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Abstract 

Generation of land use/land cover map at different spatial scales using satellite remote sensing 
data has been in practice as far back as early 1970s. Since then, research focus has been on the 
development of classification steps and improving the quality of the resulting maps. In recent times, 
the demand for detailed high accuracy land-use and land-cover (LULC) data has been on the increase 
due to the growing complexity of earth processes, while, at the same time, processing step is becoming 
more complex. This paper explores Landsat 8 derived normalized difference vegetation index (NDVI) 
threshold for the purpose of simplifying land cover classification process. NDVI images of January, 
May and December, 2018, representing dry, wet and harmattan seasons were generated. Thereafter, 
NDVI values corresponding to the location of a set of training data representing the target urban 
land covers (water, built-up area, soil, grassland and shrub) were extracted. Using the statistics of 
the extracted values, NDVI threshold for the respective land cover type were determined for the 
classification process. Finally, the classification accuracy was evaluated using the unbiased matrix 
coefficient technique which produced overall accuracy of 71.3%, 46.4% and 75.6% at 95% 
confidence limit for the months of January, May and December of the year review respectively. The 
result has shown that NDVI threshold is a simple and practical alternative to obtain LULC map at a 
reasonable time with a few data. 

 

1. Introduction 

Since the normalised difference vegetation index (NDVI) was first introduced by Rouse et al. 
(1976), it has been widely utilised as a potential tool for vegetation studies at different spatial scales 
(Anyamba & Eastman 1996; Defries & Townshend 1994; Fensholt et al. 2006). From the basic 
knowledge of the behaviour of plants across the electromagnetic spectrum, it has been established 
that healthy vegetation absorbs most of the incident visible energy and reflects a large portion of the 
near-infrared light while unhealthy or sparse vegetation reflects more visible energy and less near-
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infrared light (La et al. 1987; Miomir et al. 2018). Thus, the red and near-infrared bands of satellite 
sensors such as Advanced Very High-Resolution Radiometer (AVHRR) (Anyamba & Eastman 1996; 
Miomir et al. 2018), moderate resolution imaging spectroradiometer (MODIS) (Aredehey et al. 2018; 
Kong et al. 2016), Satellite Pour l’Observation de la Terre (SPOT - (de Bie et al. 2011)), and Landsat 
imagery (Aburas et al. 2015; Gandhi et al. 2015) are usually manipulated to obtain NDVI. 

In the last decade, the need to simplify the process of obtaining land cover data has inspired 
investigation into determining the relationship between NDVI and surface cover of the urban 
environment (Zaitunah et al. 2018). With the growing availability of high spatial and temporal 
resolution satellite data, studies have been intensified on the use of NDVI for land-cover 
classification. For example, de Bie et al. (2011) used SPOT vegetation 10-day composite NDVI 
images of 1998–2002 to produce 11 classes that depict different cover types in part of Nizamabad 
district, Andhra Pradesh, India, using unsupervised classification, ISODATA clustering algorithm. 
Similarly, Ehsan and Kazem (2013) utilized NDVI derived from Landsat ETM+ for 1990 and 2006 
to detect and monitor LULC change in Ardakan, Iran, by applying NDVI image differencing. The 
resultant NDVI-change image was threshold and subsequently density sliced into four classes (low, 
medium, high, and very high) to find changes.  

Specifically, the use of NDVI for vegetation phenology has been widely reported in the literature. 
One of those works published by Al-doski et al. (2013) detected vegetation change in Halabja City, 
Iraq, between 1986 and 1990 using NDVI produced from Landsat-5 Thematic Mapper (TM). The 
authors applied NDVI threshold values of -1 to 0, 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, < 0.6 to classify the 
study area into water bodies, no vegetation, sparse vegetation, moderate vegetation and dense 
vegetation, respectively. A related study reported by Aburas et al. (2015) evaluates land-use changes 
in Seremban District, Peninsula Malaysia, between 1990 and 2010 using NDVI images obtained from 
Landsat TM. Based on the general knowledge that negative NDVI represents water body, values close 
to zero indicate built up areas and positive values reveal different vegetation types (Anyamba & 
Eastman 1996), the District was classified into five classes, which include: non-vegetation, sparse, 
moderate, high, and dense vegetation. 

An investigation by Jeevalakshmi et al. (2016) also reveals the potential of NDVI for land-cover 
classification. The research work, which was carried out in Chittoor District, Andhra Pradesh, India, 
using Landsat-8 time series NDVI, was intended to identify a range of values for five different land 
cover types, namely, water body (-0.0175 to -0.328), built-up (-0.019 to 0.060), bare soil (-0.001 to 
0.166), sparce vegetation (0.244 to 0.44) and dense vegetation (0.5 and above). In a more recent study, 
Hashim et al. (2019) classified urban vegetation around the National Monument Park, in Kuala 
Lumpur, Malaysia, with NDVI of a very high resolution (0.5 m) Pleiades imagery. The result shows 
that NDVI values of -1 to 0.199 represents non-vegetated area, while the low and high vegetated areas 
are identified in the range of 0.2 – 0.5 and 0.5 to 1.0, respectively. 

Naturally, the use of NDVI threshold value for land cover classification requires less time and data 
as it eliminates the complexity of the mainstream remote sensing image analysis (Aredehey et al. 
2018; Hashim et al. 2019). However, determining the precise range of NDVI values to distinguish 
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agricultural land, semi-natural areas, artificial surfaces and urban fabric is still a challenge. Most 
studies that utilized NDVI for urban land cover classification used generalized threshold. This 
approach results in broad range of thresholds that do not usually seem  suitable for urban application 
at a finer scale (Miomir et al. 2018).  The objective of this study is to propose an applied NDVI 
threshold values that simplifies and improve LULC classification process in tropical savannah using 
Landsat-8 satellite imagery. 

 

2. Materials and method 

2.1. Study Area and Data Used 

The researchers selected Ilorin City and its suburbs to be the study area. Ilorin is located in the 
south-eastern part of Kwara State in Nigeria (Fig 1). Ilorin metropolis is an agro-pastoral ecotone in 
the North-Central zone of the country. Geographically, the study area is located between latitudes 8o 
23’ 11.4” N to 8o 36’ 13.1” N and longitude 4o 25’ 56.04” E to 4o 45’ 48.6” E, covering a total area 
of 868.04 sq. km. The area encompasses an elevated range of 250 – 429 m asl. Ilorin has a tropical 
savannah climate with marked rainy season from April to November and dry seasons from December 
to March (Olanrewaju 2009). Ilorin experiences harmattan season characterized by low sunshine as 
well as colder temperatures towards the end of November until early January.  The region experiences 
annual temperatures ranging  between 18 oC to 36.9 oC and a total rainfall that varies from 1000 mm 
and 2000 mm of rain each year (Ajadi et al. 2011; Olanrewaju 2009) Approximately, 80% of the 
annual rainfall occurs between the months of May and September. In addition to conurbation, the 
study area comprises a range of land cover and vegetation types, including cropland, deciduous 
shrubs, grassland (typical meadow steppe). The main agricultural practice in the peri-urban is 
nomadic farming and crop cultivation, majorly mono-cropping system, where the land is left 
uncultivated during the fallow season. The dominant planted crops are maize, wheat, rice, beans, 
millet, guinea corn, yam, cassava, sweet potato and vegetables (Ajadi et al. 2011).  Given its diverse 
topography and cover types, Ilorin metropolis is highly suitable for investigating vegetation index 
threshold most appropriate for urban land cover classification as proposed in this study. 
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Figure 1. Location of the study area showing (a) the map of Kwara State, (b) the local government 
areas the study area intersects and (c) RGB band 4-5-6 false colour combination of the city and 

environ 
 
Selection of NDVI time-series representing different seasons of the year requires sufficient cloud-

free images, which is highly dependent on the weather, particularly cloud coverage. In this study, 
three Landsat 8 OLI/TIRS satellite images of the study region with acquisition dates corresponding 
to 23 January 2018, 31 may 2018, and 25 December 2018 having percentage scene cloud cover of 
0.56, 1.88 and 1.07, respectively, along path/row 190/054 were downloaded from USGS (United 
States Geological Survey) data archive. The images represent multi-temporal data to characterise 
phenological changes in the vegetation cover status across the seasons. In addition, shapefile of the 
administrative boundary of Kwara State and the local government areas was obtained from DIVA-
GIS (www.diva-gis.org). Several parts of the study area were visited for ground truthing.  

 

2.2. Methods 

2.2.1. Image pre-processing and NDVI generation 

The Landsat 8 Operational Land Imager (OLI) surface reflectance products used in this study are 
atmospherically corrected for surface reflectance using COST, an image-based absolute correction 
method. COST is a simple technique that utilises the cosine of sun zenith angle (cos (TZ)) as input 
parameter to estimate the effects of atmospheric absorption and scattering in the image scene (Mahiny 
& Turner 2007). 

 Furthermore, the images were geometrically projected to Universal Transverse Mercator (UTM) 
coordinate system, datum WGS84, zone 31 and subset to the study area. Thereafter, composite images 
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of the respective season under consideration were constructed and also the Red and Near Infrared 
bands extracted to calculate the vegetation index.  

NDVI is generated on per-pixel basis as the normalised difference between the red band (0.63 - 
0.68 µm) and near infrared band (0.84 - 0.88 µm). Several studies have revealed that multi-temporal 
remotely sensed data provide the distinctions between similar spectral of different land cover types 
(de Bie et al. 2011; Miomir et al. 2018; Usman et al. 2015). Generally, NDVI values range from -1 
to +1 (La et al. 1987; Zhao et al. 2017), where surface features like water, snow and cloud reflect 
more in the visible band than in the near-infrared band, thus represented as negative NDVI values. 
Bare soil, rock and man-made objects, on the other hand, have NDVI value of around zero. Whereas, 
healthy green vegetation exhibits stronger near-infrared reflectance resulting in high NDVI values 
close to +1. In the current study, the NDVI is calculated for each of the three set of images using the 
expression in Equation 1 (Kinthada 2014). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑅𝑅+𝑅𝑅𝑅𝑅𝑅𝑅)

                                                     [1] 

where NIR and RED is the near infrared (Band 5) and the red (Band 4) of the Landsat-8 imagery. 

 

2.2.2. NDVI value extraction and threshold 

Vegetation index is obviously helpful in detecting land cover changes caused by human activities 
such as physical development and agriculture. This is achieved by examining the balance between 
the energy reflected and emitted by surface objects using the Red and NIR bands (Aburas et al. 2015; 
Yagci et al. 2014; Zhao et al. 2017). To identify land-cover types in urban area surrounded by complex 
agricultural activities, utilising multi-temporal NDVI data, it is possible to distinguish urban features 
from agricultural land, and also forest land through analysis of changes in vegetation vigour across 
seasons (Gandhi et al. 2015). In this study, five different urban land cover types (water, developed 
area, soil/cultivated land, grassland and shrub) were identified and sample points were carefully 
selected for the respective date using stratified random sampling. Necessary steps were taken to 
ensure that each training set was as spectra1ly distinct from training sets for other land cover types as 
possible by using different Landsat 8 false colour combination, the researchers’ knowledge of the 
study area, and field data containing points representing different land use land cover samples 
collected with GPSMAP Garmin 78Sc. 

Thereafter, the corresponding NDVI values of the sample points were extracted and the result for 
each date subset into two parts in ratio 80:20 percent for threshold and validation dataset, respectively 
(Jin et al. 2018). The statistics (minimum, maximum, and mean) of the threshold dataset for each date 
is analysed and plotted. Ultimately, the optimal NDVI threshold for urban land cover classification 
is obtained by averaging the minimum and maximum values of the dates that produced similar map.   
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2.2.3. Land cover classification and accuracy assessment 

The NDVI image of each date was categorized into the specified land cover classes of interest 
based on the NDVI threshold value in form of supervised classification approach using the reclassify 
tool in ArcGIS 10.4. Finally, the classification result was validated with the ground truth data made 
up of combination of the 20% validation datasets of the statistically realistic image dates (January 23 
and December 25). The accuracy of the classification was analysed using unbiased matrix coefficient 
approach proposed by (Olofsson et al. 2013, 2014; Pontius & Millones 2011), basically considering 
the user accuracy, producer accuracy and overall accuracy of the classification results.  

 

3. Result analysis 

3.1. Seasonal NDVI Image 

The NDVI product provides visual assessment of the measure of vegetation amount and 

distribution in each acquisition date across the seasons (Fig. 2). The image in Fig. 2 represents the 

colour ramped NDVI image from red to green colour. In the image, healthy vegetation appears green, 

areas with little or no vegetation are depicted with different shade of yellow colour, while red colour 

shows areas where no vegetation exists. In the present study, the NDVI value ranges from -0.04 to 

0.33, -0.02 to 0.57 and -0.02 to 0.31 for the first, second and third image respectively.  

 

Figure 2. NDVI of the study area in colour ramp for (a) January 23, (b) May 31 and  
(c) December 25 
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Basically, the very low value in the range of negative to near zero value (0.1 and below) signifies 
non-vegetation surface cover types, low value (0.1 – 0.3) indicates slight presence of vegetation such 
as grass and shrubs while moderate to high value (>0.5) represents healthy vegetation or forest land 
cover (Fensholt et al. 2006; Gandhi et al. 2015). The result obtained herein reveals that very low to 
low NDVI value is predominant in the study area. Water and developed areas have very low NDVI 
value (dark shade). This is interpreted to mean that the land cover has more reflection in the visible 
band than they do in the near-infrared. Conversely, the peri-urban recorded low to moderate NDVI 
value represented in varying shade of grey to white colour (Fig. 2, left image). This occurs in regions 
with stronger near-infrared reflectance, indicative of vegetation with good condition or varying 
chlorophyll content (Al-doski et al. 2013; Miomir et al. 2018; Usman et al. 2015). 

 

3.2. NDVI Value Threshold Statistics 

The NDVI values of the five urban land cover classes collected through sampling was used to 
determine approximate range of each feature. Table 1 presents detailed information about the classes 
and their NDVI threshold. The NDVI threshold value is able to identify the land cover types 
considered. It can be observed that the results obtained for the months of January and December are 
similar. For example, in both images, the water class falls within negative to 0.02/0.03, built-up areas 
(0.02 – 0.12), soil and at times cultivated land (0.12 – 0.13/0.14), grassland (0.12 – 0.16), and shrub 
(0.17 – 0.3). In contrary, the NDVI range obtained for the image acquired in the month of May is not 
consistent with the former. Plot of the maximum, minimum and mean NDVI values of each land 
cover class for the respective month is presented in Figure 3. 

Table 1. Statistics of NDVI values for different land cover types 

 January 23  May 31 
ID Feature Min Max Mean ID Feature Min Max Mean 

1 Water -0.03169 0.026995 -0.01093 1 Water 0.030533 0.105059 0.055436 
2 Built-up 0.027336 0.12075 0.086768 2 Built-up 0.068708 0.299438 0.151346 
3 Soil/Cultivated 0.12111 0.139843 0.130208 3 Soil/Cultivated 0.180821 0.427322 0.270787 
4 Grass 0.14008 0.169358 0.153215 4 Grass 0.248589 0.472929 0.394283 
5 Shrubs 0.170756 0.300097 0.210587 5 Shrubs 0.317873 0.55364 0.439107 

 December 25   Average (Min, Max) 
ID Feature Min Max Mean ID Feature Lower Upper   

1 Water -0.01346 0.023202 0.000008 1 Water -0.02257 0.025099  
2 Built-up 0.026873 0.121108 0.083307 2 Built-up 0.027105 0.120929  
3 Soil/Cultivated 0.122364 0.140721 0.133127 3 Soil/Cultivated 0.121737 0.140282  
4 Grass 0.141354 0.169885 0.158862 4 Grass 0.140717 0.169622  
5 Shrubs 0.171138 0.245928 0.188065 5 Shrubs 0.170947 0.273013  
 
The plot of the minimum, maximum and mean (Figure 3) reveals the similarities and differences 

in the range of NDVI value with which each land cover class are coded in each acquisition date. It 
can be observed that the curve produced from plot of the January and December NDVI values against 
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the selected features show similar pattern (Fig. 3a and 3c), unlike what is obtained for the month of 
May (Fig. 3b). This implies that all the features are encoded relatively with the same NDVI spectral 
in the former case. In contrast, the latter case produced diverging curve that shows broad and 
overlapping range of NDVI values with which the feature classes are identified, indicative of the 
amount of feature misidentified and thus misclassified. From the statistical analysis, the ideal 
threshold is identified (Fig. 3d). In summary, the closer the curve of the minimum and maximum 
defines the degree of complexity to identify the feature (see feature class 1, 3 and 4). 

 

Figure 3. Plot of the maximum, minimum and mean NDVI value against land cover class for (a) 
January 23, (b) May 31, (c) December 25 and (d) the proposed threshold derived by averaging the 

maximum and minimum NDVI of (a) and (c) 

 

3.3. Classification and Accuracy Assessment 

Implementation of the NDVI threshold produced the final urban land cover classes where 
extremely low value (<0.03) are classified as water, built-up area (0.03 – 0.12), soil/cultivated land 
(0.12 – 0.14), grass (0.14 – 0.17), and shrub (0.17 – 0.27) (Fig. 4). Results of the land cover map of 
January (dry season, Fig. 4a) and December (harmattan, Fig. 4c) are similar but differ considerably 
from the result obtained for the month of May (raining season). This, obviously, reflects the impact 
of seasonal variation and vegetation condition. Except for the increase in the class shrub, results of 
the dry and harmattan seasons are similar. In contrast, result obtained for the month of May is different 
in all respects (Fig. 4b). Most of the study area show plants with good condition and vegetation with 
high chlorophyll content (see Fig. 2b), partly due to high soil water content and vegetation regrowth.  
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Figure 4. NDVI threshold-based urban land cover classification map of (a) January 23, (b) May 31, 
and (c) December 25. 

 
Quantitative assessment of the land cover maps is done using unbiased error matrix and the details 

are presented in Table 2. In error analysis, it is important to know which class(es) have the greatest 
error by examining individual class accuracy using the user’s and producer’s accuracy, which 
measure the correctly classified pixel in the reference data (Anees et al. 2020; Jin et al. 2018). For 
this study, the user’s accuracy for the individual class ranges between 55% and 100% for the first 
map (Fig 4a), 24% and 100% for the second map (except for the soil) (Fig 4b), and between 60% to 
100% for the third map (Fig 4c). The producer’s accuracies between 46% – 100%, 5% - 100%, and 
13% - 94% were also obtained for the January, May and December maps, respectively. In addition, 
overall accuracy of 71.3%, 46.4% and 75.6% were obtained for January, May and December, 
respectively. Certainly, judging from the results, the degree of error in all the land cover classes 
generated with the image collected in May appears high, which accounts for the low overall accuracy 
achieved. However, the classification results obtained for the January and December data are good, 
implying that they are produced with high accuracy. 
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Table 2. Class area estimation and Accuracy Assessment Summary of the month of January 23, 
May 31 and December 25 data. 

 Class Area 
(hectares) % Area User's 

Accuracy (%) 
Producer's 

Accuracy (%) 
Overall 

Accuracy (%) 
Ja

nu
ar

y 
23

 Water 509.67 0.6% 100.00 100.00 

71.3 
Built-up area 23734.44 27.4% 86.21 95.30 
Soil 15591.24 18.0% 55.26 82.51 
Grassland 34155.72 39.4% 57.89 73.35 
Shrub 12660.03 14.6% 98.31 45.64 

M
ay

 3
1 

      

Water 2845.53 3.3% 48.00 100.00 

46.4 
Built-up area 1099.89 1.3% 100.00 5.81 
Soil 2013.75 2.3% 0.00 0.00 
Grassland 17789.76 20.5% 23.68 19.72 
Shrub 62901.54 72.6% 53.25 97.28 

D
ec

em
be

r 2
5 

      
Water 349.74 0.4% 100.00 12.60 

75.6 
Built-up area 17323.11 20.2% 80.00 70.04 
Soil 8025.75 9.4% 60.00 38.55 
Grassland 28116.81 32.8% 66.15 85.37 
Shrub 31923.81 37.2% 85.11 94.01 

 

4. Discussion 

It has been widely reported that time series NDVI provides seasonal changes in vegetation cover 
(Kong et al. 2016; Usman et al. 2015; Zhao et al. 2017). Analogically, features of the same or related 
spectral signature in NDVI time series belong to the same category of land cover. This assumption is 
more practical in urban areas, which has more permanent features. Unlike vegetated region with broad 
range of NDVI value, typically between 0.3 and +1, to classify vegetation into different categories 
(Ehsan & Kazem 2013; Kinthada 2014; Zhao et al. 2017), the urban setup and its surrounding is a 
heterogeneous environment that occupies the lower end of the NDVI scale with extremely narrow 
width to identify different land-cover types.  

The plot of the curve presented in this study has shown that the thin line of separation between 
different urban land-cover types is detectable (Figure 2). This work has revealed how difficult it is to 
distinguish soil from agricultural land, grassland and shrub particularly within the urban peripheries 
of the City of Ilorin, which is characterised by a mix of open lands for physical development, 
cropland, and grassland for grazing (Ehsan & Kazem 2013; Kinthada 2014; Zhao et al. 2017), by only 
using the Landsat imagery of single dates (Figure 2a, 2c, 2d). Therefore, the dry, raining, and 
harmattan season images have been used for urban land-cover classifications using the defined NDVI 
threshold because the images contain most of the seasonally impacted phenological changes (January, 
May, and December, respectively). 

Examination of the classified maps have shown the relation between NDVI spectral variability 
and the vegetation amount. It can be seen that water, built-up area and exposed soil at the city 
peripheral  appeared fairly consistent in the January 23 and December 25 images (Figure 4a and 4c), 
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while the more vegetated regions reveal slight phenological variance, which could be attributed to 
stress due to reduction in soil moisture (Ajadi et al. 2011; Gandhi et al. 2015). In January, during dry 
season, there is a significant loss of soil moisture arising from lack of rainfall, high temperature and 
high intensity of sunshine. Dryness in leaves and bush burning expose the soil in low growing grasses 
and plants causing low reflectance in the near-infrared band that account for more areas of bare soil 
in January (18.0%) compared to December (9.4%), built-up area (27.4% to 20.2%) and also grassland 
(39.4% to 32.8%) for the respective dates. But for the shrub land cover, the December identified large 
percentage (37.2%) than is obtainable in January (14.6%). As mentioned earlier, the weather 
condition (low temperature, sunshine and cold wind) makes the vegetation resistant to the diminishing 
soil moisture content.  

Unlike the products of the two dates discussed above, the NDVI generated from the month of May 
(and subsequently the classified map) has shown the impact of seasonal change on landcover 
particularly the vegetation cover. The NDVI presents value that varies between the very low to fairly 
high value (-0.02 – 0.57, Figure 2b), indicating the presence of substantial amount of chlorophyll 
content, typical of healthy vegetation. However, the image poorly represents the water, built-up areas 
and completely underrepresents the soil class (Figure 4b). Critical evaluation of the result shows that 
only 6 pixels fall in the negative NDVI value which is responsible for the absence of negative NDVI 
value among the water sampled points (Table 2 and Figure 3b). While rainfall increases soil moisture 
thereby accelerating vegetation regrowth and supporting plant health condition,  which could also be 
responsible for the variant NDVI spectral (Jin et al. 2018).  The NDVI spectral conflict of the urban 
features and water as observed in the present study (Figure 4b) could arise from dampness of surface 
materials and mixture of open water with high content of eroded soil particles arising from constant 
rainfall. 

 

5. Conclusion 

The three-date data represents the most significant characteristics of the seasons in the study area 
that are essential for the accurate classification of the urban land-cover types. According to the 
spectral characteristics of the images, water, developed area (Built-Up area), soil and grass/cropland 
can be effectively mapped in both dry and harmattan seasons. In the rainy season image, on the other 
hand, highly reflective surfaces, such as built-up area, water and unused land could be confused with 
vegetation. Basically, the concept of seasons allows differentiating urban farm land from perennial 
green plants in the off-farming season. It also provides a better visual interpretation of the vegetation 
distribution around the metropolis, which could be useful for urban vegetation mapping. This study 
has demonstrated the usefulness of NDVI indicators for urban land-cover mapping. The threshold 
employed in this study will make urban land-cover classification handy for non-remote sensing 
specialists who may need it as an input into climate modelling operation. The limitation of this study 
is the availability of a very few numbers of cloud free images. In the future, the causes of NDVI 
spectral variance and mix during the rainy season shall be investigated. Also, the approach employed 
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in this study will be advanced using higher resolution satellite images such as Sentinel-2 and Pleiades 
imagery. 
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