived DTMs, while DBH was assessed by comparing UAVSfM photogrammetric point cloud 
to LiDAR point cloud, as well as to manual measurements. The results obtained in the study indicated 
that there was a high correlation between UAVSfM TH and ALSLiDAR TH (R2 = 0.9258) for 
homogeneous forest structures, while a lower correlation between UAVSfM TH and TLSLiDAR TH (R2 
= 0.8614) and UAVSfM TH and ALSLiDAR TH (R2 = 0.8850) was achieved for heterogeneous forest 
structures. A moderate correlation was obtained between UAVSfM DBH and field measurements (R2 
= 0.5955) for homogenous forest structures, as well as between UAVSfM DBH and TLSLiDAR DBH (R2 
= 0.5237), but a low correlation between UAVSfM DBH and UAVLiDAR DBH (R2 = 0.1114). The study 
demonstrated that UAV acquired imagery can be used to accurately estimate TH in both forest types, 
but has challenges estimating DBH. The research does not suggest that UAVSfM serves as a 
replacement for more high-cost and accurate LiDAR data, but rather as a cheaper adequate 
alternative in forestry management depending on accuracy requirements. 
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1. Introduction 

Many developing countries rely on National Forest Inventories (NFIs) for their biomass and 
carbon stock estimates (Kachamba et al., 2016). An effort to be part of The Reducing Emissions from 
Deforestation and forest Degradation plus forest conservation, sustainable management of forest and 
enhancement of forest carbon stocks (REDD+) mechanism, as it provides developing countries the 
financial incentive for reducing forest degradation and deforestation. One of the requirements to 
benefit from the REDD+ mechanism is that participating countries of the United Nations Framework 
Convention on Climate Change (UNFCCC) report their verified national biomass and carbon 
estimates. It is therefore expected of these countries to have capable systems for carbon monitoring 
and technologies or methodologies with which to obtain this data. Unfortunately, many of these 
countries do not have comprehensive NFIs, which are run at high operational cost and are highly 
labour intensive. Due to these limitations in the conventional acquisition of the necessary 
measurements and subsequent estimation of biomass, Remote Sensing has played a vital role in the 
last few decades with estimating above ground biomass more efficiently and cost effectively (Günlü 
et al., 2014).  

Remote Sensing has been used extensively in forest management and monitoring as it provides 
observations over a large area, can be repeated with ease after the initial application, and thereby 
offering a time saving alternative. Techniques such as the use of satellite imagery are a popular, 
inexpensive, and a valuable alternative to conventional field measurement methods (Maina et al., 
2017). However, satellite imagery is usually flawed with relatively poor spatial resolution, and is 
periodically captured with extensive cloud cover, making processing challenging. Radio Detection 
and Ranging (RADAR), Aerial Laser Scanning (ALS), Terrestrial Laser Scanning (TLS), and optical 
images such as satellite imagery or large scale photography have proven to be a useful as a substitute 
to conventional methods, but are expensive, labour intensive, and time-consuming (Brede et al., 
2017). These systems have been widely used in forest management with varying success due to 
differences in vegetation types, environmental conditions, forest canopy cover, and differences in the 
methods used (Kachamba et al., 2016).  

For instance, RADAR systems such as Space-borne Synthetic Aperture RADAR (SAR) have the 
advantage of being able to operate regardless of weather and daylight and are able to penetrate forest 
canopies. However, challenges exist with polarization, land cover, terrain properties, and the 
incidence angle of the sensor (Maina et al., 2017), as well as poor spatial resolution. Distinguishing 
vegetation types is also a challenge for RADAR as it is also hampered by poor spectral resolution. 
ALS and TLS are also weather and daylight independent, and have shown great potential for forest 
inventory acquisition and biomass estimation in varying forest structures (Iizuka et al., 2018; 
Kachamba et al., 2016). ALS, however, often has difficulty with adequately capturing below-canopy 
forest structures such as complete tree trunks in very dense forests, depending on the sensor used, 
while TLS boasts of the ability to capture below-canopy forest structures but falls short at capturing 
the top of the forest canopy (Wilkes et al., 2017). Both can be labour intensive, costly, and time 
consuming (Brede et al., 2017).  
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Unmanned Aerial Vehicles (UAVs) have been utilised over the last few decades in numerous 
surveying and monitoring applications. They have garnered subsequent use in forestry management 
in recent years, especially with the use of Structure-from-Motion (SfM) photogrammetry and readily 
available stereo-matching software in estimating forest variables in Pinus forests with relative success 
(Guerra-Hernández et al., 2016; Galidaki et al., 2017; Mlambo et al., 2017). Low altitude UAV 
imagery was used to assess forest canopy height (Lisein et al., 2013), used to generate regression 
models to calculate individual tree biomass (Jones et al., 2007), and used to produce digital surface 
models using photogrammetric methods (St-Onge et al., 2008). UAV imagery was also used to 
estimate biomass in dry woodlands of Malawi (Kachamba et al., 2016), to estimate Japanese Cypress 
(Chamaecyparis obtusa) TH and DBH from digital surface models and orthophotos using UAVSfM 
imagery (Iizuka et al., 2018), and to compare UAVSfM derived point cloud data of tree variables to 
LiDAR data (Puliti et al., 2015). 

Although UAVs and SfM have been used successfully in these studies, they are not without flaws 
in their results, although marginal. Puliti et al., (2015) recorded correlations of R2 = 0.710, R2 = 0.970, 
R2 = 0.600, R2= 0.600, and R2 = 0.850 for the variables Lorey’s Mean Height (hL), Dominant Height 
(hdom), Stem Number (N), Basal Area (G), and Stem Volume (V) respectively, but only after 
combining SfM and ALS data due to a deficiency in ground imagery data resulting from UAVSfM 
only achieving limited penetration of top-canopy forests. This is a known limitation with SfM.  Iizuka 
et al., 2018 obtained R2 = 0.2076 when estimating the relationship between SfM estimated TH and 
observed field measured TH of a dense and mature (planted in 1959) Japanese Cypress forest, R2 = 
0.7786 between canopy width and DBH, and R2 = 0.7923 between canopy area and DBH. Guerra-
Hernández et al., (2016) achieved a correlation of R2 = 0.810 when comparing low-cost UAVSfM 
derived TH to field measured TH in their 2016 study of a 23-year-old Pinus pinea forest plantation.  

From the studies mentioned above, it is evident that the accuracy of forest variables, such as TH, 
is dependent on the ability of the sensor to acquire not only above canopy forest structures, but below 
canopy forest structures as well, such as the ground. As such, the accuracy of TH estimations, for 
example, is a function of an accurate Digital Terrain Model (DTM). ALS sensors are able to acquire 
this with ease, as they are airborne sensors and the narrow laser beams are able to penetrate the small 
gaps between the vegetation, and while TLS can also achieve this it requires more manoeuvring 
around obstacles and a number of setups. A photogrammetric point cloud can be obtained of dense 
forests; however, this is often limited to the top canopy as no narrow laser beams are used here to 
penetrate the small gaps in the vegetation. Photographically derived terrain model data requires stereo 
image coverage, which is unlikely in areas with dense tree canopy structures. Oblique imagery can 
be incorporated to acquire additional below-canopy structures. In addition to nadir and oblique 
imagery, tessellated façade aerial imagery was incorporated, as was done by Carnevali et al., (2018) 
when using UAVs and photogrammetry for modelling historical buildings for architectural purposes. 
The tessellated façade imagery served as an alternative to terrestrial photography using DSLR 
cameras to acquire sufficient below-canopy forest structure data, thereby creating a completely UAV-
reliant approach in acquiring forestry data. 
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When estimating TH and DBH using photogrammetric point cloud data, several phases are 
involved. For TH, the point cloud needs to be classified into ground and non-ground (vegetation etc.) 
points. After which, the ground points can be used to create a continuous ground surface (DTM), the 
ground and non-ground points can be used to create a Digital Surface Model (DSM) which shows the 
elevation of all present structures. After which, a Canopy Height Model (CHM) can be created which 
shows the absolute height of any present structures thereby resulting in the TH (Brede et al., 2017). 
As for DBH, the measurements can be extracted from the photogrammetric point cloud 1.37m above 
the ground level (Malone et al., 2009), or the trunks modelled into cylinders and their diameters 
extracted (Olofsson and Holmgren, 2017). 

ALS and TLS LiDAR data are generally considered to be the best for creating DTMs and 
extracting forest variables (Brede et al., 2017; Colomina and Molina, 2014) as they are more reliable 
and technologically better suited to data capture in dense forest structure environments. However, 
these technologies can incur high costs. UAVSfM may offer a cheaper alternative to this, within limits. 

 

2. Materials and Methods 

2.1.  The Study Area 

The three study areas, HomoFS, HeteroFS1, and HeteroFS2, located at Rondebosch Common, the 
University of Cape Town, and Steenbras Dam Nature Reserve respectively, chosen for this research 
project are located in Cape Town (Figure 1), which lies along the western coastline of the Western 
Cape province of South Africa at latitude 33°55'33.0" S, longitude 18°25'23.6" E, approximately 30m 
above mean sea level. Cape Town was chosen because of its unique climate in comparison to the rest 
of the country. It has a winter rainfall Mediterranean climate compared to the subtropical summer 
rainfall climate experienced by the rest of the country (Tuswa et al., 2019). This makes Cape Town, 
and the Western Cape as a whole, a unique location for the growth of several vegetation types, 
including woody homogeneous and heterogeneous Pinus forest structures, that are unique to this 
region of South Africa, and the world. HomoFS, HeteroFS1, and HeteroFS2 were planned at each of the 
respective study areas as Regions of Interest (ROIs). 
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Figure 1. The location of the study areas and their relative location to each other. 

 

2.2. Equipment 

The data used in this research endeavour include 20MP 5472 x 3648 pixel nadir and oblique RGB 
UAV aerial imagery acquired using a DJI Phantom 4 Pro (Figure 2c), LiDAR data acquired with a 
Riegl miniVUX®-1UAV LiDAR sensor attached to a DJI Matrice 600, LiDAR data acquired with a 
Z+F Imager® 5010X laser scanner (Figure 2b), coordinates acquired with a Trimble R4 dGNSS 
(Figure 2a), and high-altitude low-resolution LiDAR data acquired from the City of Cape Town 
Municipality through the University of Cape Town. Conventional field measured DBH data was also 
collected at HomoFS for comparison to UAVSfM.  
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Figure 2. (a) Trimble R4 dGNSS, (b) Z+F Imager® 5010X laser scanner, (c) DJI Phantom 4 Pro 

Quadcopter 

 

2.3. Data Collection 

2.3.1. Design, Field Measurement and Ground Control Collection  

Field measurements were applied when measuring the DBH for trees at HomoFS (Rondebosch 
Common), while at the other two sites, HeteroFS1 (University of Cape Town) and HeteroFS2 (Steenbras 
Dam), DBH was collected using TLS (TLSLiDAR), ALS (ALSLiDAR) and a UAV with ALS 
(UAVLiDAR). The circumference of 30 trees with DBH ≥ 5cm at HomoFS were collected on 20 June 
2018, using a measuring tape wrapped around each tree trunk 1.37m above ground level (Malone et 
al., 2009). The DBH was calculated using an allometric equation, Equation 1, suggested by González-
Jaramillo et al, (2019), where 𝑑𝑑 is the tree diameter 𝑐𝑐 is the tree circumference, and 𝜋𝜋 is equal to 3.14: 

𝑑𝑑 = 𝑐𝑐
𝜋𝜋
  [1] 

Ground Control Points (GCPs) were included for each UAVSfM survey of each site to aid in 
correcting shifts and distortions due to possible loss of, or poor, Inertial Measurement Unit (IMU) 
and Global Navigation Satellite System (GNSS) measurements recorded by the UAV during flight 
(Puliti, 2017), and possibly improve overall image registration (Dandois et al., 2015). Easily 
identifiable features such as road markings or curb corners were identified as possible GCP markers 
where possible. Where no easily identifiable features existed, GCPs in the form of 1m by 1m black 
and white checkered mats were used as easily identifiable features to be captured in the UAV imagery. 
To achieve this, 30cm long 10mm round iron pegs were hammered into desired positions and the mat 
centres aligned with the pegs. The centres of the mats were surveyed for their precise vertical and 
horizontal positions. In this study, all GCPs were surveyed using a Trimble R4 differential Global 
Navigation Satellite System (dGNSS) unit. The dGNSS unit comprised of two Trimble R4 receivers, 
a base receiver, and a rover receiver. Both receivers were set to observe pseudo-range and carrier 
phase signals of Global Positioning System (GPS) and Global Navigation Satellite System 
(GLONASS) to provide the precise positions of the GCPs. Three different GNSS survey styles were 
used in this study. At HomoFS, a base was established, and the rover was used to navigate to and 
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survey in the positions of three Town Survey Marks (TSMs) around the area, as well as the GCPs in 
Real-time Kinematic (RTK) mode on 20 June 2018. At HeteroFS1, a Virtual Reference Station (VRS) 
was used to reference the surveyed GCPs to a network of Trigonometrical Beacons (Trigs) on the 
Continuous Operating Reference Stations (CORS) also in RTK mode on 12 February 2019. Finally, 
at HeteroFS2, a static survey was done as VRS was not available, nor were there any physical reference 
stations nearby to reference the survey to. This survey was done on 19 July 2018. The average 
baseline distances were 40km to any Trigs. GCPs were surveyed in Fast-Static and processed along 
with the base station later using Trimble Business Center (Trimble Geospatial, 2021). All GCPs were 
surveyed within deviations of 0.03m on the horizontal and vertical positions. Independent Check 
Points (CPs) were also surveyed to within 0.03m at HomoFS and HeteroFS1 as there were either TSMs 
or local control available in the area. This was however not possible at HeteroFS2 as there were no CPs 
available in the area.  

 

2.3.2. Collection of UAV Imagery 

Nadir and Oblique UAV imagery at HomoFS was acquired on three different days: 20 June 2018, 
22 June 2018, and 18 July 2018. Nadir and Oblique UAV imagery was also captured over two days 
for HeteroFS1, with the tessellated façade imagery being captured on a third day: 12 February 2019, 23 
February 2019, and 10 May 2019; while for HeteroFS2, nadir and oblique imagery were captured over 
five days: 19 June 2018, 31 August 2018, 4 October 2018, 10 December 2018, and the 7 February 
2019. Due to logistical challenges, image acquisition for the HeteroFS2 site was not always possible, 
hence the big gaps between the acquisition dates. This is a potential operational challenge, and as 
such lighting and shadow effects can be expected. During the study, measures were taken to fly under 
identical weather conditions and around noon to keep lighting effects on the image quality marginal 
and limit the presence of shadows. All UAVSfM imagery were acquired using a DJI Phantom 4 Pro 
(DJI, 2017) (Figure 2c), equipped with a 5472 x 3648 pixel RGB sensor that captures 20 megapixel 
images in the red, green and blue spectral bands. The camera shutter speed was set to 1/2000s. The 
Phantom 4 Pro weighs approximately 1388g as a unit, and is equipped with an IMU, and an on-board 
GNSS to assist with flight and autonomous positioning (DJI, 2017).  

Before every take-off for each survey, the mats were laid out over the peg positions and the corners 
fastened to the ground, and the take-off and landing zones were cleared of obstructions, e.g., by 
positioning the take-off and landing zone away from the tree edge. Since the GCPs were surveyed in 
the initial ground control survey, there was no need to survey them again. All the nadir and oblique 
flights were planned, and executed, on a Samsung Galaxy Note 5 smartphone with Pix4D Capture 
(Pix4Dcapture, 2019) (Figure 3). In all UAVSfM flights, forward lap and side lap were set to 80% to 
ensure adequate overlap of subsequent imagery, and due to South African Civil Aviation Authority 
(SACAA) regulations on safe and acceptable operations of a Remotely Piloted Aircraft System 
(RPAS), no flight was planned for, or flown, above 120m (400ft) above ground level (AGL) 
(SACAA, 2021). Table 1 below summarises the nadir flight parameters for each study area, while 
Table 2 shows that of the oblique flight parameters. Images flown at higher AGL provided a wider 
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scene for more features to be used in the image matching phase, while the images acquired at lower 
AGL provided higher resolution imagery for finer detail. 

 

 

 

Figure 3. Pix4Dcapture flight plans. (a) – (b) Double Grid Nadir flight for HomoFS, (c) Circular 
Oblique flight for HomoFS, (d) – (g) Double Grid Nadir flight for HeteroFS1, and (h) Circular Oblique 

flight for HeteroFS1 
 

Table 1. Flight plan specifications for nadir double grid flights of the study areas 

Parameters Values 
HomoFS HeteroFS1 HeteroFS2 

Flight Altitude (AGL) 40m and 50m 50m, 60m, 80m and 100m 35m, 50m and 100m 
Total Approx. Flight Time 17 min 19 min 42 min 

Size/Area 125m by 125m 102m by 105m 115m by 160m 
GSD 1.10-1.37cm/pix 1.37-2.74cm/pix 0.96-2.74cm/pix 

Front and Side Overlap 80% 80% 80% 
Flight Speed 5m/s 5m/s 5m/s 

Camera Angle 90° 90° 90° 
Approx. Number of Images 402 361 826 
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Table 2. Flight plan specifications for oblique flights of the study areas 

Parameters Values 
HomoFS HeteroFS1 HeteroFS2 

Flight Altitude (AGL) 20m and 30m 50m 30m, 50m and 60m 
Total Approx. Flight Time 8 min 4 min 26 min 

Size/Area 125m by 125m 102m by 105m 115m by 160m 
GSD 1.66-1.77cm/pix 1.86cm/pix 1.87-2.35cm/pix 

Capture Angle 10° 10° 10° 
Flight Speed 3m/s 3m/s 3m/s 

Camera Angle 35° and 45° 90° 90° 
Approx. Number of Images 247 88 360 

 

The tessellated façade flight was flown manually as there exists no automated flight plan on either 
Pix4D Capture or DJI Go 4 app (DJI, 2021), the native DJI flight app, for a tessellated façade flight 
pattern. Each flight line was planned and flown 2m apart, with an image captured every second. These 
parameters were implemented to ensure as much image overlap to acquire as much below-canopy 
detail as possible. Carnevali et al., (2018) used a similar flight pattern in surveying building façades 
for architectural purposes (p. 220). A summary of the flight specifications for the tessellated façade 
flight plan for HeteroFS1 is shown in Table 3. 

Table 3. Flight plan specifications for tessellated flight 

Parameters Values 
HeteroFS1 

Flight Altitude (AGL) 2m - 15m 
Total Approx. Flight Time 1 hour 5 min 
Total Horizontal Baseline 85m 
Vertical Baselines (each) 15m 

GSD 0.41cm/pix 
Flight Speed 3m/s 

Camera Angle 0° - 30° 
Approx. Number of Images 1255 

 

2.3.3. Terrestrial Laser Scanning Data Collection 

TLS LiDAR data was acquired for both HeteroFS2 and HeteroFS1 on 26 April 2019 and 10 May 2019 
respectively. However, the survey of HeteroFS2 was discarded for various reasons – some targets 
placed on the tree trunks fell off the trunks during the survey, making referencing between stations 
challenging; rampant subspecies below-canopy growth obstructed line-of-sight between some targets 
and the scan positions; the absence of distinct features in a monotonous environment also proved to 
be a challenge for referencing scans; and the thick forest top-canopy was a challenge for the in-built 
GPS to receive satellite signals to assist with instrument orientation and referencing. These challenges 
meant that the scans could not be registered with high enough accuracy and low enough residuals to 
constitute an accurate and successful survey; a return to site to repeat the survey was also not possible 
within a reasonable timeframe. The scans were acquired using Z+F Imager® 5010X Terrestrial Laser 
Scanner (Zoller + Fröhlich, 2020). The scanner, which weighed a total of 11kg with the battery 
included, was equipped with an IMU and a GNSS. 
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Several A4 sheets with opposing black triangles were taped onto as many tree trunks as possible 
to maximise the chances of clear line of sight between scan positions, while some A4 sheets were 
placed on easily identifiable positions on the parking bays. Some of these markers were used as CPs 
to validate the accuracy of the generated point cloud and models. The mats used in the UAVSfM 
surveys were also placed on their respective positions to be surveyed during the LiDAR survey to 
assist with registration of the scans. A total of 44 targets were initially placed throughout HeteroFS1 to 
assist with referencing the images on both the horizontal and vertical plane, however (González-
Jaramillo et al., 2019) argues that no more than 6 targets are necessary. Scan registration was done in 
Z+F LaserControl® v9.0.2.24038 (Zoller + Fröhlich, 2020), and cleaning in Autodesk Recap v6.0.0 
(Autodesk, 2021). Table 4 shows the TLS registration statistics. 

Table 4. Statistics on the TLS registration of HeteroFS1 
Total number of targets (A4 sheets and supplementary features) 148 

Number of disabled targets 5 
Average Deviation 15.1mm 
Standard Deviation 8.5mm 
Maximum Deviation 48.5mm 

 

2.4. Image Processing 

Agisoft Metashape v1.5.1 (Agisoft, 2017) was used to generate the photogrammetric point cloud 
for all the UAVSfM acquired imagery, as the software utilises both SfM and stereo-matching 
algorithms for multi-view stereo reconstruction and image alignment. Several phases were involved 
in obtaining the photogrammetric point cloud: (1) built-in SfM algorithms aligned the imagery; (2) a 
sparse cloud of the scene was created; (3) markers were placed over the GCPs and their precise GPS 
positions were imported to improve orientation and positioning; (4) the camera alignment was 
optimised (Figure 5.); (5) a colourised dense point cloud of the scene was created; (6) and an RGB 
orthophoto of the scene was finally created. The processes followed were similar to those followed 
by (Puliti et al., 2015; Kachamba et al., 2016). Automated batch files in the software were created 
for each of the nadir, oblique and the tessellated façade imagery datasets to speed up processing. 
These individual point clouds were later combined into one dense point cloud (Figure 4). Processing 
was done on a Lenovo Y70 (Lenovo, 2020) Intel® Core™ i7 processor, NVIDIA® GTX-860M with 
4G VRAM graphics card, and 16GB DDR3L RAM high performance gaming laptop. 
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Figure 4. Dense point cloud of HeteroFS1 showing coherent measurable tree structures 

 
  

 
Figure 5. Image positions of the captured nadir and oblique images over the dense cloud of HomoFS 

 
Due to extensive invasion of below canopy subspecies which caused numerous challenges 

including shadows and obstruction of tree trunks, the photogrammetric point cloud for HeteroFS2 was 
discarded after several attempts failed to reprocess the dataset for more favourable results.  

 

2.5. Generation of DTMs 
Digital Terrain Models were created for HomoFS and HeteroFS1 each using the UAVSfM photogrammetric 

point cloud; as well as Digital Terrain Models using the ALSLiDAR data: a 10cm Digital Surface Model (DSM), 

a 10cm Digital Elevation Model (DEM), and a 10cm Canopy Height Model (CHM) for each cloud dataset 

(Iizuka et al., 2018; Kachamba et al., 2016; Guerra-Hernández et al., 2016). Creating higher resolution terrain 

models, such as <10cm, would increase processing time. Various attempts using a grid spacing of lower than 

10cm led to longer processing times and software crash. Both the LiDAR data and UAVSfM photogrammetric 
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point cloud were classified into appropriate ground and non-ground (vegetation) point classes. The 

DEMs were modelled using both classified ground and non-ground point classes, while DSMs were 

modelled using only the classified ground point class (Figure 6). The CHM, which represents the 

absolute tree height, was the difference between the two (Lim et al., 2003; González-Jaramillo et al., 

2019): 

     𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐷𝐷𝐷𝐷𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐶𝐶 [2] 

All the terrain models were created using the Triangulated Irregular Network (TIN) method to 
create a surface. 

 
Figure 6. A 10cm DSM and a 10cm DEM of some of the trees in the HomoFS area 

 

2.6. Variable Extraction 

2.6.1. DBH 

All non-ground (vegetation) points above 1.37m (DBH) (Malone et al., 2009) and below 1.00m 
from the average ground level were temporarily reclassified into a random class, producing several 
vertical 0.37m long stem cylinders of vegetation points in the vegetation class that formed the trunks 
as was done by (Olofsson and Holmgren, 2017). These cylinders were used to measure the diameters 
of the tree trunks by extracting the best-fit circular or ellipsoidal vectors (Figure 7) around the 
vegetation points, and extracting the perpendicular measurements across the circles to obtain the 
average DBH (Brede et al., 2017). The cylinders were also used to mark the individual tree positions 
so their respective TH measurements could be extracted. Point features were created at the centre of 
each cylinder to mark its position. This procedure was repeated on all UAVSfM photogrammetric point 
cloud data for HomoFS and HeteroFS1, as well as the TLSLiDAR and UAVLiDAR data acquired for 
HeteroFS1. A total of 32 trees were assessed in the HomoFS study area, while a total of 20 trees were 
assessed in the HeteroFS1 study area. 
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Figure 7. Best-fit vector data and DBH extracted from the tree vegetation point cloud of HeteroFS1 

 

2.6.2.  TH Extraction 

For each area, the TH was extracted from the modelled CHMs. When assessing TH in HomoFS, 
both a 10cm resolution UAVSfM point cloud derived CHM and a ALSLiDAR data CHM were used. 
When assessing TH in HeteroFS1, three 10cm derived CHMs were used: a UAVSfM point cloud derived 
CHM, a TLSLiDAR data derived CHM, and a ALSLiDAR data derived CHM. A total of 30 trees were 
assessed in the HomoFS dataset, while 20 trees were assessed in the HeteroFS1 dataset. The average 
individual TH was extracted by measuring perpendicular distances across each relative tree position 
on each CHM. 

 

2.7. Evaluating the performance of UAVSfM derived tree variables 

Various statistical tools were applied to evaluate the utility of UAVSfM-derived point cloud against 
LiDAR data in assessing DBH and TH. Pearson’s correlation (Pearson’s r) outlined in Equation 3, 
(Maina et al., 2017; Jayathunga et al., 2018; Kachamba et al., 2016) was used extensively on the 
results to measure how well the various UAVSfM datasets relate to their LiDAR dataset counterparts 
– the strength of the relationship between both variables: 

   𝒓𝒓 =  𝒏𝒏(𝚺𝚺𝒙𝒙𝒙𝒙)−(𝚺𝚺𝒙𝒙)(𝚺𝚺𝒙𝒙)

�[𝒏𝒏𝚺𝚺𝒙𝒙𝟐𝟐−�𝚺𝚺𝒙𝒙)𝟐𝟐�[𝒏𝒏𝚺𝚺𝒙𝒙𝟐𝟐−(𝚺𝚺𝒙𝒙)𝟐𝟐]
 [3] 

where 𝑛𝑛 is the total population number; 𝑥𝑥 represents UAVSfM DBH or TH values; and 𝑦𝑦 represents 
the various LiDAR dataset DBH or TH values. The correlation coefficient formula shows a linear 
relationship between two sets of data being compared. The accuracy of Pearson’s r obtained for the 
DBH and TH data was validated using the leave-one-out cross validation (CV) technique as suggested 
by (Jayathunga et al., 2018). The root mean square error (RMSE) of the data was also determined 
using Equation 4.: 
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𝑅𝑅𝐶𝐶𝐷𝐷𝐷𝐷 =  �Σ𝑖𝑖=1
𝑛𝑛 (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2

𝑛𝑛
   [4] 

where 𝑛𝑛 is the number of samples, 𝑦𝑦𝑖𝑖; is the observed LiDAR DBH or TH value; and 𝑦𝑦�𝑖𝑖 is the 
UAVSfM DBH or TH value. This was done to evaluate the average separation from the best-fit line of 
each sample measurement. 

 

3. Results and discussion 

3.1.  UAVSfM against TLSLiDAR, UAVLiDAR and Field Measured DBH 

UAVSfM DBH measurements were compared to field measured DBH values at HomoFS using a 
total of 32 sample trees in the area, while at HeteroFS1 the same comparison was done but with 
TLSLiDAR and UAVLiDAR DBH data using 20 sample trees in both instances.  
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3.2. UAVSfM against TLSLiDAR and ALSLiDAR TH 

UAVSfM TH measurements were compared to both TLSLiDAR and ALSLiDAR TH measurements. 
When assessing HomoFS, 30 sample trees were used to evaluate the coefficient of determination 
between UAVSfM and ALSLiDAR data, while 20 sample trees were used in assessing the utility of 
UAVSfM in estimating TH against TLSLiDAR and ALSLiDAR in HeteroFS1. 

 

 

 

 

 

3.3. Discussion 

For the DBH comparison, a moderate coefficient of determination of R2 = 0.5955 (59.55%) was 
obtained, signifying UAVSfM performs averagely well at estimating field DBH. A stark difference 
between the variables in the UAVSfM and field measurements, minimum difference of 0.008m and 
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maximum difference of 0.438m, is suggestive of challenges in reconstructing full and accurate tree 
trunks in various instances using photogrammetry – a function of inadequate scene coverage caused 
by insufficient image cover from multiple perspectives. For the HeteroFS1 comparison, a moderate 
agreement of R2 = 0.5237 (52.37%) was also obtained when comparing UAVSfM DBH to TLSLiDAR 
DBH, while a poor agreement of R2 = 0.1114 (11.14%) was obtained when comparing UAVSfM DBH 
to UAVLiDAR DBH (Figure 8). This was because the UAVLiDAR data obtained failed to properly 
represent the full extent of some tree trunks making extraction of the actual diameter challenging, 
while LiDAR data for some trees were unavailable altogether. The poor relationship between the 
DBH values of the UAVSfM and UAVLiDAR comparison is made further apparent with the Pearson’s r 
evaluation where the relationship had a value of r = 0.3337 (33.37%) signifying a large disparity 
between the measurements in the two datasets, compared to r = 0.7237 (72.37%) for UAVSfM against 
TLSLiDAR, and r = 0.7717 (77.17%) for UAVSfM against field measurements. The RMSE for each data 
pair also highlighted the same indication with RMSE = 0.335m; RMSE = 0.086m; and RMSE = 
0.192m for UAVSfM against UAVLiDAR, UAVSfM against TLSLiDAR, and UAVSfM against field 
measurements, respectively.  

An excellent correlation of R2 = 0.9258 (92.58%) between UAVSfM and ALSLiDAR TH was 
obtained signifying that UAVSfM performed well at estimating ALSLiDAR TH. For UAVSfM against 
TLSLiDAR, a coefficient of determination of R2 = 0.8614 (86.14%) was achieved, signifying a strong 
correlation between the two sets of data. A Pearson’s r value of r = 0.9280 (92.80%) was also 
achieved, indicating a strong association between the two (Figure 9). However, a RMSE = 2.131m 
value was achieved for this comparison which shows the average separation from the line of best fit 
between these two variables, caused by the inability of TLSLiDAR to properly acquire the top-canopy 
of the forest. On average, the UAVSfM TH values were higher than the TLSLiDAR values. When 
UAVSfM was compared to ALSLiDAR, a coefficient of determination of R2 = 0.8850 (88.50%) was 
achieved, with a Pearson r value of r = 0.9407 (94.07%) and a RMSE = 1.683m. These all indicate 
good correlation between the two data variables. It can be noted here that UAVSfM performs slightly 
better when compared to ALSLiDAR than when compared to TLSLiDAR when considering R2. This could 
be attributed to the fact that both datasets are acquired from airborne vehicles and as such are able to 
acquire the full top-canopy. The lower RMSE value also signifies that there is lower separation from 
the line of best fit between the two datasets. 

 

4. Conclusion 

The study intended to assess the efficacy of using multi-rotor unmanned aerial vehicles in 
assessing allometric variables in homogeneous and heterogeneous forest structures necessary for 
rudimentary biomass estimation using these variables. The unmanned aerial vehicles structure-from-
motion (UAVSfM) techniques applied provided fair reconstruction and characterisation of both 
homogeneous and heterogeneous forest structures, with results being comparable to high-cost LiDAR 
data obtained from expensive platforms. Overall, UAVSfM provided relatively similar results to 
LiDAR data when assessing diameter at breast height (DBH), but highly comparative results when 
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assessing tree height (TH) estimations. Although UAVSfM performed well in TH estimation in this 
study, CHMs produced can be influenced by the complexity of the top-canopy, and omission of data 
during the flight capture. As such, additional capture angles, altitudes, flight patterns, high image 
overlap, multiple-perspective imagery, and capture techniques are necessary to acquire sufficient data 
to create the stereopairs necessary to reconstruct the captured scene extensively. This means that 
photogrammetric data cannot deliver the same accuracies as LiDAR data when considering ground 
cover and below-canopy vegetation conditions without significant effort and relative error but does 
provide a cheaper alternative. This is evident in previous studies. Further research can be done on the 
inclusion of tessellated façade imagery in acquiring images for forestry inventory management. 
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