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Abstract 

We present the measurement of fractures near the town of Beaufort West, South Africa. A field 
visit was conducted to examine the dip and azimuth of rock outcrops in and around the town. The 
locations of these various fractures were mapped and their orientation, which included the dip and 
strike of the rock surface, was measured using a geological compass (i.e., Brunton Truarc 15 
Compass). The geological compass measurements were then compared to three mobile devices. These 
mobile devices, namely an iPad 2 and two smartphones (Samsung S8 and Huawei P10 Lite), all had 
the same application for standardization and the mobile device results were individually compared 
to the geological compass. The data stemming from the various mobile devices and the geological 
compass were then compared in terms of their variance. This statistical analysis was performed using 
the Correlated T-test method, as well as the Pearson Correlation Coefficient formula. To visually 
examine the main fracture orientations, the data obtained using the geological compass was plotted 
on a rose diagram. Results show that the relationship between the geological compass and the mobile 
device readings had little to no correlation, when using both the correlation and t-tests as combined 
determinants. This highlights the importance of ensuring measurement accuracy in the field as well 
as instrument calibration in situ. 

 
1. Introduction 

Fieldwork is a core component of any geological study, as it assists in understanding the evolution 
and formation of the Earth’s long and complex history. Field visits and mapping form a fundamental 
and exciting time for any geological undergraduate degree (Lundmark et al., 2020). Rapid 
technological advances over the past decades have greatly improved the ease and accessibility of 
mapping tools and their subsequent outputs. Modern smartphones have become digital Swiss Army 
knives with their ability to track, manage, edit, and store data. A smartphone can be used to determine 
their locations via a GPS, perform complex calculations and take photos for field mapping purposes 
as shown by Weng et al (2012). Smartphones have become an extension of students' arms due to their 
utility and ease of use. In terms of fieldwork, one of the physical devices which have stood the test of 
time is the geological compass. Modern smartphones now have powerful gyroscopes and 
accelerometers which aid the device in determining orientation in any 3-dimensional plane. 

http://dx.doi.org/10.4314/sajg.v11i1.4
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Applications, referred to simply as ‘apps’, available on mobile devices may start to phase out the 
classic geological compass if they can prove to be accurate and reliable (Allmendinger et al., 2017).  

The increasing popularity of mobile devices means that many students have access to a smartphone 
or tablet of some kind (Gadzama et al., 2019). This helps in terms of aiding the learning process and 
has a major impact on the delivery of material and the way the students learn (Giles et al., 2020). It 
should however be noted that the reliability of smartphones is questionable and the results, 
particularly those stemming from mobile apps, should be examined with caution (Meskini et al., 
2019). Despite these facts, mobile device use is growing in emerging economies (Figure 1). Almost 
two-thirds of all South Africans have access to a smartphone with an even higher percentage of youth, 
aged 18 to 35, owning these devices (Silver et al., 2019). 

 

Figure 1. The percentage of adults owning phones in advanced economies versus emerging 
economies (Silver et al., 2019). 

Software and technology in the Earth Sciences have advanced over the years. The United States 
Geological Survey (USGS), as well as Environmental Protection Agency (EPA), have developed 
multiple pieces of software for the Earth Sciences in general. More recently, the development of 
QGIS (known as Quantum GIS until 2013), which is an independent collaboration of software 
developers, has allowed a spatial dimension to be added and the integration of apps and various pieces 
of software into one location (De Filippis et al., 2020). 

With all these advantages it should however also be noted that a comparison between the digital 
and manual devices as well as their precision and reliability is needed in an African context. This is 
particularly true across types of mobile devices and software as well as for various operating systems 
(Android vs Apple). Thus, highlighting the importance of a study of this nature. 
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2. Literature review 

Field mapping has formed a critical component of Earth Science studies and research. This practice 
also plays an important role in the delineation of resources and understanding their distribution in the 
subsurface.  

Roger Tomlinson spearheaded the transition from paper based to digital maps and he also went on 
to develop the Canadian Geographic Information System which made it possible to manage, model 
and analyse large quantities of geospatial data (Rura et al., 2014). 

As GIS and technology becomes more advanced, geologists and cartographers now make use of 
satellite, airplane, and drone imagery in conjunction with GIS software such as ArcGIS and QGIS. 
This is further complimented by photogrammetry software such as PIX4D and Agisoft Metashape to 
easily create high resolution maps and 3D models. Digital cameras and smartphones allow for 
effortless documentation and storage of field observations in the form of high-definition photographs 
(Weng et al., 2012). On 18 March 2020 Apple unveiled the new iPad Pro (4th generation) with a 
LiDAR Scanner; thus allowing these mobile devices to aid in the collection of remotely sensed data 
which can be used in mapping. Traditional field equipment such as the Brunton Truarc 15 Compass 
is slowly being replaced by mobile apps such as FieldMove Clino, regardless of the questionable 
reliability of smartphones and tablets (Meskini et al., 2019).  

The further development of mobile devices and the consequent increase in the number of mobile 
apps has led to increased advances in terms of usability, particularly in the field. Nowak et al. (2020) 
have extensively reviewed examples of these and highlighted the fact that citizen science is playing 
an increasingly important role in documenting our natural environment. Some of these include: 

1. Open Data Kit 
2. SW Maps 
3. Spipoll 
4. eBird 
5. iNaturalist 

 Novakova and Pavlis (2017) have reviewed many of these mobile apps for mapping purposes, 
particularly focusing on Android devices. In contrast, Allmendinger et al. (2017) looked at mobile 
apps designed for IOS devices. One such app was developed by Weng et al. (2012) and they have 
highlighted the following functionalities: 

1. photo-taking,  
2. videotaping,  
3. audio recording,  
4. note writing  
5. GPS coordinates to track the location at which each datum was taken. 

This is further complemented by a timestamp and the generation of a single file to compile data in 
various formats which has been collected at one location (Weng et al., 2012). The combination of 
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data into one location shows that the use of a mobile devices allows for the simple and easy collection 
of information and organizes this data into a usable format. Therefore, this study aimed to compare 
the use of a single mobile app across Android and IOS devices and cross-correlate the measurements 
with those from a Brunton Truarc 15 Compass, due to no study of this nature having been conducted 
in an African context. This is of the utmost importance as previous studies have shown ease of use of 
mobile devices in the field, but the combination of digital and traditional tools is preferred by users 
(Lundmark et al, 2020).   

The use of Unmanned Aerial Systems (UAS) has taken the fore in terms of mapping in recent 
times. These UAS typically provide a higher resolution image than satellites, and allow for a larger 
area to be mapped than on foot, when compared to location specific mapping exercises such as this 
study (Figure 2) by Manfreda et al (2018). Even though these UAS are finding widespread 
applications, Manfreda et al (2018) have highlighted the following limitations of UAS:  

1. Limited flight times due to battery capacity 
2. Relative ground sampling distance impacts the quality of the outputs 
3. Legislative limitations on operating 
4. Sensor calibration 
5. Image registration, correction and calibration 

 

Figure 2. A comparison between Unmanned Aerial Systems (UAS), Manned Systems and Satellites 
(Manfreda et al., 2018). 

The reality is that users are combining the aforementioned tools in order to capture measurements 
across spatial and temporal scales (Manfreda et al., 2018). This is important for understanding 
uncertainty during data collection. 

 

3. Methodology 

3.1. Study area 

The study area is situated in the town of Beaufort West, South Africa. The Nuweveld Mountains 
are located North of the town, and are characteristically flat-topped with thick dolerite caps, which 
are resistant to erosion. The study area is relatively flat with multiple rock outcrops and roadcuts, thus 
making it an ideal area to test the efficacy of mobile apps for earth sciences. This is complimented by 
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the fact that several previous studies have measured the orientation of fractures in the area and these 
can then be cross-correlated.  

Beaufort West is situated approximately 930m above sea level. At this altitude, precipitation 
mainly occurs during summertime (Tyson and Preston-Whyte, 2000). The study area consists 
predominantly of cold-dry winters and hot-wet summers. In winter, there have been occurrences of 
temperatures reaching below 0°C and above 40°C in summer. Most of the rainfall during summer 
occurs in the form of thunderstorms, turning the dried-out rivers into temporarily raging torrents 
(Willis, 2014). The regional geology of Beaufort West (Figure 3) is largely characterized by the 
Abrahamskraal and Teekloof Formation, which belong to the Adelaide Subgroup and Beaufort Group 
(Rose and Conrad, 2007). The Karoo Supergroup is extensively intruded by dolerite dykes and sill 
ring complexes (De Wit and Linol, 2016). Woodford and Chevallier (2002) identified a number of 
oblique lineaments, fracture-sets and master-joints with a northwest-southeast strike orientation 
occurring within the Beaufort West Area. 

Figure 3. Location and geology of the study area near Beaufort West (Woodford and Chevallier, 
2002) 

3.2. Devices and software used 

Three different mobile devices, which all contain gyroscopes and accelerometers were used. All 
devices were up to date with their latest software prior to taking measurements (Table 1). 
Unfortunately, no information on the type of accelerometer and gyroscope could be found for the 
specific mobile devices. 

 
Table 1. Manufacturer, model, and software of devices used to take measurements. 
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Manufacturer Model Software Version 
Huawei P10 Lite 9.0 
Apple iPad 2 12.02 (16E227) 
Samsung S8 (SMG950F) 9.0 

 

The software used to take measurements on the three mobile devices was FieldMove Clino 
developed by Petroleum Experts Limited, as also used by Lundmark et al. (2020). The software is 
free for download on both Android and Apple devices. Before readings were taken all devices were 
calibrated to improve reading accuracy. This calibration functionality is built into the devices and the 
mobile apps in order to ensure accuracy. 

 

3.3. Data collection  

Physical measurements were taken on the rock surface using a Brunton Truarc 15 Compass in the 
immediate vicinity of Beaufort West (Figure 4). This included the location of the examined fractures, 
using a handheld GPS, and was further complemented by dip and azimuth readings on the surface of 
the rock to measure fracture orientation with the geological compass. These readings were also taken 
using the three mobile devices. All dip and azimuth readings of the rocks were taken along flat planes 
and each device was placed in the same location to minimize variance.  

Figure 4. Locations of road cuts where azimuth and dip readings were taken in the Beaufort West 
area. 

 



South African Journal of Geomatics, Vol. 11. No. 1, February 2022 

48 

3.4. Statistical Analysis 

Correlation coefficient and the T-test analysis were employed to determine the accuracy and 
precision of the mobile devices. The correlation coefficient determines the relationship strength 
between two variables, on a scale from 1 to -1, with 1 indicating a strong positive correlation and -1 
indicating a strong negative correlation. There are several correlation coefficient formulas which are 
applied in various fields with numerous applications and requirements for their specific use (Helsel 
et al., 2020), with the Pearson correlation coefficient being the most common.  

𝑟𝑟 = 𝑛𝑛(∑𝑥𝑥𝑥𝑥)−(∑𝑥𝑥)(∑𝑥𝑥)
�[𝑛𝑛∑𝑥𝑥2−(∑𝑥𝑥)2][𝑛𝑛∑𝑥𝑥2−(∑𝑥𝑥)2]

                [1] 

Where x and y indicate the sample mean between the independent and dependent values 
respectively (Lane, 2003). 

T-test statistics is a form of hypothesis testing which is used to determine if there is significant 
difference between two groups of data. There are various T-test methods, for the purpose of this study 
the Correlated T-test (sometimes referred to as the Paired T-test), was utilized. The correlated T-test 
is used for comparative analysis where the values between two groups have equal units. The formula 
for the correlated T-test is:  

𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛1−𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛2
𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
�(𝑛𝑛)

               [2] 

where T is the T-value, mean1 and mean2 refer to the mean of each data group, s(diff) is the 
standard deviation between the data groups and n is the sample size (Boslaugh, 2013).  A large T-
value suggests the two groups are different while a small T-value indicates the groups are similar. To 
determine the minimum acceptable T-value a T-distribution table was used. The upper limit of the 
confidence interval was chosen for the sake of accuracy. The figure of 1.86 was used due to the 
Degree of Freedom being 8 for each of the devices and a confidence level of  95%. These values were 
extracted from the One Tail T-Distribution Table shown in Beyer (2017). 

The Sum of Squares within (SSW) and Sum of Squares total (SST) was computed by comparing 
the means of each device with the geological compass measurements. Thereafter the Sum of Squares 
between (SSB) was determined. The SSB value is divided by the SSW in order to determine the final 
value and if this is less than the minimum acceptable T-value then the hypothesis is accepted, 
provided that the correlation value is also greater than 0.5. 

 
4. Results and Discussion 

4.1. Fracture orientation 

Two major fracture orientations were noted during field observations in the study area, shown in 
Figure 5 (a). The 125 fracture readings taken in Beaufort West using a Brunton Truarc 15 Compass 
were used to produce the rose diagram in figure 5 (b), illustrating the strike orientation of the fractures 
in this area. This rose diagram indicates major fractures have a northwest-southeast strike orientation, 
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and secondary fractures have a west-east strike orientation. Thus, confirming observations related to 
fracture orientation for the majority of measurements (Woodford & Chevallier, 2002). This is critical 
for ensuring reproducibility of results and measurements as well as calibration of digital tools in the 
field. 

Figure 5. a) Fractures observed in the study area; and b) a rose diagram illustrating strike orientation 
of the fractures seen in (a). 

4.2. Variance analysis 

For this study, the geological compass readings are viewed as the ‘true’ values. Values taken by 
mobile devices are compared to the true values to determine their overall accuracy. For the correlation 
coefficient, only devices with a R-value > 0.7 will be accepted as this indicates a strong positive 
relationship.  

For the t-test analysis, the critical value was determined to be 1.86 by making use of the distribution 
table (table 2). T-values greater than 1.86 mean the null hypothesis was rejected. If both the 
correlation coefficient and T-values fell within an acceptable range, then the readings were accepted, 
and the device is acceptable to use. Correlation coefficient and t-test analysis were performed on the 
azimuth and dip readings independently. 

4.2.1. Road Cut 1 

Looking at the correlation coefficient and t-test analysis results for the azimuth and dip readings 
at road cut 1 the only device which had an acceptable correlation coefficient was the Huawei (table 
3), however the t-value was rejected indicating the device is unacceptable to use. Samsung had an 
acceptable t-value but its correlation coefficient fell below the allowed limit. 
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Table 3. Correlation coefficient and t-test analysis results for the azimuth and dip readings taken at 
road cut 1.  

 Azimuth Dip 
 Huawei iPad Samsung Huawei iPad Samsung 
Correlation -0.43 -0.13 0.55 0.76 -0.29 0.66 
t-value 3.16 3.89 3.37 2.39 2.30 0.30 
t-table 
(Critical 
Value) 

1.86 1.86 1.86 1.86 1.86 1.86 

Null 
Hypothesis 

Rejected Rejected Rejected Rejected Rejected Accepted 

 

4.2.2. Road Cut 2 

The measurements for the readings taken at the road cut 2 (table 4) shows that all devices had 
acceptable azimuth t-values. The Samsung device was the only one to have an acceptable correlation 
coefficient and t-value. Dip values for all devices had low correlation coefficients, whilst both the 
iPad and Samsung had acceptable t-values, which can be seen from the accepted null hypothesis, 
however due to their weak correlation coefficients they were rejected. 
 
Table 4. Correlation coefficient and t-test analysis results for the azimuth and dip readings taken at 

road cut 2. 
 Azimuth Dip 
 Huawei iPad Samsung Huawei iPad Samsung 
Correlation -0.97 -0.37 0.86 -0.21 -0.37 0.21 
t-value 0.25 1.19 1.42 2.63 1.09 1.11 
t-table 
(Critical 
Value) 

1.86 1.86 1.86 1.86 1.86 1.86 

Null 
Hypothesis 

Rejected Rejected Accepted Rejected Rejected Rejected 

 
From table 3 and 4 it can be seen that all devices were almost unanimously rejected based on the 

poor relationship between the t-value and the Pearson correlation, the only exception being the 
azimuth readings for the second road-cutting. Overall, these devices are not yet reliable enough to be 
used for fieldwork. Furthermore, field observations during the first 5 recorded observations with the 
mobile devices were vastly different from the measurements taken with the geological compass.  

 
5. Conclusion 

The data presented, highlights the fact that issues are evident in terms of using technology, like 
mobile devices and mobile apps used in the field for geoscience mapping. This does pose some 
problems for earth scientists who are doing field work and creates issues in terms of accuracy of 
measurements, as shown in this study. The outcomes clearly highlight the importance of calibrating 
digital measurements with manual ones in order to correct and better understand issues around 
instrument calibration. Allmendinger et al (2017) have outlined the following precautionary measures 
to be taken in order to help alleviate this issue in the future: 
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1. One should make multiple measurements of the same surface using each type of instrument and 
compare the averages of the measurements.  

2. When evaluating planar orientations, one should always compare the angular difference 
between poles to the planes and not the difference in strike or dip.  

3. The user should invest in a program that monitors the device sensors over time and experiment 
with the effect of proximity of external metallic objects on the phone magnetometer.  

4. Where possible, the user should compare their phone measurements, not only to the Brunton 
geological compass measurements, but also to data independent of the magnetic field such as  
LiDAR topographic contours and Google Earth images. 

The aforementioned points are critical for future studies and need to be taken into consideration 
when completing field work using mobile devices. This should be complemented with calibration 
from the outset as it was a major issue in the initial phases of this study. 

The changing landscape of geoscience, which is impacted by technology at every turn, needs to 
be taken cognizance of (Giles et al., 2020). Thus, the marriage of technology with classical methods 
into a transition of solely digital tools needs to be carefully undertaken and analog methods should 
not entirely be removed. The limitations of technological tools in the field should be further examined 
(Manfreda et al., 2018). Therefore, these digital tools can be seen as supplemental and complementary 
to the classical analog devices (Giles et al., 2020). This is due to the fact that uncertainty and 
calibration play a major role in digital devices, such as the smart ones used in this study, as shown by 
the data collected. 
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