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Abstract 

Invasive alien plants (IAPs) are responsible for loss in biodiversity and the depletion of water 
resources in natural ecosystems. Prosopis species are IAPs previously introduced by farmers to 
provide shade and fodder for livestock. In the Northern Cape, Prosopis spp. invasions are associated 
with the loss of native species resulting in overgrazing and degrading rangelands. Mapping Prosopis 
glandulosa is essential for management initiatives to assist the government in minimising the spread 
and impact of IAPs. This study aims to evaluate the performance of two machine learning algorithms 
i.e., Support Vector Machine (SVM) and Random Forest (RF) to map the spatial dynamics of P. 
glandulosa in Prieska. The spatial invasion extent of P. glandulosa was mapped using multitemporal 
Landsat data spanning the period from 1990 to 2018. Validation of the results was done through an 
estimated error matrix with the use of the proportion of area and the estimates of overall accuracy, 
user’s accuracy and producer’s accuracy with a 95% confidence interval. The performance of the 
SVM and RF classifiers showed similar results in the overall accuracy and Kappa statistics 
throughout the years. These methods showed an overall increase of at least 3.3% of the area invaded 
by P. glandulosa from 1990 to 2018. The study indicates the importance of Landsat imagery for 
mapping historical and current land cover change of IAPs. The spread of P. glandulosa was 
confirmed by an increase in the total area of invasion, which enables decision-makers to improve 
monitoring and eradication initiatives. 

 
Keywords: Invasive alien plants, Prosopis glandulosa, Machine learning, Landsat data,  
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1. Introduction 

Invasive alien plants (IAPs) are non-native taxa introduced by human-related activities 
(accidentally or intentionally) that spread throughout large geographic regions while invading natural 
ecosystems (Richardson et al., 2000). The IAPs cause a decline in biodiversity and indigenous 
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ecosystems, they are a continuous threat to environments because they outcompete native vegetation 
(Van Wilgen and Richardson, 2014). Additionally, the impacts of IAPs result in the loss of plant 
species richness and species composition of indigenous vegetation (Gaggini et al., 2019, Hejda et al., 
2009). Ultimately, invasive species are responsible for the economic and environmental impacts that 
negatively affect human welfare (Beck et al., 2008). The economy is at risk when the pressures of 
invasive species on the agricultural industry threaten human well-being and livelihood (Liu and Piper, 
2016).  

The Prosopis spp. (Fabaceae) is native to North and South America and was intentionally 
introduced to South Africa by farmers to provide shading and fodder for livestock (Zimmermann, 
1991). The rapid dispersal of Prosopis spp. seeds was caused primarily by animals and flooding 
events and this resulted in widespread formation of dense stands (Zachariades et al., 2011). Large-
scale invasions were responsible for the loss of native vegetation, which caused overgrazing and 
degrading rangelands where very poor grazing capacity was observed (Ndhlovu et al., 2011). 
Shackleton et al. (2015a) observed that Prosopis spp. thickets seem to flourish in areas with high 
water availability throughout South Africa. Widespread invasion of ephemeral river systems by the 
IAP is responsible for large-scale depletion of groundwater (Van Wilgen et al., 2007). According to 
the Department of Water Affairs (2013), IAPs are responsible for the 695 million m3 of annual 
reduction in the water supply of dams and river systems in South Africa. In South Africa, Van Wilgen 
et al. (2008) identified Prosopis spp. as a high risk to water catchment areas in the Nama and 
Succulent Karoo. Water supplies are continuously at risk in semi-arid environments such as in the 
Northern Cape, where there is an increased abundance of Prosopis spp. invasions. The study by 
Dzikiti et al. (2013), found that clearing of Prosopis spp. would result in significant conservation of 
groundwater supplies throughout the province. 

Selecting a suitable classification approach is important to produce reliable maps for P. glandulosa 
and other land cover types. Various classification methods have been used to map Prosopis spp., 
including pixel-based (Mirik and Ansley, 2012), object-based, rule-based (Laliberte et al., 2012) and 
machine learning classifications (Ku and Popescu, 2019). Random Forest (RF) and Support Vector 
Machine (SVM) classifiers are the two major machine learning algorithms used in the land cover 
mapping of intricate landscapes (Adam et al., 2014, Zhang et al., 2017, Li et al., 2016). For example, 
in Somaliland the mapping of Prosopis spp. in the same study area produced more favourable results 
with the RF classifier (Meroni et al., 2017) compared to the initial study using the supervised 
Maximum Likelihood (ML) classifier (Rembold et al., 2015). Machine learning algorithms reduce 
the occurrence of class misclassification when identifying Prosopis spp. from other land covers 
during classification.  For example, Landsat 8 Operational Land Imager (OLI) satellite imagery was 
classified with the object-oriented approach which produced considerably more misclassifications 
between land cover classes than the RF pixel-based approach in Somaliland (Ng et al., 2016).  

In South Africa, machine learning algorithms have seldom been studied in the mapping of the 
spatial extent of the IAP P. glandulosa.  In the study by Adam et al. (2017), they mapped P. 
glandulosa with the RF and SVM classifiers using WorldView-2 datasets. Both classifications 
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achieved high accuracy classification results to distinguish P. glandulosa from other native vegetation 
such as A. mellifera and A. karoo. Evaluating the effectiveness of mapping P. glandulosa with 
different machine learning algorithms needs statistical analysis to determine the best performing 
classifier. Several statistical methods have been used to assess the performance of different classifiers 
in remote sensing studies, for example, the Kappa statistics and McNemar’s test (Li et al., 2013, 
Rodriguez-Galiano and Chica-Rivas, 2014).  

Mapping the extent of IAPs is essential to improving the understanding of management initiatives 
in terms of planning and implementation (Shackleton et al., 2014). Mapping techniques help improve 
planning procedures to prioritise the areas identified for the clearing of IAPs (Van Wilgen et al., 2007, 
Rouget et al., 2004). Van Wilgen et al. (2012) indicated that only 4% of Prosopis spp. in the estimated 
total invaded area throughout South Africa was cleared in all the arid biomes despite 435 million 
Rands spent. For management initiatives, it is crucial to understand the spatial dynamics of Prosopis 
spp. over time. Amboka and Ngigi (2015) mapped Prosopis spp. over a time-series using multi-
temporal Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) 
imagery. This study mapped the change of Prosopis spp. invasion from 1985 to 2010 in Kenya. Van 
den Berg et al. (2013) is one of the few long-term studies of Prosopis spp. invasion monitoring in the 
Northern Cape, South Africa. The study used terrain analysis and remote sensing techniques to 
classify Landsat datasets that produced time series maps of the distribution of Prosopis spp. for 30 
years from 1970 to 2007. 

 The continuous spread of P. glandulosa is a serious problem for management initiatives in South 
Africa. Mapping techniques are improving control programs that inform managers on current 
distribution patterns. This study aimed to accurately map the extent of the P. glandulosa with multi-
temporal Landsat imagery for the period 1990 to 2018 in Prieska, Northern Cape. The main objective 
of this study was to map the IAP P. glandulosa and other land cover types with two machine learning 
algorithms using Landsat imagery. Two machine learning algorithms were evaluated by comparing 
the performance of the SVM and RF classifiers. The results were used to assess land cover change 
detection using multi-temporal Landsat imagery for 28 years at 5-year intervals (1990, 1997, 2005, 
2013 and 2018). Mapping of the invasion and change of land cover in the study area can inform 
decision-makers on the risk of future invasions and where to focus current control initiatives.  

 

2. Materials and methods 

2.1. Study area 

The study area (Figure 1) is located around the town of Prieska within the Siyathemba local 
municipality of the Northern Cape Province of South Africa. Prieska is located at 29°41'25.7"S 
latitude and 22°44'26.8"E longitude in the eastern part of the province. This region is distinguished 
by a semi-arid climate with low annual rainfall. The Blaaukrans weather station in Prieska recorded 
an average annual rainfall of 270 mm from 1996 to 2018.  The study area is part of the Nama-Karoo 
the largest biome in South Africa with vast dwarf shrubland vegetation. Indigenous species (i.e. 
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Ziziphus mucronata, Acacia erioloba, and Tamarix usneoides) in the region form dense thickets found 
next to dry river banks (Van den Berg, 2010). The town of Prieska was built along the Orange River, 
known as the longest-running river system in South Africa. Farmers in the area depend on the river 
as a source of water for crop irrigation. The river ecosystem is very vulnerable to the loss of native 
species with the increasing spread of the IAP P. glandulosa.  

 

Figure 1. The false colour composite Landsat 8 OLI image of the study area around Prieska in the 
Northern Cape. The cross symbols indicate in situ data collection sites used for training and 

validation.  

 

2.2. Data sets used 

2.2.1. Satellite data products 

The Landsat 5 TM and Landsat 8 OLI satellite imagery (Path171/83) Level-2 surface reflectance 
products were acquired from the U.S. Geological Survey (USGS) website 
(https://earthexplorer.usgs.gov/). The USGS employs the Land surface Reflectance Code (LaSRC) 
algorithm on Landsat 8 products to generate surface reflectance (Vermote et al., 2018). Data from 
TM sensor are corrected to surface reflectance using Landsat ecosystem disturbance adaptive 
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processing system (LEDAPS) algorithm (Schmidt et al., 2013). Nazeer et al. (2014) evaluated 
different surface reflectance models (FLASH, LEDAPS, atmospheric correction (ATCOR), dark 
object subtraction (DOS), and the empirical line method (ELM)) on Landsat TM/ETM sensors and 
found that all the models performed differently on different land cover types. Therefore, we adopted 
the standard USGS surface reflectance models for this study. The images were obtained for 28 years 
from 1990 to 2018 at roughly 5-year intervals (1990, 1997, 2005, 2013, 2018) based on the 
availability of Landsat 5 TM and Landsat 8 OLI data. This study used the six available 30-meter 
spatial resolution spectral bands of the Landsat products for classification, including blue, green, red, 
infrared, shortwave infrared (SWIR) 1 and 2.  The visible and near-infrared bands were chosen as 
they encourage spectral separability ideal for the identification of vegetation and land cover (Adam 
et al., 2017). The SWIR bands were included to ensure vegetation with higher water content would 
be separated from low water content vegetation.    

 

2.2.2. Field measurements 

Training and validation data were acquired in the spring of 2018 from 15th to 21st of October. 
Random sampling was used to generate points of interest to identify initial land cover classes in the 
study area. These classes were used to guide the collection of ground reference data in Prieska. 
Farmers in the area were contacted to get permission to access roads, properties and the Orange River 
system. The Carlson Archer 2 Differential GPS allowed for high precision positioning with sub-
centimetre accuracy used for the training data collection and verification of land cover types. At each 
site, at least four GPS points were collected with site descriptions and type of land cover observed. 
Ground reference sites (polygons) were created with the GPS point data collected at each site to 
classify the satellite imagery. Time and cost constraints limited the amount of in situ reference data 
collection and additional polygons were identified through Google Earth and satellite imagery. A 
total of seven classes were identified by grouping together several land cover types, including 
Agriculture, Bare Soil, Built-up, Indigenous, P. glandulosa, Shrublands, and Water. The classes were 
identified based on the dominant classes in our study area and their natural stability over time. For 
example, we assumed that the Orange River is there at present, then there is high probability that the 
river was there in our time frame of study which is 25 years in this case.  The reference data were 
split into two categories i.e., the training and the validation data used to train the classifier and validate 
the results post-classification. 

 

2.3. Description of machine learning algorithms 

2.3.1. Support vector machine classifier 

The SVM is a supervised machine learning algorithm developed by Cortes and Vapnik (1995). 
The algorithm is applied by obtaining a separating hyperplane or decision boundary by maximising 
the distance between the two classes. The distance between the two classes is called the margin. The 
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data points nearest to the maximum and minimum margins define the hyperplane and are known as 
support vectors (Vapnik, 2000). Originally, the SVM is only known as a binary (linear) classifier in 
a nonseparable two-dimensional space. Once the kernel method is used in classification, for example, 
the polynomial kernel, data become separated in a high-dimensional space (Noble, 2006). The 
advantages of the SVM algorithm is the ability to classify a high-dimensional space and to eliminate 
the need for feature selection (Joachims, 1998). The accuracy of the polynomial kernel is dependent 
on the input values and can significantly influence the performance of the SVM classifier (Huang et 
al., 2002). The SVM algorithm is beneficial for minimising errors such as misclassification (Tso and 
Mather, 2009). The SVM algorithm was executed in the ENVI 5.1 software by using the Support 
Vector Machine Classification tool and the degree of kernel polynomial was set to 6.  

 

2.3.2. Random forest classifier 

The RF method proposed by Breiman (2001) is a machine learning algorithm that consists of a 
collection of traditional decision trees used to classify the sample. The original dataset is used to 
create a bootstrap sample training dataset. The bootstrap samples were used to grow an unpruned 
classification tree through bagging by randomly selecting features. For each node of the tree, variables 
are randomly chosen to choose the best split among all the trees. The new dataset is classified by 
selecting the majority vote from each predictor in the random forest (Liaw and Wiener, 2002, 
Breiman, 2001). The RF classification can perform better than other methods as it can mitigate 
problems of missing values and overfitting (Ali et al., 2012, Pal, 2005). The RF classification only 
requires two user-defined parameters: the number of decision trees and the number of random 
variables to be split (Rodriguez-Galiano et al., 2012). The RF classification was executed in Python 
using the Scikit-learn machine learning library and the number of decision trees in the forest was set 
to 500 (Pedregosa et al., 2011).  

 

2.4. Classification accuracy assessment 

Accuracy assessment was based on the overall accuracy, user’s accuracy, producer’s accuracy and 
Kappa (KHAT) statistic for each classification image. Validation data collected during the field 
assessment was used to produce a confusion matrix, which is used to calculate the overall, producer 
and user accuracies. The overall accuracy is calculated from the sum of the correctly classified pixels 
divided by the total of samples in the image. The producer’s accuracy represents the probability that 
the sample data is classified correctly, whereas the user’s accuracy is the probability of the sample 
pixels classified as a specific class belongs to that specific class (Al-Fares, 2013). The KHAT statistic 
is a measure of the level of agreement between the remotely sensed data and the reference data. In 
this study, polygons were used to validate each class during the classification of Landsat image data. 
Each validation polygon was selected away from the training polygons to eliminate the chance of 
overlapping pixels. The performance of each classifier (SVM and RF) were assessed based on overall 
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accuracy and Kappa statistics for the individual error matrices. Pairwise analysis of the error matrices 
for both classifiers can be tested with the Z statistic, expressed by: 

𝑍𝑍 = |𝐾𝐾1−𝐾𝐾2|
�𝑣𝑣𝑣𝑣𝑣𝑣(𝐾𝐾1)−𝑣𝑣𝑣𝑣𝑣𝑣(𝐾𝐾2)

.  [1] 

Where K1 and K2 are the Kappa values and var (K1) and var (K2) is the variance of the Kappa 
for classifier 1 and classifier 2. The Z statistic in Equation (1) is normally distributed given the null 
hypothesis HO: (K1 - K2) = 0, and the alternative H1: (K1 - K2) ≠ 0. HO is rejected if Z ≥ Zα/2, thus 
there is no significant difference between the two classifiers. However, if the null hypothesis is not 
rejected then there is a significant difference between the classifications. Therefore, the classifiers 
were tested to determine if the results were statistically different from one another at the 95% 
confidence interval (α = 0.05). The method described by Olofsson et al. (2013) was used to adjust the 
estimated proportion of area and the estimated accuracies as well as to produce the 95% confidence 
interval (CI) for the estimated adjusted areas . This procedure is recommended since the land cover 
change map may differ greatly from the true area of change due to classification errors. It is also an 
important procedure since the level of uncertainty can be quantified using CI. We refer the reader to 
Olofsson et al. (2013) for detail procedure on the computation of the adjusted error matrix and CI. 
The adjusted areas were used to obtain area changes for five-year intervals starting from 1990 to 
2018. 

 

3. Results 

3.1. Classification of land cover classes with RF and SVM classifiers 

The SVM and RF algorithms were used to classify land cover types in Prieska using Landsat 
imagery to produce maps of P. glandulosa spatial extent (Figure 2). Both classification algorithms 
identified the Shrubland class as the most common land cover class. The least dominant class were 
different for both classifications where the areal percentage for the Indigenous class in the SVM 
classification is 1.61% and in the RF classification the water class is 1.90%. The SVM classifier 
detected less (868.23 ha) of the IAP P. glandulosa than the RF classifier (1055.52 ha).  
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Figure 2: The maps illustrate SVM (a) and RF (b) land cover classifications for the study area in 
2018. The maps represent each land cover class in a different colour where P. glandulosa is shown 

in red. 

 

3.2. Performance of the two machine learning algorithms 

The SVM and RF classifiers were evaluated using confusion matrix and Z statistical test to 
compare the performance of each classifier for mapping land cover in Prieska. Table 1 summarises 
the overall accuracy assessment results and the Kappa analysis for the 10 classification maps using 
the two machine learning algorithms, SVM and RF, from 1990 to 2018. The SVM overall accuracy 
ranged from 61% to 89% and the RF from 57% to 83% for 1990 to 2018. Generally, each year showed 
an increase in the area-adjusted overall accuracy compared to the unadjusted overall accuracy. The 
area-adjusted overall accuracy for the reference year 2018 is 88.58% for the SVM classifier. The RF 
classifier produced an 86.06% area-adjusted overall accuracy for the reference year. The area-
adjusted overall accuracies for 1990 to 2013 ranged between 71% and 77% for the SVM and between 
69% and 77% for the RF classifiers. The differences in accuracies of different classes can be attributed 
to several factors: (1) Climate variability may cause variations in spectral signature of land cover 
during dry/wet season; it is possible that classes such as agriculture have become another class such 
as bare soil. Possibly because the farmer did not plant during that season. (2) Higher mixel effect 
throughout the years compared to another i.e., a pixel that contain more than one type of land cover 
type, which can reduce the accuracies. (3) Landsat 5 and Landsat 8 surface reflectance data were 
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processed by USGS using two different algorithms i.e., LEDAPS and LaSRC respectively. According 
to Vermote et al., (2016), the LaSRC algorithm produces higher atmospheric correction accuracy than 
the LEDAPS (Landsat 5 ETM+) by utilising the enhanced radiometric and spectral resolution of 
Landsat 8 OLI. These two algorithms are designed for the respective Landsat products and USGS 
does not use them interchangeably.  

The overall accuracy and Kappa analysis indicated that throughout the year’s different 
classification results were obtained. In 2018, the SVM classifier was more accurate than the RF 
classifier. The unadjusted overall accuracy and KHAT values improved from 83% and 0.78 
respectively to 89% and 0.85. Similar results were observed for the SVM classification maps in 2005 
and 1990. In 2013, the RF classification statistically outperformed the SVM classifier. The overall 
accuracy and KHAT values were observed at 61% and 0.46 for the RF classifier compared to 66% 
and 0.52 for the SVM classification. In 1997, there was no statistical difference between the overall 
accuracy for the SVM and RF algorithms and the KHAT values were 0.52 for both classifiers. The Z 
statistic indicates a statistical difference at the 95% confidence interval if the Z value is above 1.96. 
The statistic indicates Kappa analysis results for the pairwise comparison of the error matrices 
between the SVM and RF for each year. The Z values suggested that the SVM were statistically 
different from the RF for the years 2018, 2013, 2005 and 1990 at the 95% CI. In 1997, the results 
show a small difference between the overall accuracy and a Z value of 0.043 observed for the RF and 
SVM classifications. This indicates there was no statistical difference between both the SVM and RF 
classification.  

Based on the confusion matrices for the images from 1990 to 2018, the accuracy assessment 
produced the adjusted user’s accuracy (UA) and producer’s accuracy (PA). Table 2 shows for both 
classification methods the UA and PA of five years for each land cover class identified in the study. 
The 2018 reference year achieved the highest UA and PA when classifying all the land cover classes 
for both SVM and RF classification compared to previous years. The agriculture land cover class 
showed above 60% UA for the SVM and RF classification from 1990 to 2018, however, the PA was 
below 65% for all the years except 2018. The range of commission error (CE) for the P. glandulosa 
land cover class was calculated to be  approximately between 41.10% and 71.23% for the SVM and 
between 28.77% and 52.05% for the RF classification. The CE% for P. glandulosa indicates SVM at 
each year had more false classifications compared to RF classification. The omission error (OE) for 
P. glandulosa throughout the years ranges between 14.89% and 61.99% using the SVM, while the 
RF classifier ranges between 23.56% and 56.08%. In 1990, the OE% for P. glandulosa was high for 
both the SVM (61.99%) and RF (48.63%) classifications. The high OE% suggests that there was 
misclassification of the P. glandulosa land cover class. 
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Table 1: Overall accuracy assessment and Kappa statistics for SVM and RF classifiers for different 
images used in the study. 

Overall Accuracy 

Year Method Unadjusted Adjusted KHAT Z 

2018 
SVM 89.09 88.58 0.85 

3.672 
RF 83.44 86.06 0.78 

2013 
SVM 61.44 73.33 0.46 

2.112 
RF 66.03 76.90 0.52 

2005 
SVM 67.27 76.72 0.54 

2.863 
RF 60.10 72.48 0.45 

1997 
SVM 63.54 71.33 0.52 

0.043 
RF 62.87 68.54 0.52 

1990 
SVM 62.30 71.33 0.48 

2.269 
RF 56.84 67.61 0.41 
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Table 2: The summary of the adjusted user’s and producer’s accuracies for the SVM and RF classification of each year from 1990 to 2018. 
Support Vector Machine 

Land Cover Class 

19900916 19971005 20050909 20131118 20180929 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

Agriculture 69.46 63.28 59.61 36.16 83.50 48.41 79.80 49.65 91.13 95.51 

Bare Soil 33.46 39.64 44.12 65.28 19.12 37.09 6.25 11.14 97.43 80.43 

Built-up 53.33 33.79 80.00 68.74 73.33 94.21 80.00 93.46 66.67 95.74 

Indigenous 46.67 77.06 30.00 18.54 86.67 73.53 73.33 59.36 56.67 37.07 

Prosopis glandulosa 28.77 38.01 58.90 64.11 47.95 85.11 45.21 53.97 47.95 67.63 

Shrubland 92.93 94.42 94.44 94.09 95.45 96.46 92.42 99.41 92.42 94.95 

Water 100.00 92.31 100.00 89.73 100.00 100.00 100.00 95.32 100.00 94.41 

Random Forest 

Land Cover Class 

19900916 19971005 20050909 20131118 20180929 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

Agriculture 59.11 55.95 60.59 39.28 64.04 37.61 86.21 55.69 79.80 93.26 

Bare Soil 33.82 39.68 39.71 64.71 20.96 36.58 9.93 18.74 90.07 76.63 

Built-up 66.67 49.66 60.00 34.13 80.00 88.47 66.67 91.44 53.33 55.55 

Indigenous 43.33 41.15 20.00 21.70 83.33 83.11 43.33 38.75 53.33 32.78 

Prosopis glandulosa 56.16 51.37 69.86 43.92 47.95 59.37 71.23 76.44 53.42 72.78 

Shrubland 93.94 91.24 94.44 94.93 94.95 95.23 94.44 99.05 95.96 94.96 

Water 23.53 63.43 98.04 71.39 100.00 96.20 100.00 97.52 98.04 96.49 
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3.3. Land cover change: from 1990 to 2018 

Land cover change detection was studied using correlation matrices for each year to calculate the 
area-adjusted estimates based on Olofsson et al. (2013). The land cover changes over the period (from 
1990 to 2018) for the study area were assessed by considering the adjusted areas and the percentage 
of change. The Shrubland land cover class shows small changes from 1990 to 1997, although a steep 
increase occurred from 1997 to 2005. The agriculture class changed constantly over time and is one 
of the most dynamic land cover classes since farmers constantly plant and rotate crops. The land cover 
class P. glandulosa shows little land change throughout the years, especially where the range of the 
error bars overlap which can be attributed to the lower UA and PA in this land cover class compared 
to other classes.  

Table 3 shows the percentage area change for the seven land cover classes from year to year and 
the percentage change from 1990 to 2018. The two classification methods indicate a similar change 
over time throughout all the land cover classes. The agriculture class changed from 1990 to 2018 with 
a decrease of 17.5% and 14.8% for the SVM and RF classifiers, respectively. The percentage area of 
the Shrubland land cover class increased with 7.5% and 6.5% during the SVM and RF classifications 
between 1990 and 2018. The results show P. glandulosa variations over time as the percentage area 
fluctuated. There was a 1.9% increase in area covered by P. glandulosa from 1990 to 1997 compared 
to the decrease between 1.03% and 1.5% observed from 1997 to 2005. The overall change was high 
for the P. glandulosa class with above a 3.3% and 3.7% increase in the percentage change from 1990 
to 2018 with the SVM and RF classifiers, respectively. 

Table 3: The difference percentage of land cover change over time is represented in the tables 
below for the SVM and RF classifiers. 

  Support Vector Machine 

 %Δ 
Class 1990-1997 1997-2005 2005-2013 2013-2018 1990-2018 

Agriculture  -10.95 6.04 3.29 -15.87 -17.49 

Bare Soil 5.35 -11.56 0.11 14.55 8.45 

Built-up -1.56 -1.08 0.53 -1.11 -3.21 

Indigenous 1.91 0.52 -1.28 0.42 1.58 

Prosopis 
glandulosa 1.94 -1.56 0.39 2.55 3.32 

Shrubland 3.48 7.74 -3.42 -0.32 7.49 

Water -0.18 -0.11 0.38 -0.23 -0.13 

 

 
Table 3: Continues.  
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  Random Forest 
 %Δ 

Class 1990-1997 1997-2005 2005-2013 2013-2018 1990-2018 

Agriculture  -9.11 4.75 5.89 -16.36 -14.83 

Bare Soil 0.85 -7.67 -3.39 13.66 3.45 

Built-up 1.71 -3.92 -0.43 0.50 -2.14 

Indigenous 2.16 0.79 -2.07 1.28 2.16 

Prosopis 
glandulosa 1.89 -1.03 1.75 1.04 3.65 

Shrubland 0.33 8.06 -2.07 0.19 6.51 

Water 2.16 -0.97 0.32 -0.31 1.20 

 

4. Discussion 

The study evaluated two machine learning algorithms for mapping land cover types that include 
the IAP P. glandulosa in the semi-arid environment of Prieska. The two classifications methods i.e. 
SVM and RF classifiers were investigated and produced high accuracy results using 30-meter Landsat 
imagery from 1990 to 2018 period. The performance of the two machine learning algorithms varied 
throughout the years. The SVM classifier outperformed the RF classifier for three of the five years 
that were classified (2018, 2005 and 1997). In 2013, the RF classifier outperformed the SVM 
classifier with a 4.6% difference in overall accuracy. Both machine learning algorithms produced 
high accuracy for the 1997 classification. The results suggest that both the SVM and RF classifiers 
have the potential to produce high accuracy classification for mapping land cover types. Our results 
are in agreement with Li et al. (2013) that compared three machine learning algorithms. In this study 
a forest ecosystem was classified with decision trees, RF and SVMs classifiers using multi-temporal 
Landsat imagery. The performance of the RF and SVM classifiers were comparable, although they 
both outperformed the decision tree classifier in terms of the overall accuracy with high-dimensional 
data. 

Higher UA and PA were observed with the RF classifier than the SVM when mapping of P. 
glandulosa in the study area. Previous studies have shown the success of RF to discriminate between 
IAPs and other vegetation with high spatial resolution multispectral data (Odindi et al., 2016, Ng et 
al., 2016) and hyperspectral data (Große-Stoltenberg et al., 2016). The most confusion between 
classes occurred between the indigenous and P. glandulosa land cover classes where the lowest UA 
and PA were observed using 30-meter medium spatial resolution Landsat imagery. The use of high 
spatial resolution has been reported to perform better for species-level mapping where spectral 
characteristics successfully distinguish between physiological differences of IAPs. For example, the 
mapping of Prosopis spp. with WV-2 high-resolution imagery (Adam et al., 2017, Robinson et al., 
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2016). Unfortunately, the use of WV-2 imagery often can become costly and imagery is not available 
for long-term land cover change studies.  

The land cover change detected in this study indicates that P. glandulosa invasion from 1990 to 
2018 is responsible for a considerable transformation in the study area. Both the SVM and RF 
classifiers indicated that the area of P. glandulosa increased between 3.3% and 3.7% over 28 years. 
Figure 3 shows the change in P. glandulosa distribution in the study area as the IAP gradually 
increased from low density stands to the highest density between 1990 and 2018. Declines of 
indigenous vegetation are often reported in semi-arid to arid regions of South Africa, for example, 
the Northern Cape, where large scale changes of Prosopis spp. invasions were observed (Richardson 
and Van Wilgen, 2004, Ndhlovu et al., 2016). 

Water catchments in arid environments are especially threatened by the continuous invasion of 
IAP as uncontrolled spread throughout the catchments decreases river flow and water yields (Preston 
et al., 2018). The prioritisation of catchment areas throughout South Africa indicated that the Northern 
Cape needed the most management strategies to combat Prosopis spp. invasion (Shackleton et al., 
2017). In this study, the high density of P. glandulosa invasion was seen along the Orange River and 
other water catchments (Figure 3) found throughout the study area. In the study by Van den Berg 
(2010) high-density Prosopis spp. was found to have invaded most of the Northern Cape catchments. 
Management strategies for removal of Prosopis spp. invasions are essential to ensure a decrease in 
groundwater and surface water loss by implementing more clearing programmes (Dzikiti et al., 2017). 

The spread of Prosopis spp. is recognized throughout the Northern Cape by locals as a problematic 
plant even though the plant provides some positive incentive to local livelihoods (Shackleton and 
Shackleton, 2018). The plant is an essential source of fodder for livestock during times where other 
food sources are not available. The distribution of P. glandulosa (Figure 5) indicates higher densities 
in some areas where livestock are present. Livestock dispersal is responsible for the invasion of P. 
glandulosa as seeds are consumed and spread through dung that provides favourable conditions for 
germination or deposited into the seed bank (Ansley et al., 2017). Livestock also uncovers seeds when 
the pods fall to the ground which allows the distribution away from the parent plant and further 
germination to occur (Alvarez et al., 2017). Farmers have raised concerns about the spread of 
Prosopis spp. through their pods and the impact of its invasion on agriculture. Many farmers do 
clearing to decrease the presence of Prosopis spp. on their farms and they often sell the wood to local 
communities to cover the cost of clearing (Shackleton et al., 2015b).  
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Figure 3: The distribution maps for P. glandulosa were produced by the SVM (on the left) and the 
RF (on the right) classification. The maps show a subset of the study area to illustrate the densities 

of the IAP for the years: 2018 (a), 2013 (b), 2005 (c), 1997 (d) and 1990 (e).  

 

5. Conclusion 

The objective of the study was to use machine learning algorithms to map the distribution and 
spread of P. glandulosa over 28 years. The research investigated the ability of two machine learning 
algorithms to map the P. glandulosa using multitemporal Landsat imagery. The results suggest that 
both algorithms produced statistically similar classifications. Overall, the results indicate that P. 
glandulosa invasion increased from 1990 to 2018, especially next to the water catchment areas (i.e. 
Orange River) where high-density canopies threaten water yields of the Northern Cape Province. The 
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findings can be used to inform local government management initiatives. Future research should 
focus on other municipalities using high spatial resolution datasets to improve classification products. 
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