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Abstract 

This paper estimates bare area gain detected using cloud free Landsat 7 (ETM+) and Landsat 8 
(OLI) in Botswana. From 2002 to 2020, agricultural fields shrunk by 76.4%, while built-up increased 
by 49.2%, and bare areas increased from 3.32% to 7.03% (or 111.7%). There is a significant 
seasonal change in bare area detected reaching maximum during the dry season when there is little 
or no ground cover. In this study, the seasonality of bare area gain was overcome by only considering 
a bare area pixel to contribute to bare area gain if it exists during both the winter and summer 
months. The probability of bare area detection was 75.0% and probability of false detection 13.3% 
respectively. The 13% false detection tended to be built-up areas which had similar spectral 
characteristics as bare areas since most built-up areas have no ground cover. The bare area gain is 
driven by the high population growth rate of 3.4%. From 2001 to 2017, the population of the study 
area has increased by 34% and now accounts for 47% of the population of Botswana. 
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1. Introduction 

The ever-increasing human population with accompanying economic drivers such as concentration 
of people in urban areas and excessive natural resources extraction is exerting stress on the planet 
leading to changes in the land cover such as vegetation cover loss (Potapov et al., 2012; Ying et al., 
2017). Change in land cover is key component of global environment change and drives a wide range 
of ecological, hydrological, and climatic processes such as loss of forests, urbanization, and increase 
in agricultural activities (animal grazing and crops production) to increase food production (Foley et 
al., 2005; Vitousek et al., 1997). It also has a negative impact on  flora and fauna especially on 
sensitive landscapes (Cook et al., 2012; Ringrose et al., 1996; Vittor et al., 2006). 

Landsat data had extensively been used in Land Use Land Cover (LULC) studies from 
deforestation, fire scars, agriculture monitoring, urban sprawl, and wetlands loss (Daldegan et al., 
2019; Jensen et al., 1995; Spruce et al., 2018; Zhu & Woodcock, 2014). Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Sentinel-2 datasets had been used to monitor vegetation and land 
cover changes from 2005 and 2015 respectively (Jin & Sader, 2005; Schug et al., 2020; Xin et al., 
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2012). Although non-optical techniques are also used in LULC mapping especially where clouds are 
frequent (Nicolau et al., 2021), optical remote sensing has long been and is promising as a systematic 
and cost effective way of monitoring bare ground cover and gain (Barrett et al., 2020; Dematte et al., 
2009; Hansen et al., 2014; Nwilo et al., 2020). For LULC classes detection, either full pixel or 
subpixel scheme is used for the image classification using statistical, regression, expert classifier, 
artificial neural networks, and other more sophisticated algorithms (Daldegan et al., 2019; Schug et 
al., 2020). Although the maximum likelihood classification assumes that the statistics for each class 
in each band are normally distributed can still produce acceptable results even if this assumption does 
not hold furthermore, it is easy to implement using full pixel scheme. 

Desertification is defined as the depletion or destruction of the biological capability of the land (in 
arid, semi-arid and dry sub-humid areas) leading to desert-like condition caused by climate variation 
and human activities (UNCOD, 1977; United Nations, 1993).  Desertification which results from an 
increase in bare areas is an issue of environmental concern in semi-arid to arid parts of the world 
covering 40% of the global land surface and accounting for about 15% of the human population 
(Verón et al., 2006).  

The first estimates of global bare ground gain study representing 2000 to 2012 period using 
satellite imagery concluded that bare ground gain represent a very small fraction of the overall global 
land cover (93,896±9317 km2) (Ying et al., 2017; Hansen et al., 2013; Schneider et al., 2010). The 
huge uncertainty in this estimation (almost 10%) is because land use extent and change is difficult to 
quantify. Further, most of this gain occurs in the East Asia and the Pacific (45%) with China alone 
accounting for (78%) this gains (Ying et al., 2017). Human induced bare ground gain accounted for 
95% of the total of which 39% is accounted for by commercial and residential development (built-
up), but in Sub-Sahara Africa (account for 3% of global bare ground gain), the highest proportion of 
the bare ground is due to resources extraction followed by built-up. It has been estimated that 
45,945.08 km2 of vegetation cover was lost in northern Nigeria including the Lake Chad area (at a 
rate of 0.96% and 0.28%) between 1984 and 2016 (Nwilo et al., 2020). There is lack of accurate 
assessment of the status, change, and trend of desertification, this hinders developing global actions 
to prevent and eradicate the problem especially in one of the most seriously affected countries like 
China (Yang et al., 2005). Ying et al (2017) determined that human-induced bare ground gain 
accounted for 95% of the total and for Sub-Sahara Africa, this is made up of the following 
components: 1. commercial and residential development (37%), resource extraction/mining (32%), 
infrastructure development (4%), transitional (15%), Natural bare ground (12%) and greenhouses 
(0%). 

The study presented here detects bare areas by aggregating bare areas detected during a wet season 
(good vegetation cover) and dry season (poor vegetation cover) in one year and comparing the bare 
areas change temporally (2002 to 2020). A true bare ground pixel is selected only if the pixel being 
considered is bare during both winter and summer months. 

Studies have shown that accuracy assessment results from homogeneous land cover classes are 
generally higher than those from heterogeneous classes (Gessner et al., 2013); Latifovic & Olthof, 
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2004; Friedl et al., 2010). In the arid to semi-arid areas such as the Kalahari, bare area is actually 30% 
herbaceous and 70% bare (Gessner et al., 2013). This spectral mix causes confusion in LULC 
classification i) rural areas where bare areas, built-up, crop fields and grazing pasturelands classes are 
not distinct hence tend to generate a spectral mixture, ii) during the winter months, the agricultural 
fields and grazing lands are bare (no crops, leafless trees and shrubs, and no grass cover which is 
normally annual iii) urban built-up land use has a lot of open bare areas (unpaved); hence these tend 
to overestimate bare land class and also lowers the overall accuracy of LULC classification. Because 
of these inconsistencies in estimating bare areas and hence the rate of desertification at local scale, 
we examine the aggregating bare areas detected during two extreme conditions (winter/summer) in a 
year (2020) and compare to a previous period (2002) to estimate bare area change in around Greater 
Gaborone area in South Eastern Botswana. 

First, the study area is described; the methodology entails radiometric correction for all four cloud 
free Landsat images (two images per year) followed by features extraction. The features are used in 
the maximum likelihood classifier for both winter and summer months during the years 2002 and 
2020. Finally, accuracy assessment of images classification is assessed using confusion matrices. The 
accuracy of bare areas detection in a given year is determined by calculating the probability of 
detection (PoD) and probability of false detection (PoFD) 

 

2. Study Area 

The study area is in Botswana (Figure 1), a relatively flat landlocked country in Southern Africa 
of size 581, 730 km2 with a population of about 2.3 million people (Statistics Botswana, 2018). The 
country faces reoccurring droughts and a threat of desertification resulting from communal grazing 
which accounts for 71% of the country’s land (Darkoh, 1998). The greater Gaborone area is the area 
south of Botswana which comprise of the capital city Gaborone and several major towns and villages 
accounting for 38% of the total population of Botswana (Central Statistics Office, 2000; Statistics 
Botswana, 2018; Tsheko, 2006). 

The annual climate ranges from months of dry temperate weather during winter (April-September) 
humid subtropical weather interspersed with drier periods of hot weather during summer (October-
March). Annual rainfall, brought by winds from the Indian Ocean, averages 500 mm, for the study 
area (Jonsson, 2004). In 2006, FAO estimated that bare land/built up (bare -land covered by bare soil 
with less herbal vegetation, such as clearing, mining and rocky area while built up – land covered 
build up area such as settlement and urban, and industrial area) accounted for 1.5% of Botswana land 
cover (FAO, 2020). 

The general vegetation of the country is savanna grassland with yellow or light brown grass cover 
(turning green after rains) and woody plants. The savanna ranges from acacia shrub savanna in the 
southwest through acacia thornbush and tree savanna “parkland” into denser woodland and eventually 
forest as one moves north and east (Jonsson, 2004). 
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Figure 1. Study Area (24o17’53.84” S, 25o17’50.66”E to 25o17’51.14”S, 26o12’1.72”E)  

 

3. Methodology 

Four (4) cloud free Landsat images, two (2) Landsat 8 scenes (Path 172/Row 077) acquired 31st 
January and 7th June 2020, and two (2) Landsat 7 scenes (Path 172/Row 077) acquired 21st January 
and 30th June 2002 were used in this study. Preprocessing was done with the objective to convert the 
digital numbers (DNs) into scaled surface reflectance values (Du et al., 2002; Ihlen & Zanter, 2019; 
Teillet et al., 2001). The image radiometric calibration was implemented in ENVI software 
Radiometric Correction Module © Exelis Visual Information Solutions using parameters from the 
Landsat metadata files (Chavez, 1988; Schaepman-Strub et al., 2006). The Methodology is 
summarized in the flow chart Figure 2 below. 
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Figure 2. Summary of the Methodology 
 

3.1. Features Extraction 

Six (6) classes were defined for the imagery, Agricultural fields, trees, bare, built-up, shrubs, and 
water. The mean reflectance values of following nine (9) and eight (8) features were calculated and 
extracted for each of the four classes above for both the Landsat 8 and Landsat 7 respectively as 
shown in Table 1 below. 
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Table 1. Features/bands used for Landsat 8 (OLI) 
 Band or feature Wavelength 

(nm) 
Index 

1 Band 1 (coastal/aerosol) 433-453   
2 Band 2 (blue) 452-512  
3 Band 3 (green) 533-590  
4 Band 4 (red) 636-673  
5 Band 5 (nir) 851-879  
6 Band 6 (swir1) 1566-1651  
7 Band 7 (swir2) 2107-2294  
8 Normalized difference vegetation index (ndvi)  𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑟𝑟𝑟𝑟

𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑟𝑟𝑟𝑟
 

9 Normalized difference bare index (ndbi)  𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛1 − 𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛1 + 𝑛𝑛𝑛𝑛𝑛𝑛

 

 

3.2. Classification 

3.2.1. Maximum likelihood classification 

The images features were used in the classifications using the supervised Maximum Likelihood 
Algorithm (MLA). The MLA implementation was done using ENVI software Supervised 
Classification Module © Exelis Visual Information Solutions. For each image, the bare area layer 
was calculated. These bare areas were then normalized for each year using the year’s image set 
(dry/wet) to get the corrected bare area for that year (2002 or 2020). This normalizing was achieved 
by accepting a pixel as a true bare area pixel if it was classified as a bare area in both seasons (dry/wet) 
in that year else it was treated as a seasonal bare area. Finally, the bare area change was calculated as 
the difference between the detected bare area pixels from both years (2002/2020). For multi-temporal 
images, xi and yj indicate the LULC code vectors of the corresponding pixels in the same location, 
where xi = [xi,1,xi,2, ⋯,xi ,b]T and yj = [yj,1,yj,2, ⋯,yj ,b]T, where, xi ,b and yj ,b are the LULC class b for 
years i and j (Wu et al., 2017). In this study only the bare area class was analysed. Where i=2002, 
j=2020 and b=bare, then xi=xi,b and yj=yj,b. The change detection (bare areas) was calculated as ∆xy 

= x ^y for i=j and ∆xy = x ⊕ y for i≠j. 

 

3.2.2. Accuracy assessment 

For validation, a total of 150 random pixels were selected for each of the four images used and 
high-resolution SPOT images, google map, Botswana Department of Surveys and Mapping 
orthophotos and field visits were used for ground truthing. Zhu & Woodcock (2014) noted that the 
high spatial resolution images at the temporal frequency as Landsat data, can be helpful in 
determining land cover change at longer time intervals. The field visits were important to resolve 
some validation points as LULC is highly dynamic especially in and around urban areas and dried 
water pans or ponds. To assess the accuracy of the detected bare areas from above process, twenty-
five (25) random points were again selected for validation using the high-resolution data and field 
visit. 
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3.2.3. Error Matrices  

Once classification of the data sets was achieved, the following matrices (overall accuracy OA, 
Kappa Coefficient KC, Producer Accuracy PA, and User Accuracy UA) were calculated for all the 
tests. For the bare areas detection an error matrix was used to estimate classification accuracy and 
further, probability of detection (PoD) and probability of false detection (PoFD) were also calculated. 
PoD is calculated as hits divided by hits and misses while PoFD is false negatives divided by correct 
negatives plus false alarms. 

 

4. Results and Discussion 

There is complexity of the built-up spectral signature which is a spectral mixture (rural built-up, 
built-up, bare, industrial built-up), this resulted in built-up being confused with agriculture fields and 
bare land. The built-up producer accuracy was 86.7% while the user’s accuracy was only 44.8% 
respectively. Both the producer accuracy and user’s accuracy for the bare areas land class was 77.8% 
respectively.   

The classified images for 2002 show significant influence of seasonal changes on all the LCLU 
classes including the water bodies (shrunk surface area due to usage and evaporation – since there is 
no rain fall during the dry season). One of the significant changes is the increase in bare areas 
especially around built-up areas and areas of agricultural activity (due to barren fields after harvesting 
and livestock overgrazing since livestock is 100% fed on pasture with minimal feedlots) as shown in 
Figure 3 and Figure 4. These LULC percentages are quantified in Figure 5 below. 

 
Figure 3. LULC summer 2002 season 
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Figure 4. LULC winter 2002 season 

 

 
Figure 5. Percentage LULC 

 
The same observations as above were also true for the 2020 as shown in Figure 6 and Figure 7 

below, there has been a significant reduction in (agriculture fields and trees) and a significant increase 
in built-up and bare land from 2002 to 2020 which illustrates human pressure on land resources as 
population keeps on increasing and turning agricultural land into built-up. From 2001 to 2017, the 
population of the study area has increased by 34% and now accounts for 47% of the population of 
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Botswana (Central Statistics Office, 2005, 2011). These bare areas increase significantly during the 
dry months and the built-up signature also increases due to the dry conditions and human activities 
in settlements (agricultural actives, firewood collection and forest fires). 

 
Figure 6 LULC summer 2020 season 

 

 
Figure 7 LULC winter 2020 season 
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Figure 10 shows that from 2002 to 2020, water bodies shrunk by 14.5%, agricultural fields shrunk 
by 76.4%, bare areas increased by 111.7%, shrubs shrunk by 1.6%, built-up increased by 49.2% and 
trees shrunk by 13.9%. As population increased in the greater Gaborone area, agricultural fields are 
converted into residential and industrial areas, it is estimated that the population growth for the study 
area ranges from 2.4% to 3.4% (Central Statistics Office, 2005, 2011). Bare areas have significantly 
increased due to land cleared for built-up, firewood collection, fallow and unused agriculture fields 
and overgrazing by livestock. Although the shrubs land has shrunk slightly since 2002, the natural 
shrub land has largely been replaced by acacia thornbush (Jonsson, 2004). The classification overall 
accuracy and kappa coefficient was 82.3% and 0.79 for 2002 and 81.6% and 0.78 for 2020 as shown 
in Table 2 and Table 3. In both cases the water LULC had a user and producer accuracies of 100% 
with the built-up having the lowest classification accuracy, although the bare land was satisfactorily 
classified, the built-up was mostly misclassified as bare land and field visits confirmed that indeed 
most built-up especially in rural areas had a large component of bare area pixels hence the spectral 
signature was closer to that of bare area. The bare area user accuracy was 87.0% and 77.8% for 2002 
and 2020, respectively.  

 

Figure 8 LULC changes 2002 to 2020 
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Table 2 Accuracy assessment 2002 

 
 

 
Table 3 Accuracy assessment 2020 

 
 

Figure 9 and Figure 10 show that in all the six agricultural districts, bare area has significantly 
increased during the period 2002 to 2020. The accuracy of detected areas has an overall classification 
accuracy of 82.6% with a kappa coefficient of 0.72. The probability of detection was 75.0% and 
probability of false detection was 13.3% respectively, this means that a detected bare area has a 75% 
chance of being an actual bare area and there is a 13% chance that a detected bare area is not an actual 
bare area on the ground. This 13% tended to be built-up areas which have a lot of bare pixels. There 
is a lot of seasonal changes in bare areas due to the long and dry season during which there is very 
little or no ground cover. In this study, this effect was normalized by only considering a bare pixel as 
a true bare area if the pixel being considered is bare during both winter and summer months. For other 
studies such as soil erosion, it might be advisable to consider bare ground during the winter months 
since most soil is lost during the first rains after the long dry winter. 

LULC_class water agricultural_fields bare shrubs built_up trees Totals Commision error User's Accuracy
water 27 0 0 0 0 0 27 0,0 100,0
agricultural_fields 0 19 0 4 1 0 24 20,8 79,2
bare 0 0 20 2 0 1 23 13,0 87,0
shrubs 0 0 0 19 3 1 23 17,4 82,6
built_up 0 0 9 2 11 0 22 50,0 50,0
trees 0 0 2 0 0 20 22 9,1 90,9
Totals 27 19 31 27 15 22 141
Ommision error 0,0 0,0 35,5 29,6 26,7 9,1
Procucer's Accuracy 100,0 100,0 64,5 70,4 73,3 90,9
Overall Accuracy 82,3

Reference Data

LULC_class water agricultural_fields bare shrubs built_up trees Totals Commision error User's Accuracy
water 26 0 0 0 0 0 26 0,0 100,0
agricultural_fields 0 25 1 1 1 0 28 10,7 89,3
bare 0 0 21 6 0 0 27 22,2 77,8
shrubs 0 0 0 22 0 0 22 0,0 100,0
built_up 0 8 5 2 13 1 29 55,2 44,8
trees 0 0 0 1 1 13 15 13,3 86,7
Totals 26 33 27 32 15 14 147
Ommision error 0,0 24,2 22,2 31,3 13,3 7,1
Procucer's Accuracy 100,0 75,8 77,8 68,8 86,7 92,9
Overall Accuracy 81,6
Kappa 0,78

Reference Data
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Figure 9 Barea areas detected in 2002 

 

 
Figure 10 Bare areas detected in 2020 
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Figure 11 below shows the percentage bare land from 2002 to 2020, these are contributions of bare 
ground subdivided into where this bare ground is found. Thamaga agricultural district shows the 
largest decrease while Lobatse agricultural district shows the largest increase. These changes were 
driven by changes in land use, in Thamaga for example, agricultural fields were converted to built-
up while in Lobatse, shrub land was cleared for commercial agriculture (Mosesidi Commercial 
Farmers). 

 
Figure 11 Contributions of bare ground found in a district in 2002 and 2020 

 

5. Conclusions 

Agricultural fields shrunk by 76.4%, while built-up increased by 49.2%, and bare areas increased 
from 3.32% to 7.03% (111.7%) from 2002 to 2020.  From 2001 to 2017, the population of the study 
area increased by 34% and now accounts for 47% of the population of Botswana. There seasonal 
changes in bare areas reaching maximum during the long and dry season when there is very little or 
no ground cover. The effect of bare area seasonality was normalized by only considering a bare 
ground pixel as being true only if the pixel is bare area during both winter and summer months. 
Detecting bare area during the dry winter months represents temporary or seasonal bare area which 
tends to overestimate bare ground gain. The bare area increase is attributed to the pressures in land 
use due to the population growth rate of 3.4% in the study area. Bare ground gain should be detected 
using both dry and wet months data to avoid overestimation of the gain. Bare ground detected in the 
dry winter months should be used in soil erosion studies since most soil is lost during the first rains 
after the long and dry winter. 

 

6. Recommendations  

To avoid the misclassification of bare areas with bare pixels in built-up areas, it suggested that for 
further research work be carried out using sub-pixel classification methods. 
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