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Abstract 

The aim of the study described in this article was to investigate the vegetation health and drought 
response of naturally occurring Albany thicket and neighbouring farmland vegetation, that appears 
in an area of the Eastern Cape, South Africa. Google Earth Engine was used to manipulate Landsat 
5, 7 and 8 datasets to produce a 30-year temporal dataset, after which the normalized difference 
vegetation index (NDVI) and the normalized difference water index (NDWI) were then applied to 
create a time series analysis. The Mann-Kendall and Spearman correlation statistical tests were used 
on the time series to observe trends and correlations between the NDVI and the NDWI datasets. The 
Spearman correlation test results showed that there were high correlations between the NDVI and 
the NDWI datasets (all above 0.805). Furthermore, the Man-Kendall test showed that all the datasets 
had positively increasing trends, while the NDVI datasets all had monotonic positive trends. Large 
differences in the NDVI and the NDWI were seen for the different vegetation types during times of 
drought, and farmland was the most severely affected with an average of 19% decrease in the NDVI 
and an average of 71% decrease in the NDWI. 

 

1. Introduction 

Due to exponential human population growth, natural land areas have been cleared or transformed 
from their original state for agricultural or urban purposes. Moreover, rapid urban expansion has been 
identified as placing extreme pressure on natural environments and resources (Oyedotun, 2018). 
Urban areas expand into natural vegetation and, owing to the increase in population, more agricultural 
land is needed to supply food for the residents (Pandian, Rajagopal, Sakthivel, & Amrutha, 2014). 
Understanding and monitoring ecosystems can be impeded by evolutionary changes, such as past 
land cover changes or stress from droughts (Lausch, et al., 2016). Knowing past evolutionary changes 
is essential for understanding current ecosystems’ biodiversity (Lausch, et al., 2018). The use of 
remotely sensed data is an ideal method of gathering data on past events utilizing tools such as a time 
series analysis. 

The study focused on natural and agricultural land classes and explored how these two classes 
have changed over time. Conservation efforts have seen agricultural land reverted to a natural area 
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by becoming a game reserve. This study also looked at the possibilities of using remote sensing for 
monitoring variances in vegetation health and drought tolerances between game reserves and adjacent 
farmland. The objectives of the study included assessing the quality of the vegetation of two-game 
reserves that bordered each other. Moreover, the study observed whether any health and drought 
tolerance changes could be seen over the thirty years since the reserves were started and the land-use 
activities drastically changed. The results of this observation were compared to the farmland that 
neighboured the two reserves. 

Landsat 5, 7 and 8 aerial imagery datasets were merged to create the temporal analysis. Results 
were obtained from the Google Earth Engine platform by applying the normalized differential 
vegetation index (NDVI) and the normalized differential water index (NDWI). The availability of 
remotely sensed data has allowed for many vegetation related studies to be completed (Guo, Li, He, 
Xu, & Jin, 2018). Time series analysis has regularly been used to acquire results from extensive 
temporal studies, and many methods have been developed to interpret the results (Neeti & Eastman, 
2011). In this study, the Mann-Kendall (MK) trend test and Spearman correlation were used to assess 
the time series results.  

The stress of vegetation can be caused by soil nutrient loss, soil toxicity, lack of solar radiation, 
drought (Luus & Kelly, 2008), soil conditions and other factors affecting it. Vegetation indices can 
calculate vegetation stress, Numata, et al. (2007) discovered that the vegetation index decreases 
during times of vegetation stress and increases during less stressful times. Other studies have also 
confirmed that vegetation indices are successful in estimating productivity and phenology over time 
(Beck, Jonsson, Hogdas, & Karlsen, 2007) (White, Nemani, Thornton, & Running, 2002). Drought 
stress can be measured through the reading of net primary production (NPP) according to a study 
done by Asner, et al. (2004). This is done by modelling variables such as chlorophyll absorption, 
temperature, and the moisture content of a plant. Similar results were also obtained by Jensen (2005).  

The most common index used for analysing vegetation is the NDVI, which is based on differences 
between red and near-infrared (NIR) reflected by vegetation (Tucker, 1979). The NDVI can estimate 
the state and changes of vegetation due to the index being related to photosynthetically active 
radiation (Ivanova, Kovalev, Yakubailik, & Soukhovolsky, 2019). A high NDVI shows that foliage 
has increased photosynthetic capacity, while lower values show a reduction in photosynthesis, which 
may result in leaf wilting (plant stress) (Gu, et al., 2008). 

The NDWI is sensitive to changes in water content within leaves. This is done by the index using 
the NIR and shortwave infrared (SWIR) bands, which allows the detection of changes in water 
content and spongy mesophyll (Gao, 1996). SWIR is responsible for the detection of vegetation water 
content and spongy mesophyll structure, while the NIR value is determined by the leaf structure and 
dry matter content. By combining the two bands, various inclusions from the leaf structure are 
removed, allowing for a more accurate result (Ceccato, Flasse, Tarantola, Jacquemond, & Gregoire, 
2001). Hazaymeh and Hassan, (2016) have found that data quality becomes uncertain over very thinly 
vegetated areas (Ghulam, Li, & Qin, 2008). 
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2. Study area 

Sibuya Game Reserve, a portion of the Kariega Game Reserve, as well as the immediate 
surrounding farmland formed part of the study area, which is on the Southern Coast of the Eastern 
Cape, South Africa (See Figure 1). Sibuya Game Reserve was started in 2003 when three farmers 
merged their land, creating a reserve of 2200 hectares. The section of Kariega Game Reserve that was 
included in the study surrounds the upper reaches of the Kariega River and borders Sibuya Game 
Reserve. The area, which is around 1500 hectares, was formed in 1989; natural fauna was introduced 
to the area in 1991. In both reserves, the fields where farmland was cleared are still visible and are 
now open grassy plains.  

The Kariega and Kasouga rivers flow through the study area, which has led to the topography of 
the area consisting of valleys and flat river flood plains. The region predominately receives rainfall 
during autumn and winter months from passing cold fronts, but large electrical storms infrequently 
bring rain in the summer months. The Cape Supergroup forms the underlying geology, specifically 
the Witteberg and Bokkeveld Groups. Lithologies of these groups include sandstone, quartzitic 
sandstone, siltstone, claystone, mudstone and shale (Johnson & Thamm, 2009). The clay-rich soil 
that is predominant across the area is a common soil type in the Eastern Cape. It was eroded from the 
shales and mudstones of the Beaufort Group, which is part of the Karoo Supergroup (Matike, Ekosse, 
& Ngole, 2011). The indigenous flora consists primarily of Albany thicket, specifically the Kowie 
thicket (Hoare, et al., 2006); however, small amounts of fynbos are found in nutrient-poor sandy 
loams (Hodson, Vijver, & Peijnenberg, 2011). Thicket species thrive in clay-rich soil (Hoare, et al., 
2006) and are concentrated in the valleys. However, they do also occur in areas of moderate 
topography where clearing for farmland has not happened.  

Current farming in the study area is either cattle or cropland. Both agricultural activities have led 
to the land being cleared and the soil degraded, either by overgrazing or by ploughing. In the valleys 
that run through farmland, no clearing occurred due to the uneven topography. The natural vegetation 
has been left alone, and some small animals are still present. In the study, these areas were looked at 
separately and called natural areas. The different sections of the study area (Sibuya Game Reserve, 
Kariega Game Reserve, the farmland, and the natural areas) are visible in Figure 1.  
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Figure 1: The Locality of the Study Site on the Southern Coast of South Africa 
 

3. Methodology 

In the study, a sizeable temporal range of thirty years (1990-2020) was used to obtain results and 
identify patterns of change. Landsat 5, 7 and 8 satellite imagery were used for the study. Google Earth 
Engine (GEE) software was used for acquiring, editing and pre-processing of Landsat data for this 
study; GEE has been developed for educational, non-profit use by Google. Processes to datasets are 
done using JavaScript, which enables a wide variety of functions to be applied to the data (Gorelick, 
et al., 2017). The three datasets had to be harmonised, as Landsat 8 wavelengths of bands differ 
slightly from the wavelengths of Landsat 5 and 7 datasets (Roy, Kovalskyy, Zhang, Vermote, & Yan, 
2016), the harmonization of the bands correct for slight differences in spectral characteristics between 
Landsat 8 and 7/5. Braaten (2019) has developed a script for harmonising the datasets; the code is 
open access and free to use. Further prepossessing includes masking out clouds and their shadows 
from datasets, as they can significantly affect the accuracy of the results. Landsat datasets consist of 
a band called “pixel_qa“, which identifies clouds and their shadows in pixels and sets the pixel to a 
value of zero (Braaten, 2019). Zhu, et al., (2015) have developed an open-source cloud masking 
function, which uses “cloudShadowBitMask”, “cloudsBitMask” and “pixel_qa” to mask clouds and 
their shadows out of images that have been used for cloud masking. The harmonisation, cloud 
masking and indices were written as functions, but before they could be applied, the datasets had to 
be clipped to the area of interest and the date range specified, and the datasets merged. Due to the 
merging of the three datasets, there was a large amount of overlap and some months had up to four 
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indices values A function was created to calculate the average indices value for every year in the data 
range. 

After renaming of bands, harmonization, cloud masking, applying spectral indices (NDVI/NDWI), 
setting the date range and cropping to the area of interest, and reducing the dimensionality of data to 
yearly values, the raw data was worked into two result formats: time-series graphs and spectral maps. 
Time-series results have been used for detecting growing periods, greening and browning trends, 
vegetation activity changes and vegetation degradation over time (Guo, Li, He, Xu, & Jin, 2018). 
Forkel, et al. (2013) conducted a study comparing many of the available types of analysis on the 
NDVI time series. In this study, the Mann-Kendall Trend Test and the Spearman correlation were the 
focus of the analysis. 

The Mann-Kendall test is non-parametric and detects monotonic trends in data series (de Jong, de 
Bruin, de Wit, Schaepman, & Dent, 2011) (Mbatha & Xulu, 2018). Non-parametric tests may be used 
with missing data, as the validity does not depend on datasets being normally distributed (de Jong, de 
Bruin, de Wit, Schaepman, & Dent, 2011) and is not affected by outliers, making the test ideal for 
environmental, climatic and hydrological data (Pohlert, 2020). Time series datasets derived from 
vegetation indices often do not meet parametric standards like normality and homoscedasticity (Guo, 
Li, He, Xu, & Jin, 2018). 

The Mann-Kendall statistic (S') value is initially set to 0 at the start of testing and represents no 
trend. If data from one period in the time series are greater than the initial data, S' is increased by a 
value of 1. If the data are less, then S' is decreased by 1 (Khambhammettu, 2005). This procedure is 
done for the entire time series, and the final value of S' will indicate an increasing trend (when S' is 
positive), a decreasing trend (when S' is negative) or no trend (when S' is zero). The probability of S', 
and thus the significance of the trend, is represented by the variance of S' (Var(S') (Guo, Li, He, Xu, 
& Jin, 2018). The p-value indicates if a monotonic trend is present in the dataset. If p is <0.05, there 
is a monotonic trend, and if p is >0.05, there is a non-monotonic trend (Karmeshu, 2012) (Guo, Li, 
He, Xu, & Jin, 2018). However, if the p-value is smaller than the alpha value, the null hypothesis is 
rejected, indicating that there is a trend present in the data, and the results are statistically significant 
(Karmeshu, 2012). 

For the correlation test, the Spearman correlation coefficient was used. This measures the degree 
of correlation between variables (Rezaee, Aliabadi, Dorestani, & Rezaee, 2020). A correlation 
between variables is the measurement of the strength of the relationship between variables and 
ascertains whether they are positively or negatively related (Obilor & Amadi, 2018). The Spearman 
correlation coefficient is based on the ranks of the observations and is thus non-parametric; it defines 
the relationship between two or more variables using a monotonic function (Rezaee, Aliabadi, 
Dorestani, & Rezaee, 2020). The results of the Spearman correlation are numerical and range from -
1 to +1. The value -1 indicates a perfect negative relationship, +1 a perfect positive relationship and 
0 indicates no correlation between the variables (Rezaee, Aliabadi, Dorestani, & Rezaee, 2020).  
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4. Analysis and results 

4.1. NDVI analysis and results 

The NDVI was developed to indicate plant health conditions and vegetation density. The results 
from an NDVI analysis are rated between -1 to 1. The values -1 to 0 indicate that the vegetation is 
dead or very unhealthy and near death, 0 to 0.33 shows unhealthy/stressed vegetation, 0.33 to 0.66 
represents moderately healthy vegetation and 0.66 to 1 signifies very healthy and unstressed 
vegetation (Ivanova, Kovalev, Yakubailik, & Soukhovolsky, 2019). 

In the study, the time-series graph of NDVI values was most valuable for visualising trends in the 
data over the study period. The yearly NDVI averages were used to plot a time series graph for the 
three areas; this is presented in Figure 2. The graph showed that the reserve, the natural area, and the 
farmland all followed a similar pattern, which could be expected, as these areas all experience the 
same climatic conditions; however, the graph also showed clearly how they differ. The natural 
region’s yearly line was above the other two areas for the whole period; the farmland yearly line was 
below the other two. The reserve’s yearly line was sandwiched between the natural area and the 
farmland’s line, which could have been due to the reserve having both old farmland and wild 
fauna/flora.  

 

 

Figure 2: Yearly averages of NDVI over the three areas from 1990 to 2020. 
 
A spectral map of each region was produced for the study; the images were an average of NDVI 

reflectance between 1990 and 2020. These images, which are displayed in Figure 3, showed the 
spatial patterns of NDVI across the areas. Typically, NDVI is measured between -1 and 1. However, 
the scale was adjusted for these images to 0 to 1, as the images showed no data below zero. In the 
images, water was detected as being very unhealthy due to it absorbing NIR and red. Therefore, the 
Kariega River could be seen flowing through the images in bright red. The farmland image had a 
widespread area of unhealthy vegetation represented by the colour orange, and the reserve had a mix 
of unhealthy vegetation in the northern area and healthy green foliage. The natural site primarily had 
healthy green vegetation, with only a small amount of unhealthy vegetation.  
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Figure 3: A collection of NDVI spectral reflectance images of the three areas. 
 

4.2. NDWI analysis and results 

The results of the NDWI are measured from -1 to 1. The value -1 represents vegetation with little 
to no water content, 0 represents a moderate amount of water content, while 1 represents vegetation 
with high water content. The NDWI formula was applied to the datasets in the form of a function, 
producing an NDWI layer. This layer and the associated data were used for the analysis.  

Just as the NDVI time series were shown in Figure 2 above, the yearly averages for the three areas 
from 1990 to 2020 are presented in Figure 4. The three lines in the graph each had similar patterns, 
with highs and lows occurring at the same time due to the areas being in proximity to each other and 
experiencing the same climatic conditions. The reserve's line was sandwiched between the natural 
area line (above the reserve line) and the farmland line (below the reserve line), which was due to the 
reserve having both old farmland and natural bush. In the year 2015, a drop in the graph’s line was 
visible; this was caused by the start of an extended drought in the area. Throughout the time series, 
other notable decreases could be observed, which also correlated to drought conditions or low rainfall 
years.  

 

 

Figure 4: Yearly Averages of NDWI over the three areas from 1990 to 2020. 
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The spectral maps for the NDWI followed the same pattern as those for the NDVI, in that each 
image depicted the yearly averages for the three areas from 1990 to 2020. The NDWI spectral images 
are displayed in Figure 5. The NDWI is measured from -1 to 1, but as the values in the images all 
occurred between -0.5 and 0.5, this was set as the scale to be used. A colour ramp of three colours 
(red, yellow, and blue) was used to represent the scale: -0.5 was symbolised by red, 0 was represented 
by yellow and 0.5 was represented by blue. Very few red areas were displayed on the spectral maps; 
only small portions of the reserve and the farmland showed red. For the most part, the yellow colour 
was widespread throughout the farmland and reserve areas. However, in the valleys in the reserve 
and the natural areas, blue was far more prominent, as this was where natural bush occurred.  

 

 

Figure 5: A collection of NDWI spectral reflectance images of the three areas. 
 

4.3. Mann-Kendall trend test 

The Mann-Kendall test was done on both the NDVI and NDWI datasets at a 95% significance 
level, and a continuity correction was performed. The Mann-Kendall results for the NDVI data are 
seen in Table 1. The Mann-Kendall statistic was positive for the three areas and had a high value, 
which showed an overall increasing trend. The p-value was lower than the alpha value for the three 
regions, which further indicated that the null hypothesis was rejected. Each area had a p-value less 
than <0.05, which showed that a monotonic trend could be identified.  

Table 1. The seasonal Mann-Kendall two-tailed test results for NDVI time series. 

Variable S' Var(S') p-value (Two-
tailed) alpha Test Clarification 

Reserve 1859.000 103261.000 < 0.0001 0.95 Reject H0 
Natural Land 2424.000 103272.000 < 0.0001 0.95 Reject H0 
Farmland 1931.000 103251.000 < 0.0001 0.95 Reject H0 

 

The results from the Mann-Kendall NDWI test results that are presented in Table 2 differed 
significantly from the NDVI results. The areas all had a positively increasing NDWI trend from the 
Mann-Kendall statistic, but the natural region had a much stronger trend than the reserve and the 
farmland. Each region rejected the null hypotheses by having a p-value lower than the alpha value. 
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However, only the natural land had a monotonic trend as the reserve and the farmland both obtained 
a p-value higher than 0.05.   

Table 2. The seasonal Mann-Kendall two-tailed test results for NDWI time series. 

Variable S' Var(S') p-value 
(Two-tailed) alpha Test 

Clarification 
Reserve 326.000 92347.333 0.2849 0.95 Reject H0 
Natural Land 1130.000 92414.000 0.0002 0.95 Reject H0 
Farmland 528.000 92419.333 0.0830 0.95 Reject H0 

 

4.4. Spearman correlation test 

The results from the correlation are measured between -1 and +1, with -1 specifying a perfect 
negative relationship, +1 a perfect positive relationship and 0 no correlation between variables. The 
Spearman correlation test was run on a combination of the NDVI and NDWI datasets, the results of 
which are displayed in a matrix table in Table 3. The NDVI and NDWI for each area showed a strong 
positive correlation to each other, with all being above 0.8, while correlations dropped when 
comparing different regions to others. However, a positive correlation was still seen across the table.  

Table 3. The Spearman Correlation matrix of NDVI & NDWI for the three areas 

Variables Reserve NDWI Natural NDWI Farmland NDWI 

Reserve NDVI 0.817 0.652 0.659 

Natural NDVI 0.562 0.805 0.546 

Farmland NDVI 0.650 0.606 0.811 

 

As stated above, a strong positive correlation was seen when comparing NDVI and NDWI between 
the same areas. The three scatter plots presented in Figure 6 showed the NDVI and NDWI correlation 
between each area. The densely packed data points forming a linear pattern indicated a strong 
correlation. Multiple outliers could still be seen; the natural area had the most severe outliers, which 
was likely responsible for the lowest correlation value of the three areas.  

 

Figure 6: Scatter charts showing the correlation of NDVI and NDWI for the three areas. 
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5. Discussion 

5.1. Trend and correlations tests 

The Mann-Kendall test was used for the analysis of trends in both the NDVI and NDWI time-
series datasets, results from the test were displayed above in Table 1 for NDVI and Table 2 for NDWI. 
The NDVI S' results all showed a strong, increasing trend, with the natural area having the highest 
(2424), and the reserve area having the weakest (1859) of the three areas. Var(S') was very high for 
the NDVI areas; 103251-103272 was the range, which indicated that the S' results were highly 
probable, and the data was significant. The NDWI S' results were weaker than the NDVI results; the 
natural land had the highest S' value (1130), while the reserve area had the lowest (326) and the 
farmland was at 528. Var(S') was also high for NDWI (92347.3-92419.3) showing S' credible values. 
In both the NDVI and NDWI, the natural area had the highest S' value, followed by farmland and the 
reserve area with the lowest. The natural area was expected to have the strongest trend. It was 
surprising to see the reserve area having a lower trend strength than the farmland, as the reserve has 
a combination of indigenous flora and old farmland. It is possible that the controlled growth of 
specific vegetation, fertilisation and precise farming practices led to farmland having a stronger trend.  

The p-value is a valuable output as it indicates whether a dataset is significant, whether a trend is 
present and whether this trend is monotonic or not (Guo, Li, He, Xu, & Jin, 2018). For both the NDVI 
and NDWI, the null hypothesis was rejected, the p values for NDVI were minimal (<0.0001), and the 
p values for the NDWI ranged from 0.002 - 0.2849. All p-values were positive, which showed a 
positive trend across all the datasets. Rejecting the null hypothesis indicates that the datasets are 
statistically significant and that a trend is present in the datasets. To determine if the trend is 
monotonic or non-monotonic, the p-value must be smaller than 0.05. From the NDVI results, all three 
areas showed a monotonic trend, and the NDWI results showed that only the natural area had a 
monotonic trend. In contrast, the reserve and the farmland had p values greater than 0.05 and therefore 
showed a non-monotonic trend. A positive monotonic trend seen in the results of a test reveals an 
entirely non-decreasing trend (Royden & Fitzpatrick, 2010). A non-monotonic trend shows that the 
trend within seasons increases and decreases. This trend occurred in the case of the NDWI, which 
showed that the two areas (the reserve and the farmland) responded poorly to drought conditions. In 
contrast, the natural area was able to maintain a monotonic trend throughout the time series. The S' 
results from the NDWI supported the p-value results and determined the farmland and the reserve as 
having a weak trend. 

The Spearman correlation test was the ideal correlation coefficient to use, as it can work with non-
parametric data and uses a monatomic function to measure data (Rezaee, Aliabadi, Dorestani, & 
Rezaee, 2020). The results were displayed in Table 3 and the scatter charts in Figure 5. The correlation 
between the reserve’s NDVI and NDWI was the highest at 0.817, which indicated a robust correlation 
(Rezaee, Aliabadi, Dorestani, & Rezaee, 2020). The reserve’s scatter chart showed that values were 
tightly packed along the trend line, and there were few outliers. The farmland area had a correlation 
of 0.811 and the natural area had one of 0.805, which showed strong correlations between the NDVI 
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and NDWI. The scatter charts of these areas showed a slight increase in outliers, which led to the 
slightly lower correlation values compared to the reserve. When looking at the relationship between 
the different places, a somewhat lower correlation was expected as vegetation and land cover classes 
have changed. A positive moderate correlation strength was observed when comparing the NDVI and 
NDWI of the different areas. The reserve’s NDVI and the farmland’s NDWI had the highest 
correlation when comparing the areas (0.659), while the NDVI of the natural area and the farmland’s 
NDWI had the lowest (0.546). The farmland and the natural region have entirely different vegetation 
types, which would have caused this low correlation. In contrast, the reserve and the natural areas 
have similar vegetation. Even though old farmland is present across the reserves, natural vegetation 
is also present; and this vegetation would have caused the high correlation between the two indices.  

A study conducted by Dubovyk et al (2015) on the use of medium resolution satellites for 
monitoring vegetation dynamics across southern Africa used the Mann-Kendall trend test and the 
Spearman correlation coefficient for detecting trends and correlations. Results from the study showed 
that the two statistical tests worked well together. Statistically significant positive trends were 
obtained for the southern area of South Africa, which was the area of the study described in this 
article. The results of the study conducted by Dubovyk et al (2015) support those obtained from this 
study.  

 

5.2. NDVI and NDWI for monitoring plant health and drought response 

In the study, significant seasonality trends were seen in the NDVI and NDWI time-series datasets, 
the results of which were displayed in Figures 2 and 4 above as time-series graphs. The two figures 
showed the NDVI and NDWI reflectance values for all three areas. A general examination revealed 
that the areas had similar patterns, increases and decreases occurring at similar times. The similar 
NDVI and NDWI patterns were due to the strong correlation seen between the NDVI and NDWI in 
the Spearman Correlation results. In a study done by Karamihalaki et al. (2016), the NDVI and NDWI 
were used to monitor drought effects on a forest. From their results, a strong correlation between the 
two indices was observed, and the NDWI showed a strong correlation between precipitation values.  

In the study described in this article, the time series showed that the natural area had the highest 
NDVI and NDWI values, while the farmland had the lowest NDVI and NDWI values of the three 
regions. The reserve has both old farmland and natural vegetation, which averaged out the NDVI and 
NDWI values. Thus, the reserve showed trend patterns that were similar to those seen in the natural 
area and farmland. From the NDVI time-series graph, it was clear that the natural area had the 
healthiest vegetation of the three areas, with the highest value (0.743 NDVI) being recorded for the 
year 2015, while the farmland obtained 0.685 NDVI and reserve 0.727 NDVI. The same results were 
seen for NDWI: the natural area obtained 0.276, the reserve 0.259 and the farmland 0.185.  

The shape and pattern of the time series graphs indicated a history of drought and plant stress 
within the area from 1990 to 1992. Very low NDVI and NDWI values were recorded, which was the 
case again in 1996, 1998-2000, 2004, 2008-2010 and 2016 to the present. However, between 2019 
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and 2020, an increase was seen in the NDVI and the NDWI when drought conditions still affected 
the area. There was no drought in 1996 and 2004, but these were relatively dry years. The average 
decrease in NDVI during drought conditions (excluding 1996 and 2004) was 16% for the natural area 
and 19% for both the reserve and farmland areas. The average NDWI decrease during the drought 
mentioned above was 53% for the reserve area, 44% for the natural area and 71% for the farmland.  

During times of drought, the natural area was the least affected of the three areas. The NDWI 
decrease (and thus the moisture content) was likely the lowest due to the thick vegetation canopy 
protecting the lower portion of the trees and the soil below. In addition, natural flora had evolved to 
survive in the environment. These factors were likely responsible for the low stress/health decrease 
during drought. The farmland had a very high reduction in the NDWI. This could have been due to 
many factors, such as the vegetation not being able to tolerate drought conditions, over-grazing 
causing soil exposure thus increasing evaporation, the foliage of the crop being susceptible to 
transpiration or the harvesting of plant biomass negatively affecting water contents. With such a high 
NDWI decrease value, the low NDVI decrease value was unexpected. However, possible farming 
techniques might have been in place to keep plants healthy during drought periods. The reserve’s 
NDVI and NDWI decrease was slightly higher than in natural areas. This could be partially explained 
by the reserve having natural vegetation and old farmland. However, the reserve area had a significant 
amount of old farmland, and it is plausible that due to the decrease in over-grazing, which gave the 
flora a long time to adapt to the climate, and due to the halting of harvesting, the old farmland showed 
recovery and resilience to drought conditions. 

The spectral maps presented in Figures 2 and 4 above provided support to the results from the time 
series. It could be seen on the NDWI images that the farmland area had a poor distribution of flora 
that could retain water, thus during drought conditions, the farmland had a decline in water content, 
which was also seen in the NDWI time series results. Natural flora has a high-water retaining ability, 
and this could be seen in the NDWI images for the reserve and the natural area. The NDVI spectral 
images also represented the natural vegetation as healthy green vegetation. When comparing old 
farmland areas on the reserve to current farmland, the old farmland had slightly healthier vegetation. 
However, the NDVI colours were similar; in the NDWI images, the fields also showed signs of higher 
water content.  

 

6. Concluding remarks 

The results from the Mann-Kendall trend analysis showed that the NDVI results carried more 
significance than the NDWI results, while high correlation trends were seen between NDVI and 
NDWI regarding the three land classes. The NDVI and NDWI results showed how severely the land 
change and subsequent overgrazing, poor land management, bush clearing, and other farming 
techniques had led to the land degradation seen across old and current farmlands within the study 
area. Natural bush in the area had evolved to deal with droughts, to a point, and other stress-inducing 
climatic conditions, which is evident from this class having the highest NDVI & NDWI results. The 
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results showed this class to be more resistant to droughts and less affected during a time of decreased 
rainfall, with NDVI decreasing by 16% and NDWI decreasing 44% during past droughts. As the 
vegetation species varied between the farmland and the natural area, it was expected to see a 
difference in NDVI and NDWI, during times of drought both areas NDVI decreased by 19%. 
However, the NDWI during times of drought for the farmland (average decrease of 71%) and for the 
natural area, which showed a decline of 44%, revealed the massive difference between the vegetation 
types. The results from assessing the quality of the vegetation of two-game reserves that bordered 
each other was proof that the land use activities greatly affected the natural vegetation which occurred. 
Furthermore, the study observed that health and drought tolerance changes could be seen over the 
thirty years since the reserves were started and the land-use activities drastically changed. 
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