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Abstract 

The computation of geodetic coordinates is the basis of geodetic surveying and foundation to modern 
techniques for geodetic network analyses and design of integrated survey schemes for monitoring and 
detecting structural deformations. The positional accuracy achievable by Direct and Indirect models of 
geodetic position determination depends on the varying lengths, azimuths and latitude of the first point 
of the network of stations. Existing knowledge gaps preclude a comprehensive understanding of the 
relative accuracies of these methods. Therefore, the aim of this study is to determine the achievable 
accuracies of three models (Bowring, Chord and Power Series) for direct and indirect position 
determination vis-a-vis the network configuration. The data comprised of 33 controls in the D-Chain 
geodetic network located in North-Central Nigeria, with a range of network of lines between 15.530km 
and 113.254km. Various attributes of the network such as azimuth, angle, distance, and coordinates were 
computed to a high accuracy and precision using a program written in the Matlab software environment. 
The results of the direct and indirect computation were summarised using descriptive statistics. Also, the 
accuracies of the computed coordinates were assessed by comparisons with the provisional (initial) 
coordinates of the controls. In the analysis of coordinate differences, the positional root mean square 
error (RMSE) for each of the three models in decreasing order of accuracies are: 4.572639341′′ (Chord), 
4.601685022′′ (Power Series) and 4.601701034′′ (Bowring). The positional mean absolute deviation 
(MAD) for the three models in decreasing order of accuracies are 3.788841258′′ (Chord), 3.813184934′′ 
(Power Series) and 3.813198679′′ (Bowring) and this agrees with the RMSE trend for the network. This 
study has shown that the D-chain network configuration favours the use of Chord model for position 
determination based on the adopted configuration. 
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1. Introduction 

Geodesy (the science of the measurement and mapping of the earth’s surface) is essentially an 
application of mathematics (Omogunloye et al., 2012). It makes use of coordinates and associated 
reference systems (Jekeli, 2006). Over the years, the precision of geodetic measurements has increased 
by several orders of magnitude and geodesy has proven immensely valuable for both scientific and 
commercial applications (NAS, 2010; Nwilo et al., 2016; Omogunloye et al., 2018). According to 
Fajemirokun (2006), geodesy takes care of the following scientific tasks: determination of the size and 
shape of the earth; establishment and maintenance of national and global three-dimensional geodetic 
networks; determination of earth’s surface displacements; measurement and representation of 
geodynamic phenomena; and earth’s external gravity field determination. A reference ellipsoid is 
generally considered as the best approximation to the size and shape of the earth. Therefore, it is used as 
the surface upon which to perform terrestrial geodetic computations (Krakiwsky and Thomson, 1974; 
Omogunloye et al., 2017).  

There are two essential problems in the computation of coordinates, directions, and distances on a 
given ellipsoid – the Direct problem and the Inverse/Indirect problem (Rapp, 1991; Jekeli, 2006). The 
Direct and Inverse problems on the ellipsoid are necessary geodetic operations and can be related to the 
equivalent operations of plane surveying; radiations (computing coordinates of points given bearings and 
distances radiating from a point of known coordinates) and joins (computing bearings and distances 
between points having known coordinates) (Omar, 2017). In plane surveying, the coordinates are 2-
Dimensional (2D) rectangular coordinates, usually designated East and North and the reference surface 
is a plane, either a local horizontal plane or a map projection plane (Deakin and Hunter, 2010). However, 
in geodesy, the coordinates are geographic coordinates in mode of latitude (φ), longitude (λ) and 
elevation (h), and the reference surface in form of a spheroid surface is usually projected on a spherical 
surface or ellipsoid.  The Direct geodetic problem is the calculation of geodetic coordinates—the latitudes 
and longitudes of several points lying on the geoid—by the coordinates of another point and the length 
and azimuth of the geodetic line connecting these points. The Indirect geodetic problem is the 
determination of the length and azimuth of the geodetic line between two points by the geodetic 
coordinates of these two points on the geoid (Omar, 2017).  Various applications depend on different 
methods of calculating the Direct and Indirect problem of geodetic coordinates. The need to find the best 
fit methods of calculating these attributes is very paramount in solving geodetic problems and also 
finding the best methods that fit the short, medium and long-distance measurement of geodetic 
application (Lenart, 2013). 

Different approaches have been put forward for solving these problems and are generally classified in 
terms of “short”, “medium”, and “long” line formulae. Each method includes distinctive approximations 
which tend to restrict the interstation distance over which some formulae are useful for a given accuracy 
(Krakiwsky and Thomson, 1974). According to Sjöberg (2009), the Direct and Indirect geodetic 
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problems on the geodesics are still very relevant in the application of satellites launching and landing, 
law of the sea, military surveys and in the determination of the best optimum route for aircraft and ship 
navigational routes. There are different models used for direct and indirect geodetic position 
determination, for example, the Puissant method, Gauss Mid-Latitude method, Legendre method, Chord 
method, Power series method and the Bowring method. Each model has its associated approximations in 
terms of series truncation or geometric approximation in its derivation. Specific accuracy estimates are 
obtainable if a series of test lines are computed with the most accurate sets of formulae as opposed to the 
results from an approximate method. Such computations have been done by Gupta (1972) for a number 
of methods and by Badi (1983) for Bowring method. Accuracy of any model is often expressed in the 
context of the desired position computation accuracy. For example, 1 arc second of accuracy corresponds 
to 30m length on the surface of an ellipsoid. This implies that, given a set of latitudes and longitudes, 
one would expect that any distance computed from them should be correct to 1mm, which implies that 
latitude (φ) and longitude (λ) should be given to an accuracy of the order of 0.00001 arc of seconds. 
Usually there may be cases where less accuracy would suffice depending on the purpose for which the 
result is to be applied. 

The Power series method was one of the earliest methods used in solving the Direct problem. It was 
developed using the principle of Maclaurin series in solving the problem on the ellipsoid (Jordan and 
Eggert, 1962). The solution to the indirect problem of the Power series is not as straightforward as the 
direct solution. The Bowring method uses a conformal projection of the ellipsoid on a sphere also known 
as Gaussian projection of the second kind. In the adoption of this method by Bowring (1981), the scale 
factor is taken to be at the starting point of the line. Also, the first and second derivatives of scale factor 
with respect to latitude are set to zero. The geodesic from ellipsoid is then projected to the corresponding 
line on the sphere where spherical trigonometry can be applied (Rapp, 1991; Omogunloye et al., 2016). 
The Bowring method has accuracies of 1mm or 2mm for both direct and indirect problems for line lengths 
up to 120km order and 3 or 4mm for line lengths of 150km (Jekeli, 2006). The Chord method of direct 
computation is an outcome of three-dimensional (3-D) geodetic coordinate system; it is based on the 
principle of Molodensky formulas (Vincenty, 1986). Both King (1971) and Hradilek (1976) also advance 
the development of the Chord methods with vector notation and discovered that the methods are varied 
in some places. The accuracy of the Chord method can be extended to sub-millimetre precision 
(Vincenty, 1986; Omogunloye et al., 2016). It has previously been shown that the Power series method 
of the fifth order derivative at latitude of 10° was able to achieve an accuracy of  0.00001 arc seconds 
with a 100km length as opposed to its achieving same accuracy at a latitude of 70° but for a 60km range 
of length. However, the Bowring method is favoured at higher latitudes of 70° with same accuracy but 
for a 70km length of line.  

According to Gupta (1972), there is sensitivity to the results obtainable in most cases depending on 
the varying lengths, azimuths and latitude of the first point of the network. It is usually sufficient to know 
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the maximum distance at the poorest azimuths and latitudes, for which a specific direct model yields a 
given accuracy. Existing knowledge gaps preclude a comprehensive understanding of the relative 
accuracies of these methods. The main thrust of this study is to show that the accuracy of the direct 
solution models must be based on accuracy criteria and not on the basis that a given formula is accurate 
for specific range or length of lines. Therefore, this research work considered three methods out of the 
various models developed by the geodesists as a solution to the direct and indirect problem. A program 
was written to facilitate the computation processes involved in the particular models adopted, and their 
accuracies were compared. 

 

2. Materials and Methods 

2.1. Description of D-Chain geodetic network 

The D-Chain geodetic network cuts across Kwara, Niger, Kebbi and Kaduna States in Nigeria, West 
Africa. The network lies within the boundary extent of latitudes 08°30’ - 11°30’N and longitudes 04°00’ 
- 06°30’E (Moka et al., 2007). The coordinates of the network consist of 33 coordinate points and 42 
triangulation formations. The longest line in the triangulation is D14 to D21 and the shortest line is D2 
to D6. Figure 1 presents a map of Nigeria showing the D-Chain horizontal geodetic triangulation 
network. Nigeria has a total area of 923,768 km2 (CIA, 2016) and shares boundaries with Benin Republic 
to the west, Cameroon to the east, Niger to the north and Chad to the north-east. The country’s coastline 
spans a length of approximately 853km facing the Atlantic Ocean (Ibe, 1988; Nwilo, 1995; Nwilo and 
Badejo, 2006). According to Nwilo (2013), early developments in Nigeria during colonial times provided 
the impetus for the establishment of survey controls. This was later followed by the establishment of 
framework controls using methods such as traversing, triangulation, trilateration, geodetic levelling and 
trigonometric levelling (Nwilo et al., 2016). Nigeria dropped the Clarke 1858 projection in 1926 and 
adopted the modified Clarke 1880 Transverse Mercator projection in the same year (Adalemo, 1990; 
Adewola, 1990; Nwilo et al., 2016). In 1975, the Nigeria Transverse Mercator (NTM) was replaced by 
the Universal Transverse Mercator (UTM) which was introduced in Nigeria by the Federal Surveys 
Department (Uzodinma and Ezenwere, 1993). 
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Figure 1: Map of Nigeria showing the D-Chain horizontal geodetic triangulation network. 

 

2.2. Data acquisition 

The initial (provisional) geodetic coordinates of D-Chain used in this study were derived from an 
earlier work done by Omogunloye (2010) on the optimal simultaneous adjustment for all stations within 
the Nigerian horizontal geodetic network. However, the original coordinates of D-chain which were 
adjusted by Omogunloye (2010) were obtained from the work of Field (1977). The triangulation stations 
were observed by terrestrial measurements of angles and distances using triangulation and trilateration 
methods. The observations took place between the late 1940s and early 1960s. The L40 triangulation 
station at Minna which represents the origin of the horizontal geodetic network of Nigeria, was selected 
as the origin. The geodetic coordinates of L40 were derived after taking the mean of astronomical values 
projected through four arms of the Nigerian triangulation network and the astronomically derived 
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coordinates of L40 (Fajemirokun and Nwilo, 1990). The projection used for the datum is the modified 
Clarke 1880 (Onabajo, 2006). Information on the geodetic parameters of Minna datum has already been 
provided in other studies (e.g. Uzodinma and Ezenwere, 1993; Uzodinma and Ehigiator-Irughe, 2013). 

 

2.3. Computation of station coordinates 

Whereas the Chord model computations were based on coordinate conversion between the geodetic 
curvilinear coordinates (φ, λ, h) and geocentric (X, Y, Z), the Power Series and Bowring models 
computation were based on the assumption that the geodesic on the surface of the ellipsoid is a function 
of the geodetic latitude (φ), longitude (λ) and azimuth (α) along the geodetic line. Bowring model derives 
its equations to calculate the direct problem for geodesic for lines up to 150km length. The method uses 
a conformal projection of the ellipsoid on a sphere called Gaussian projection of the second order. The 
local Minna datum was adopted as the reference system in the computations. The coordinates of station 
D1 (𝝋𝝋 = 9.019°N, 𝝀𝝀 =  5.0011°E) were selected as the initial coordinates and the coding for the 
computation of the other stations coordinates was executed using the azimuths and distances in the 
Matlab R2016a software environment. The program procedurals were coded in A Matlab file (.m), 
written in Matlab Editor and run in the command window. Matlab is a robust programming language 
developed by MathWorks used for simple and complex matrix operations, data plotting and with support 
for algorithm implementation. The Power series, Bowring and Chord models were used to compute the 
respective azimuths, distances, latitudes and longitudes between all stations in the triangulation network.  

 

2.4. Accuracy assessment 

To check the relative accuracies of the Bowring, Chord and Power Series models for direct and 
indirect determination of geodetic coordinates, the computed coordinates were compared with the initial 
coordinates. In the accuracy assessment, the coordinate differences were computed using Microsoft 
Excel 2010 while parameters such as standard deviation - SD (𝜎𝜎), standard error of the mean (SEM), 
mean absolute deviation (MAD) and root mean square error (RMSE) were computed using the Statistical 
Package for the Social Sciences (SPSS) version 16. The formulae for SD and SEM are given in equations 
1 and 2. 

SD (𝜎𝜎) = �∑ (𝑥𝑥−�̅�𝑥)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛−1

 [1] 

Where 𝑥𝑥= computed coordinate, �̅�𝑥 = initial coordinate, and n is the number of stations. The SEM is 
defined as the standard deviation of the sampling distribution of the mean and its formula is given by 
Okolie et al. (2020). 

SEM (𝜎𝜎𝑚𝑚) = 𝜎𝜎
𝑛𝑛
  [2] 

http://onlinestatbook.com/glossary/squared_deviation.html
http://onlinestatbook.com/glossary/sampling_distribution.html
http://onlinestatbook.com/glossary/mean.html


South African Journal of Geomatics, Vol. 10. No. 2, August 2021 

107 
 

The RMSE represents the sample standard deviation of the differences between predicted values and 
observed values. RMSE is a measure of accuracy, to compare forecasting errors of different models for 
a particular data and not between datasets, as it is scale-dependent (Hyndman and Koehler, 2006). The 
MAD and RMSE have been widely used by scientists and researchers (Chai and Draxler, 2014), to 
measure model performance. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑒𝑒𝑖𝑖|𝑛𝑛
𝑖𝑖=1   [3] 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ 𝑒𝑒𝑖𝑖2𝑛𝑛
𝑖𝑖=1   [4] 

Where: 

𝑒𝑒𝑖𝑖 = the coordinate difference for the ith station. 

n = the total number of stations. 

Finally, to test for the relationship between the initial and computed coordinates, a paired samples t-
test was run. The paired-samples t-test is used for comparing the mean of two matched groups or cases 
(Ross and Wilson, 2017). 

 

3. Results and Discussion 

3.1. Computed coordinates, azimuths and distances 

Table 1 shows the coordinates of the stations computed by the Bowring, Chord and Power series 
models. In the table, 𝜑𝜑𝐵𝐵 , 𝜑𝜑𝐶𝐶 and 𝜑𝜑𝑃𝑃 represent the latitudes computed by the Bowring, Chord and Power 
series models respectively while 𝝀𝝀𝑩𝑩, 𝝀𝝀𝑪𝑪 and 𝝀𝝀𝑷𝑷represent the longitudes computed by the Bowring, Chord 
and Power series models respectively. Table 2 shows the minimum and maximum azimuths and distances 
computed from the three models for short, medium and long lines respectively. Short lines have lengths 
that are less than 30km, medium lines have lengths between 30km and 70km while long lines are longer 
than 70km.  

Table 1: The computed station coordinates, using the three models. 
S/N Stn 

ID 
𝝋𝝋𝑩𝑩 (°) 𝝀𝝀𝑩𝑩 (°) 𝝋𝝋𝑪𝑪 (°) 𝝀𝝀𝑪𝑪 (°) 𝝋𝝋𝑷𝑷 (°) 𝝀𝝀𝑷𝑷 (°) 

1 D1 9.018938 5.001059 9.018939 5.001060 9.018938 5.001059 
2 D2 8.989992 4.721305 8.989992 4.721305 8.989992 4.721305 
3 D3 8.967094 4.455227 8.967094 4.455227 8.967094 4.455227 
4 D4 8.904959 4.851949 8.904959 4.851949 8.904959 4.851949 
5 D4 8.904898 4.851909 8.904898 4.851909 8.904898 4.851909 
6 D5 9.309090 4.869869 9.309091 4.869869 9.309090 4.869869 
7 D6 9.108511 4.796679 9.108511 4.796679 9.108511 4.796679 
8 D7 9.188371 4.587739 9.188372 4.587739 9.188371 4.587739 
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9 D8 9.545191 4.662513 9.545193 4.662513 9.545191 4.662513 
10 D9 9.439902 4.312542 9.439903 4.312542 9.439902 4.312542 
11 D10 9.681235 4.446131 9.681237 4.446131 9.681235 4.446131 
12 D11 10.012564 4.678493 10.012569 4.678494 10.012564 4.678493 
13 D12 9.887759 4.194782 9.887761 4.194781 9.887759 4.194782 
14 D13 10.274416 4.391233 10.274420 4.391234 10.274416 4.391233 
15 D14 10.409589 4.124270 10.409593 4.124269 10.409589 4.124270 
16 D15 10.430527 4.747349 10.430532 4.747350 10.430527 4.747349 
17 D16 10.594174 4.943278 10.594185 4.943279 10.594174 4.943278 
18 D17 10.759915 4.560754 10.759921 4.560755 10.759915 4.560754 
19 D18 10.772292 4.908999 10.772303 4.909000 10.772292 4.908999 
20 D19 10.930317 5.205523 10.930331 5.205525 10.930317 5.205523 
21 D20 11.217807 5.011818 11.217822 5.011819 11.217807 5.011818 
22 D21 11.301521 4.627439 11.301532 4.627439 11.301521 4.627439 
23 D22 11.089734 4.827288 11.089745 4.827289 11.089734 4.827288 
24 D28 11.130130 5.249952 11.130144 5.249954 11.130130 5.249952 
25 D29 11.386648 5.217224 11.386662 5.217226 11.386648 5.217224 
26 D30 11.235968 5.530653 11.235982 5.530655 11.235968 5.530653 
27 D31 10.997259 5.582770 10.997271 5.582772 10.997259 5.582770 
28 D32 10.677084 5.407489 10.677096 5.407490 10.677084 5.407489 
29 D33 10.857138 5.653435 10.857150 5.653437 10.857138 5.653435 
30 D34 10.824474 5.847809 10.824486 5.847811 10.824474 5.847809 
31 D35 10.496434 5.695291 10.496446 5.695292 10.496434 5.695291 
32 D36 10.669488 6.059495 10.669499 6.059497 10.669488 6.059495 
33 D38 10.402949 6.149815 10.402961 6.149817 10.402949 6.149815 

 
Table 2: Minimum and maximum azimuths and distances computed from the three models. 

Parameter Method Short lines Medium lines Long lines 
Min Max Min Max Min Max 

Forward  
azimuth 
(°) 

Bowring  12.489167 352.744870 1.961084 354.706274 6.907450 351.061896 
Chord  12.352719 352.828290 1.944812 354.754798 6.835666 351.143359 
Power series 12.344301 352.821840 1.941995 354.764438 6.838382 351.122463 

Backward 
azimuth 
(°) 

Bowring  99.505906 265.079494 92.864832 261.740401 121.138494 209.361605 
Chord  99.626213 265.081426 92.947882 261.715153 121.530961 209.163679 
Power series 99.608530 265.060965 92.912269 261.658941 121.481126 209.150989 

Distance 
(𝒎𝒎) 

Bowring  15.582128 29.640445 30.631440 69.649687 73.678322 113.739419 
Chord  15.505701 29.367792 30.470897 69.374019 73.454641 112.993657 
Power series 15.505016 29.368658 30.473273 69.373389 73.454225 113.030382 
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3.2. Accuracy assessment of the coordinate differences 

Table 3 presents the differences between the initial and computed coordinates while Table 4 presents 
the minimum and maximum differences between the initial coordinates (𝜑𝜑𝐼𝐼 , 𝜆𝜆𝐼𝐼) and the coordinates 
computed from the three models. Of the 33 stations in the network, the Chord model yielded the lowest 
differences in the coordinates (𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐶𝐶 = 0.03244392′′; 𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐶𝐶 =-0.24850728′′) while the Bowring 
model yielded the highest differences in the coordinates (𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐵𝐵= 8.14182516′′; 𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐵𝐵 = 
3.77085240′′). 

Table 5 shows the mean, SEM and SD of the coordinate differences. When compared with the initial 
coordinates, the latitudes determined by the Chord model yielded the lowest SEM and SD (𝑅𝑅𝑅𝑅𝑀𝑀𝜑𝜑𝐼𝐼−𝜑𝜑𝐶𝐶 = 
0.38911572′′; 𝑅𝑅𝑀𝑀𝜑𝜑𝐼𝐼−𝜑𝜑𝐶𝐶= 2.30203908′′) while the latitudes determined by the Bowring model yielded the 
highest SEM and SD (𝑅𝑅𝑅𝑅𝑀𝑀𝜑𝜑𝐼𝐼−𝜑𝜑𝐵𝐵= 0.39200364′′; 𝑅𝑅𝑀𝑀𝜑𝜑𝐼𝐼−𝜑𝜑𝐵𝐵 = 2.31912396′′). Similarly, the longitudes 
determined by the Chord model yielded the lowest SEM and SD (𝑅𝑅𝑅𝑅𝑀𝑀𝜆𝜆𝐼𝐼−𝜆𝜆𝐶𝐶= 0.21179160′′; 𝑅𝑅𝑀𝑀𝜆𝜆𝐼𝐼−𝜆𝜆𝐶𝐶 = 
1.25297604′′) while the longitudes determined by the Bowring model yielded very high SEM and SD 
(𝑅𝑅𝑅𝑅𝑀𝑀𝜆𝜆𝐼𝐼−𝜆𝜆𝐵𝐵= 0.21214512′′; 𝑅𝑅𝑀𝑀𝜆𝜆𝐼𝐼−𝜆𝜆𝐵𝐵 = 1.25506800′′). 

 
Table 3: Differences between the initial and computed coordinates. 

S/N Stn ID 𝝋𝝋𝑰𝑰 − 𝝋𝝋𝑩𝑩 (′′) 𝝀𝝀𝑰𝑰 − 𝝀𝝀𝑩𝑩 (′′) 𝝋𝝋𝑰𝑰 − 𝝋𝝋𝑪𝑪 (′′) 𝝀𝝀𝑰𝑰 − 𝝀𝝀𝑪𝑪 (′′) 𝝋𝝋𝑰𝑰 − 𝝋𝝋𝑷𝑷 (′′) 𝝀𝝀𝑰𝑰 − 𝝀𝝀𝑷𝑷 (′′) 
1 D1 0.22179183 0.14581204 0.22029820 0.14532323 0.22179077 0.14581203 
2 D2 0.38898421 -0.01944871 0.38736726 -0.01952666 0.38898302 -0.01944873 
3 D3 0.74159337 -0.09787879 0.74005149 -0.09710962 0.74159218 -0.09787880 
4 D4 0.14601655 -0.17795069 0.14620050 -0.17771655 0.14601658 -0.17795069 
5 D4 0.36780901 -0.03222851 0.36649933 -0.03248259 0.36780799 -0.03222852 
6 D5 0.03528216 -0.24861099 0.03244398 -0.24850742 0.03528056 -0.24861098 
7 D6 0.32198485 0.07476844 0.32026102 0.07462398 0.32198362 0.07476843 
8 D7 1.18486355 1.29952524 1.17964986 1.30013936 1.18486002 1.29952510 
9 D8 1.11288722 1.03204160 1.10550650 1.03221204 1.11288256 1.03204147 

10 D9 0.71442835 0.56816043 0.70761665 0.57048046 0.71442445 0.56816031 
11 D10 1.31500000 1.32694714 1.30721404 1.32775075 1.31499527 1.32694701 
12 D11 4.08833620 1.46643147 4.07298745 1.46247667 4.08832760 1.46643132 
13 D12 1.58768257 1.86538911 1.57890028 1.86738095 1.58767760 1.86538897 
14 D13 3.54407068 0.59946316 3.52691871 0.59744767 3.54406168 0.59946306 
15 D14 1.48039232 2.26748990 1.46499870 2.27035485 1.48038378 2.26748968 
16 D15 2.78157729 1.26284170 2.76335139 1.25842393 2.78156821 1.26284158 
17 D16 4.41485643 2.95838791 4.37524303 2.95531954 4.41483398 2.95838739 
18 D17 3.99344799 2.45430733 3.95858187 2.45337455 3.99342850 2.45430679 
19 D18 4.34879245 2.88337410 4.30891181 2.88036031 4.34876988 2.88337359 
20 D19 4.61707147 3.15555197 4.56781547 3.15020733 4.61704340 3.15555153 
21 D20 4.29314426 2.45543540 4.24231567 2.45115495 4.29311568 2.45543501 
22 D21 3.88606596 2.02054038 3.84381293 2.01870573 3.88604250 2.02053992 
23 D22 4.19855916 2.56208236 4.15712183 2.55946972 4.19853590 2.56208188 
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24 D28 4.57133900 3.05170487 4.52170131 3.04626992 4.57131074 3.05170443 
25 D29 4.50618172 3.15276745 4.45576117 3.14743563 4.50615306 3.15276700 
26 D30 5.15452674 3.77085235 5.10493108 3.76379754 5.15449814 3.77085187 
27 D31 5.54642627 2.26873724 5.50324501 2.26243075 5.54640044 2.26873697 
28 D32 5.45591109 2.92036185 5.41467347 2.91511769 5.45588608 2.92036155 
29 D33 5.62183034 2.39464047 5.57880607 2.38824660 5.62180457 2.39464020 
30 D34 5.85294439 2.48782159 5.80997780 2.48106712 5.85291862 2.48782131 
31 D35 7.43747554 3.63350663 7.39504793 3.63013640 7.43745021 3.63350630 
32 D36 6.16437420 2.89645939 6.12189221 2.88903092 6.16434851 2.89645908 
33 D38 6.30245593 3.18537445 6.26093711 3.17761602 6.30243065 3.18537412 

 

Table 4: The minimum and maximum coordinate differences. 

  Range (′′) Min. (′′) Max. (′′) Sum (′′) 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐵𝐵 8.10654300 0.03528216 8.14182516 117.0060404 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐶𝐶 8.06568480 0.03244392 8.09812872 116.0849038 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝑃𝑃 8.10651924 0.03528072 8.14179960 117.0055087 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐵𝐵 4.01946336 -0.24861096 3.77085240 63.04806108 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐶𝐶 4.01230512 -0.24850728 3.76379748 62.95515804 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝑃𝑃 4.01946300 -0.24861096 3.77085204 63.04805244 

 

Table 5: Mean, SEM and SD of the coordinate differences. 
 Mean (′′) SEM (′′) SD (′′) 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐵𝐵 3.34302984 0.39200364 2.31912396 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐶𝐶 3.31671168 0.38911572 2.30203908 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝑃𝑃 3.34301436 0.39200184 2.31911388 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐵𝐵 1.80137304 0.21214512 1.25506800 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐶𝐶 1.79871876 0.21179160 1.25297604 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝑃𝑃 1.80137304 0.21214512 1.25506764 

 

Table 6 shows the MAD and RMSE of the coordinate differences. The latitudes determined by the 
chord model yielded the lowest MAD and RMSE (𝑀𝑀𝑀𝑀𝑀𝑀𝜑𝜑𝐼𝐼−𝜑𝜑𝐶𝐶 = 3.31671168′′; 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝜑𝜑𝐼𝐼−𝜑𝜑𝐶𝐶= 
4.01852556′′) while the latitudes determined by the Bowring model yielded the highest MAD and RMSE 
(𝑀𝑀𝑀𝑀𝑀𝑀𝜑𝜑𝐼𝐼−𝜑𝜑𝐵𝐵= 3.34302984′′; 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝜑𝜑𝐼𝐼−𝜑𝜑𝐵𝐵4.04975520′′). Similarly, the longitudes determined by the 
Chord model yielded the lowest MAD and RMSE (𝑀𝑀𝑀𝑀𝑀𝑀𝜆𝜆𝐼𝐼−𝜆𝜆𝐶𝐶= 1.83159540′′; 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝜆𝜆𝐼𝐼−𝜆𝜆𝐶𝐶 = 
2.18185308′′) while the longitudes determined by the Bowring model yielded the highest MAD and 
RMSE (𝑀𝑀𝑀𝑀𝑀𝑀𝜆𝜆𝐼𝐼−𝜆𝜆𝐵𝐵= 1.83429432′′; 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝜆𝜆𝐼𝐼−𝜆𝜆𝐵𝐵 = 2.18520828′′). 
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Table 6: MAD and RMSE of the coordinate differences. 

 
MAD (′′) RMSE (′′) 

𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐵𝐵 3.34302984 4.04975520 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝐶𝐶 3.31671168 4.01852556 
𝜑𝜑𝐼𝐼 − 𝜑𝜑𝑃𝑃 3.34301436 4.04973720 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐵𝐵 1.83429432 2.18520828 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐶𝐶 1.83159540 2.18185308 
𝜆𝜆𝐼𝐼 − 𝜆𝜆𝑃𝑃 1.83429396 2.18520792 

 

3.3. Relationship between the initial and computed coordinates 

Tables 7 and 8 show the results of the paired samples t-test for the latitude and longitude coordinates 
respectively. The test for the latitudes shows significant differences in the scores for 𝜑𝜑𝐼𝐼 and 𝜑𝜑𝐵𝐵 (t = 8.528; 
p = 0.000), 𝜑𝜑𝐼𝐼 and 𝜑𝜑𝐶𝐶 (t = 8.524; p = 0.000), and 𝜑𝜑𝐼𝐼 and 𝜑𝜑𝑃𝑃 (t = 8.528; p = 0.000). Similarly, the test for 
the longitudes shows that there are significant differences in the scores for 𝝀𝝀𝐼𝐼 and 𝝀𝝀𝐵𝐵 (t = 8.491; p = 
0.000), 𝝀𝝀𝐼𝐼 and 𝝀𝝀𝐶𝐶 (t = 8.493; p = 0.000), and 𝝀𝝀𝐼𝐼 and 𝝀𝝀𝑃𝑃 (t = 8.491; p = 0.000). This shows significant 
variability between the initial coordinates and the coordinates computed by the three models. 

 
Table 7: Paired Samples t-test, Latitude. 

  
  
  

Paired Differences (°) t 
  
  

df 
  
  

Sig. (2-
tailed) Mean 

  
SD 

  
SE 95% Confidence Interval 

of the Difference  
Lower Upper 

𝜑𝜑𝐼𝐼  𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑𝐵𝐵  0.00092862 0.00064420 0.00010889 0.00070732 0.00114991 8.528 32 0.000 

𝜑𝜑𝐼𝐼  𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑𝐶𝐶 0.00092131 0.00063946 0.00010809 0.00070165 0.00114097 8.524 32 0.000 

𝜑𝜑𝐼𝐼  𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑𝑃𝑃 0.00092862 0.00064420 0.00010889 0.00070733 0.00114991 8.528 32 0.000 

Table 8: Paired Samples t-test, Longitude 
  
  
  

Paired Differences (°) t 
  
  

df 
  
  

Sig. (2-
tailed) 

  Mean 
  

SD 
  

SE 
  

95% Confidence Interval of 
the Difference 

Lower Upper 
𝝀𝝀𝑰𝑰 𝑎𝑎𝑎𝑎𝑎𝑎 𝝀𝝀𝑩𝑩 0.00050038 0.00034863 0.00005893 0.00038062 0.00062014 8.491 32 0.000 

𝜆𝜆𝐼𝐼  𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆𝐶𝐶 0.00049964 0.00034805 0.00005883 0.00038009 0.00061920 8.493 32 0.000 

𝜆𝜆𝐼𝐼  𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆𝑃𝑃 0.00050038 0.00034863 0.00005893 0.00038062 0.00062014 8.491 32 0.000 

 

4. Conclusion and Recommendations 

In the analysis of coordinate differences, the positional RMSE for each of the three models in 
decreasing order of accuracies are: 4.572639341′′ (Chord), 4.601685022′′ (Power Series) and 
4.601701034′′ (Bowring). The positional MAD for the three models in decreasing order of accuracies 
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are 3.788841258′′ (Chord), 3.813184934′′ (Power Series) and 3.813198679′′ (Bowring) and this agrees 
with the RMSE trend for the network. The SD, SEM, MAD and RMSE of the differences between the 
initial coordinates and the coordinates determined by the Chord model were consistently the lowest in 
all cases. Thus, the Chord model is proposed as the most accurate of the three methods for position 
determination of the network based on the adopted configuration. This study has shown that for relatively 
lower latitude network configuration like the D-Chain, the Chord method has produced a better positional 
accuracy of network of stations than the Power Series and the Bowring’s Models. It is recommended that 
similar studies be conducted for other sub-networks of the Nigerian horizontal geodetic network to 
determine the most suitable models for position determination. 

 

5. References 
Adalemo, IA 1990, The Atlas as Resources Inventory and planning Tool, Nigerian Cartographic Journal, vol. 1, 

pp. 7-14. 
Adewola, IAA 1990, Historical Background of Map Projection in Nigeria. Workshop on Projection System, as 

applied to surveying and Mapping in Nigeria, 29-30th August, School of Surveying, Oyo. 
Badi, K 1983, Report on the Program Bowring Short Lines. Direct and Inverse, Department of Geodetic Science 

and Surveying, The Ohio State University. 
Chai, T & Draxler, RR 2014, Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against 

avoiding RMSE in the literature. Manuscript prepared for Geosci. Model Dev. Discuss. with version 4.1 of the 
LATEX class copernicus discussions.cls. Date: 1 May 2014 

CIA 2016, The World Factbook. Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-
factbook/geos/ni.html Accessed on 26 September, 2016. 

Deakin, RE & Hunter, MN 2010, "Geometric Geodesy Part A." Lecture Notes, School of Mathematical & 
Geospatial Sciences, RMIT University, Melbourne, Australia. 

Fajemirokun, FA 2006, Geodesy in Nigeria: Past, Present and Future (Union Lecture I). Paper presented at the 
2006 Nigerian Association of Geodesy (NAG) Conference, 2006. 

Fajemirokun, FA & Nwilo, PC 1990, Ground Controls Towards Effective National Policy. A Paper presented at a 
Symposium on the contributions of Photogrammetry and Remote Sensing to national development held at the 
University of Lagos, Lagos. June 14 -15.1990. 

Field, NJ 1977, The adjustment and strength analysis of the primary triangulation network of Nigeria. M.Phil 
Thesis. University of Nottingham. 

Gupta, RM 1972, A comparative study of various direct and inverse formulae for lines up to 800 km in ellipsoidal 
geodesy (Doctoral dissertation, Ohio State University). 

Hradilek, L 1976, Closed Formulas for the Direct and Reverse Geodetic Problems, Bull Geoid, vol. 50, no.4, pp. 
301-306. 

Hyndman, RJ & Koehler, AB 2006, Another Look At Measures Of Forecast Accuracy. International journal of 
forecasting, vol. 22, no. 4, pp. 679-688. 

Ibe, AC 1988, Coastline Erosion in Nigeria. University of Ibadan Press. 
King, CWB 1971, ‘Computation of Figure on Sphere and Spheroid’, Survey Review, vol. 21, no. 162, pp. 146-

159. 



South African Journal of Geomatics, Vol. 10. No. 2, August 2021 

113 
 

Krakiwsky, EJ & Thomson, DB 1974, ‘Geodetic Position Computations’. University of New Brunswick, 
Department of Geodesy and Geomatics Engineering.  Access Date: 12-December-2016 

Jekeli, C 2006, ‘Geometric Reference Systems in Geodesy’. Division of Geodesy and Geospatial Science, School 
of Earth Sciences, Ohio State University.  https://uacg.bg/filebank/att_1855.pdf (Access Date: 18th September, 
2016). 

Jordan, W & Eggert, O 1962, Jordan's Handbook of Geodesy, Vol. 3, Part 2. US Army Corps of Engineers, Army 
Map Service.  Access Date: 11th December 2016. 

Lenart, AS 2013. "Solutions of Inverse Geodetic Problem in Navigational Applications." TransNav: International 
Journal on Marine Navigation and Safety of Sea Transportation, vol. 7, no. 2.  ISSN: 2083-6473 

Moka, EC et al 2007, ‘An Assessment of Distortion in Part (K-Chain) of the Nigerian Horizontal Geodetic 
Network’. The African Geodetic Journal, vol. 1, no 1, pp. 15-31. 

National Academy of Science, NAS 2010, ‘Precise Geodetic Infrastructure - National Requirements for a Shared 
Resource’. Report In Brief - Expert Consensus Report. 

Nwilo, PC 1995, Sea Level Variation and the Impacts in the Coastal Areas of Nigeria. Ph.D Thesis. University of 
Salford, UK (Unpublished). 

Nwilo, PC & Badejo, OT 2006, ‘Impacts and Management of Oil Spill Pollution along the Nigerian Coastal Areas’. 
In: M. Sutherland & Sue Nichols, Administrating Marine Spaces: International Issues. A Publication of the 
International Federation of Surveyors (FIG), ISBN 87-90907 – 55-8. International Federation of Surveyors, 
Denmark. 

Nwilo, PC 2013, ‘Optimization of the use of Facilities and information in Office of the Surveyor General of the 
Federation.’ Presentation to the Highway Department, Federal Ministry of Works, Abuja, Nigeria, on 7 March, 
2013. 

Nwilo, PC, Okolie, CJ & Onwuzuligbo, CU 2016, ‘Technological Advancements in Geodetic Infrastructure: The 
Nigerian Adaptation’. Paper presented at the Nigerian Association of Geodesy 2016 General 
Assembly/Conference, Enugu Nigeria 2016. 

Okolie, CJ, Ayodele, EG, Mayaki, AO & Daramola, OE 2020, ‘Assessing the Positional Accuracy and Adequacy 
of the Nigerian GNSS Reference Network. Manuscript in press. 

Omar, DM 2017, Direct and Indirect Determination of Geodetic Coordinates using Bowring, Chord and Power 
Series Methods: Case Study of D - Chain Geodetic Network. M.Sc. Thesis. University of Lagos. 

Omogunloye, OG 2010, The Method of Simulated Annealing for the Optimal Adjustment of the Nigerian 
Horizontal Geodetic Network. PhD Thesis, Department of Surveying and Geoinformatics, University of Lagos, 
Lagos, Nigeria, pp. 1- 300. 

Omogunloye, OG, Olaleye JB & Oshode, O 2012, ‘An Efficient Book keeping Strategy for the formation of the 
Design matrix in Geodetic Network adjustment’. Journal of Geomatics, Indian Society of Geomatics (ISG), 
vol. 6, no. 1, pp 43 – 47. 

Omogunloye, OG, Ipadeola, AO, Shittu, OG & Ojegbile, BM 2016, ‘Application of Iterative Weighted Similarity 
Transformation (IWST) Deformation Detection Method using Coordinate Differences from different 
Observational Campaigns’. Nigerian Journal of Surveying & Geoinformatics, Peer Review Report-NJSG, vol. 
5, no 1. pp. 61. 

Omogunloye, OG, Okorocha, CV, Ojegbile, BM, Odumosu, JO & Ajayi, OG 2017, ‘Comparative analysis of the 
Standard Error in Relative GNSS Positioning for Short, Medium and Long Baselines’. Journal of Geomatics, 
Indian Society of Geomatics (ISG), vol. 11, no. 2, pp 207 – 217. 

Omogunloye, OG, Yaqub, MO, Ojegbile, BM, Odumosu, JO & Ajayi, OG 2018, ‘An Alternative Choice in 
Heighting’. Geoinformatics FCE CTU Journal, vol. 17, no. 1, pp. 45- 60. 



South African Journal of Geomatics, Vol. 10. No. 2, August 2021 

114 
 

Onabajo, O 2006, "History of the Nigeria Geodetic Network." Access Date: 11th November, 2016 
Rapp, RH 1991, ‘Geometric Geodesy Part I’. The Ohio State University, Department of Geodetic and Surveying.  

Access Date: 23rd August, 2016. 
Ross, A & Willson, VL 2017, Paired Samples T-Test. In: Basic and Advanced Statistical Tests. SensePublishers, 

Rotterdam. https://doi.org/10.1007/978-94-6351-086-8_4. 
Sjöberg, LE 2009, ‘New Solutions to Classical Geodetic Problems on the Ellipsoid.’ Springer. 
Uzodinma, NV & Ezenwere, OC 1993, Map Projections: Practical Computations on the Transverse Mercator 

Projection. Eldemark Company, Enugu, Nigeria. 
Uzodinma, VN & Ehigiator-Irughe, R 2013, ‘Removal of Inconsistencies Arising from Multiplicity of 

Transformation Parameters in Nigeria’. FIG Working Week 2013 Environment for Sustainability Abuja, 
Nigeria, 6 – 10 May 2013. 

Vincenty, T 1986, ‘Application of the Chord Method to Solutions of Geodetic Lines’. Surveying and Mapping, 
vol. 46, no 4, pp. 287-292. 

https://doi.org/10.1007/978-94-6351-086-8_4

