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Abstract 

Urbanisation is accelerating urban land use dynamics and this has a significant impact on land 
surface temperature (LST). Impervious surfaces and increase in air pollution has led to the increase 
in land surface temperature. This study reports on the use of geospatial technologies to monitor and 
quantify changes in LST using remotely sensed data in the City of Tshwane. Land surface temperature 
was retrieved using the winter and summer Landsat datasets for 1997 and 2015 and the MODIS data 
from 2000 to 2015.  Land surface temperature was extracted using emissivity and satellite 
temperature as input parameters. The spatial and temporal variations in the LST were retrieved to 
show the effects of land cover change on LST. Change in LST was also analysed on different land 
cover types using transects across the study area. The study revealed an increase in land surface 
temperature between the years. It also showed that impervious surfaces had a higher LST compared 
to the non-impervious surfaces.  The results revealed variations in LST between non-cropped and 
cropped agricultural areas, where the former had higher LST than the latter. Temporal trends 
revealed a notable increase in LST in the urban areas and there were some seasonal variations in 
LST with high LST values in summer and low values in winter. Cross-section analysis along transects 
revealed spatio-temporal thermal variations across different land cover types. 

  
Keywords: Landsat, MODIS, Land Surface temperature, urban heat island, remote sensing,  

City of Tshwane 
 

1. Introduction 

There is an increase in global land surface temperature as a result of controlled and uncontrolled 
urbanisation. Urbanisation which can be defined as the increase in the number of urban dwellers is 
increasing at an alarming rate in both developing and developed countries leading to the 
transformation of non-urban environments into urban environments (Zhang, 2016). Urbanisation is 
one of the major global challenges which is leading to change in the properties of land surface 
materials (Mathew et al., 2018).  Urbanisation leads to urban sprawl which has an impact on the 
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quality of the environments, which include air quality and land surface temperature (Abutaleb et al., 
2014; Wray and Cheruiyot, 2015).  Land Surface Temperature (LST) increases were reported in urban 
areas as a result of impervious surfaces and high concentration of pollutants leading to the 
establishment of urban heat islands (UHI) (Mallick et al., 2008; Sheng et al., 2017). UHI which can 
be defined as a microclimate where the temperature in the urban areas is higher than that of the 
surrounding areas (Abutaleb et al., 2014; Peres et al., 2018; Yue et al., 2007). Urban heat Islands are 
a result of anthropogenic activities which influence the increase in temperature in the urban areas and 
these cause an increase in precipitation (Huang et al., 2008; Sheng et al., 2017). These UHI leads to 
the change in  the quality of air and leads to rise in global warming (Mallick et al., 2008) which  can 
be detrimental to the human health  thereby increasing mortality (Yue et al., 2007).  

With the rapid urbanization of the world population, research on urban microclimate has gained 
popularity in the past years. For sustainable management of urban areas there is a need to monitor 
and quantify land surface temperature in urban areas (Mushore et al., 2017). Geospatial techniques 
such as remote sensing has been identified as very crucial, cost effective and accurate tools that are 
used to monitor and quantify change in the landscape parameters such as land surface temperature, 
urban sprawl, pollution etc. (Magidi and Ahmed, 2018; Mushore et al., 2017).   

Land Surface Temperature  thermal profiles are used to graphically illustrate spatial variations of 
temperature in the urban environment and its surroundings (Sheng et al., 2017). Typical thermal 
curves of LST variations will show cliffs, peaks, depressions and plateaus, which reveal the thermal 
variations (Abutaleb et al., 2014; Huang et al., 2008). Anthropogenic activities cause changes in the 
surface (from natural to impervious) which affect albedo, thermal capacity and heat conductivity 
(Abutaleb et al., 2014). An urban area with green vegetation has lower LST than a non-vegetated 
urban area (Mallick et al., 2008; Tomlinson et al., 2012; Weng et al., 2004) hence the use of 
vegetation indices such as the Normalised Difference Vegetation Indices (NDVI) in retrieving LST 
using remotely sensed data. Satellite temperature is slightly lower than the temperature measured at 
meteorological stations (ground level) hence the need for ground emissivity and atmospheric 
corrections is needed in order to accurately quantify LST (Sobrinoet et al., 2004; Yin et al., 2020). 
Vegetation cover, vigour, and soil background influence the emissivity and hence the use of NDVI 
in calculating emissivity (Abutaleb et al., 2014;  Neinavaz et al., 2020; Sobrino et al., 2004; Yin et 
al., 2020).  

The City of Tshwane (CoT) was also affected by urbanisation, which had led to the proliferation 
of planned and unplanned settlements (Magidi and Ahmed, 2018). This urban sprawl affected the 
microclimate in the city and the aim of this study is to assess and monitor the impact of urban sprawl 
on land surface temperature using remotely sensed data.  

 

2. Study Area 

City of Tshwane (CoT) as indicated on Figure 1 is situated north of the Gauteng Province,  and is 
also the administrative capital of the Republic of South Africa (Matlala, 2015). It lies between 
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latitudes 25°6’34.60” S to 26°4’41.12”S and longitudes 27°53’24.26”E to 29°5’54.31” E.  According 
to the STATSSA (2012) the city has a landmass of 629 618 ha, has a population of 2 921 490 people 
and 911 536 households. The CoT lies at an average elevation of 1280m above mean sea level and it 
falls within the grasslands biome (Mucina and Rutherford, 2006). CoT has an average temperature 
and rainfall of 17.8°C and 697mm respectively. The temperature and rainfall are high in summer and 
low winter.  

 
Figure 1: The study area map showing the City of Tshwane 

 

3. Data and Methods 

Remotely sensed data (Landsat OLI and Landsat TM) were downloaded from the United States 
Geological Surveys (USGS)’s Earth Explorer web portal. Acquired remotely sensed data for both 
winter and summer seasons as indicated in Table 1 were acquired from the USGS portal. Winter and 
summer cloud-free images were found in August (1997 and 2015) and December (1997 and 2015) 
respectively. Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature 
and Emissivity (MOD11) with a spatial resolution of 1km and 8-day temporal resolution was 
retrieved using Google Earth Engine for the period from 2000 to 2015. Climate data from South 
African Weather Services  was also used in this study to augment the findings from remote sensing 
(Harris et al., 2014). Figure 2 illustrates the flowchart of the methodology used to retrieve LST in the 
two years (1997 and 2015). 
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Table 1: Landsat TM and ETM+ remotely sensed data that was used in this study. 

Sensor Year Month Path Row Scene Status 

Landsat OLI 2015 December  

177 77 and 78 Cloud-free August 

Landsat TM 1997 December 
August 

 

 
Figure 2: Flowchart showing the methods used to retrieve LST in the City of Tshwane 

 

3.1. Converting to Radiance 

The remotely sensed data was converted from the downloaded DN (digital number) values to TOA 
(Top of Atmosphere Reflectance) for Landsat TM and Landsat ETM+ datasets and the formula in 
Equation 1 and Equation 2 were used respectively (Qin et al., 2001). 

 𝐿𝐿 = (𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆) ∗
𝑄𝑄𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑄𝑄𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑄𝑄𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
+ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 1 

where L= is the spectral radiance received by the sensor, Lλmax is the maximum detected spectral 
radiance, Lλmin is the minimum spectral radiance. QDN is the DN at a given pixel, Qλmax = is the 
maximum DN value (255) and Qλmin = is the minimum DN value (0) (Qin et al., 2001) 

 𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿𝑄𝑄𝑐𝑐𝜆𝜆𝑐𝑐 + 𝐴𝐴𝐿𝐿 2 

where: Lλ = TOA spectral radiance (Watts/(m2 * srad * μm)), ML = Band-specific multiplicative 
rescaling factor from the metadata AL = Band-specific additive rescaling factor from the metadata 
and Qcal = Quantized and calibrated standard product pixel values (DN) (Qin et al., 2001). 
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3.2. Calculating Satellite Temperature 

Satellite temperature was retrieved from Band 6 (Landsat TM) and band 10 (Landsat OLI) using 
Equation 3 (Artis and Carnahan, 1982; K. S. Kumar et al., 2012).  

 𝑇𝑇𝑆𝑆𝜆𝜆𝑆𝑆 = 𝐾𝐾2 ln ((𝐾𝐾1 𝐿𝐿𝜆𝜆⁄ ) + 1)⁄   3 

where: TSat = satellite brightness temperature (K), Lλ = TOA spectral radiance (Watts/(m2 * srad * 
μm)), K1 = Band-specific thermal conversion constant (Table 2) and K2 = Band-specific thermal 
conversion constant (Table 2) (Chander and Markham, 2003; K. S. Kumar et al., 2012) 

Table 2: Thermal Conversion Constants for Landsat 

Constant Landsat TM Landsat ETM+ Landsat OLI 

K1 607.76 666.09 In the metadata 
K2 1260.56 1282.71 In the metadata 

 

3.3. Calculating Normalised Difference Vegetation Indices (NDVI) 

Normalised Difference Vegetation Indices (NDVI) is an indicator invented by Townshend and 
Justice (1986) and calculated from the red bands and the near-infrared bands (D. Kumar and Shekhar, 
2015) as indicated in Equation 4.  The NDVI formula estimates the amount of above-ground 
vegetation cover from red and infrared bands (D. Kumar and Shekhar, 2015). Green vegetation 
absorbs the red wavelengths as a result of chlorophyll while scattering near-infrared wavelengths and 
unhealthy leaves reflect the red band and absorb the near-infrared bands (D. Kumar and Shekhar, 
2015). NDVI ranges between -1 and 1 and values between -1 and 0 where the NDVI above 0.1 is for 
vegetated areas (Laosuwan et al., 2017).  

  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁) (𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁)⁄  4 

where: NIR is the Near Infra-Red Band (Band 4 in TM and Band 5 in OLI) and RED = Red Band 
(Band 3 in TM and Band 4 in OLI) 

 

3.4. Calculating Emissivity 

Emissivity is a function of wavelength, which is influenced by a number of environmental factors 
such as water content, chemical composition, the density of vegetation, plant species and smoothness 
of the surface (Sobrino et al., 2004). There is a correlation between emissivity and NDVI (Nega et 
al., 2019; Sobrino et al., 2004) and conditional formulae used to compute emissivity are shown in 
Table 3. 
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Table 3: Estimation of land surface emissivity using NDVI. 
NDVI Land Surface Emissivity (ε) 
NDVI<-0.185 0.995 
-0.185≤NDVI≤0.157 0.970 
0.157≤NDVI≤0.727 1.0094+0.047ln(NDVI) 
NDVI>0.727 0.990 

 

3.5. Calculating Land Surface Temperature (LST) 

Satellite temperature (TSat) and emissivity were used to compute LST using Equation 5 (Artis and 
Carnahan, 1982; Chander and Markham, 2003; Weng et al., 2004).  

 LST = 𝑇𝑇𝑆𝑆𝜆𝜆𝑆𝑆 �1 + [(𝜆𝜆𝑇𝑇𝑆𝑆𝜆𝜆𝑆𝑆 ρ⁄ ) ln(𝜀𝜀)] �⁄   5 

where: Tsat is satellite temperature derived from Equation 3, λ = wavelength of emitted radiance 
and average wavelengths and ε is the surface emissivity derived from Table 3 (Chander and Markham, 
2003).and 𝜌𝜌 = ℎ(𝑐𝑐 σ⁄ )A (σ is the Stefan-Boltzmann constant (1.38*10-23 J/K), h is the Planck's 
constant (6.626*10-32Js) and c is the velocity of light (2.998*108 m/s). 

 

3.6. Normalising Brightness Temperature 

There is a need to normalise LST between 0 and 1 to avoid time difference when images were 
captured and for easy comparison of LST. Equation 6 was used to compute the normalised LST 
(Schissau, 2006).  

  N =  (𝑇𝑇𝜆𝜆 − 𝑇𝑇𝜆𝜆𝜆𝜆𝜆𝜆) (𝑇𝑇𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑇𝑇𝜆𝜆𝜆𝜆𝜆𝜆)⁄  6 

where N is the pixel normalised value of the LST, Ti is the LST of the ith pixel, Tmin is the minimum 
value of the LST and Tmax is the maximum LST. The normalised LST can be divided into five zones, 
which are strong heat islands zone (0.8-1.0), heat islands zone (0.6-0.8), normal zone (0.4-0.6), green 
islands zone (0.2-0.4) and strong green islands zone (0-0.2) (El-Magd et al., 2016; Xu et al., 2013).  

 

3.7. Cross-Sectional Analysis using Transects 

Transects as indicated in Figure 3 were across different land cover classes using the 3D Analyst in 
ArcGIS (ESRI, 2015). Transects were created across agricultural areas, across the city centres, across 
the residential areas and across city outskirts. The LST on each point on the transect was recorded 
and results were computed graphically.  
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Figure 3: The location of transects that were used to assess LST variations along different land uses 

in the City of Tshwane. 

 

4. Results and Discussions 

4.1. Land Surface Temperature (LST) 

Computed LST maps are depicted in Figure 4Higher temperatures were experienced in summer 
than in winter as depicted on the maps and there was an increase in temperature between 1997 and 
2015. There was a higher LST in December 2015 compared to December 1997 and there were higher 
temperatures in summer compared to winter (Figure 5). The average temperature for December 2015 
was 35.01°C, August 2015 was 30.44°C, December 1997 was 31.24°C and August 1997 was 20.95°C 
(Figure 5). Land surface temperature in urban areas was higher compared to the surrounding areas 
for August and December for both years. The results are in accordance with the consensus that there 
was higher LST in urban areas compared to the surrounding areas. This agrees with the finding from 
cities such as Cairo in Egypt, where there is little or no vegetation in urban areas (El-Magd et al., 
2016). CoT is also known as the Jacaranda City a pseudonym that was derived from the Jacaranda 
trees in the streets together with other different indigenous and alien tree species. These together with 
stadiums and parks in the urban areas plays a role on the LST in urban areas. The temperature in the 
city centre was lower than in urban environments outside the city. The high-density areas had higher 
temperatures compared to low-density areas and the city centres. This is mainly because there was 
less vegetation in high-density areas compared to low-density areas and the city centre. 
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(a)  

 

(b)  
 

(c)  

 

(d)  
 

Figure 4: LST maps derived from the Landsat thermal bands and emissivity, a: August 1997,  
b: December 1997, c: August 2015 and d: December 2015 

 

 

(a)  
Max:34.93, Min: 8.49, Mean: 20.95, St. Dev: 2.11 

 

(b)  
Max:50.99, Min: 10.50, Mean: 31.24, St. Dev:2.27 

 

(c)  
Max:40.17, Min: 10.20, Mean: 30.44, St. Dev:1.97 

 

(d)  
Max:47.32, Min: 17.44, Mean: 35.01, St. Dev: 3.61 

 

Figure 5: Statistics derived from the LST Maps of the City of Tshwane for the following months  
a: August 1997, b: December 1997, c: August 2015 and d: December 2015. 
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4.2. Normalised Land Surface Temperature 

In August 1997, the normalised LST for August 1997 (Figure 6 (a)) had a mean of 0.47 with the 
standard deviation of 0.08 (Figure 7 (a)). Most of the areas were in the normal zone and green islands 
zone (0.2-0.4) and few heat islands. In December 1997, the normalised LST (Figure 6 (b)) had a mean 
of 0.51 and standard deviation of 0.06 (Figure 7 (a)). Most of the areas were in the normal zone and 
heat zone and fewer patches in strong heat islands (in red) (Figure 6 (b)). In August 2015, the 
normalised LST (Figure 6 (c)) had a mean of 0.68 and standard deviation of 0.07 (Figure 7 (c)). The 
normalised LST maps show most on the areas in the normal zone and fewer patches in the heat zone. 
In December 2015, the normalised LST (Figure 6 (d)) had a mean of 0.58 and standard deviation of 
0.12 (Figure 7 (d)). There were significant strong heat islands zones in December 2015 but most of 
the areas were in the normal heat zones.  

 

 

(a)  

 

(b)  
 

(c).  

 

(d).  

Figure 6: Normalised LST Maps derived from the LST Maps for a: August 1997, b: December 
1997, c: August 2015 and d: December 2015.  
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(a)  
Max:1,Min: 0,Mean: 0.47, St. Dev: 0.08 

 

(b)  
Max:1, Min: 0, Mean: 0.51, St. Dev:0.06 

 

(c)  
Max:1, Min: 0, Mean: 0.68, St. Dev:0.07 

 

(d)   
Max:1, Min: 0, Mean: 0.58, St. Dev: 0.12 

 

Figure 7: Statistics derived from the Normalised LST Map of the City of Tshwane for a: August 
1997, b: December 1997, c: August 2015 and d: December 2015. 

 

4.3. Spatial profile in Agricultural Areas 

Spatial profiles of LST that were created along a transect in the agricultural areas are depicted in 
Figure 8. The spatial profiles revealed the inter-seasonal variations of LST 1997 and 2015 
respectively. In the winter of 1997, the highest LST was 26.5°C, the lowest was 18.0°C and in summer 
of 1997, the highest temperature was 33.8°C with the lowest of 28°C. In the winter of 2015, the 
highest temperature was 33.2°C and lowest, was 23.5°C while in summer highest LST was 40.9 °C 
and lowest, was 29.3°C. There were peaks and depressions in the spatial profiles in both winter and 
summer images of 1997 and 2015. Peaks (high LST) were in areas with little or no crops and 
depressions (low LST) were in cropped areas where the value of greenness was high. Areas with 
depressions in winter were as a result of winter cropping and the winter cold weathers. There was a 
strong seasonality difference between the winter and summer seasons and it was clear in the spatial 
profiles of both 1997 and 2015. There was an increase in LST in agricultural areas between 1997 and 
2015 in both seasons. 
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(a)  

 

(b)  

(c)  (d)  

Figure 8: Spatial profile of LST along a transect (yellow) in the agricultural areas for a: August 
1997, b: December 1997, c: August 2015 and d: December 2015.  

 

4.4. Spatial Profile in Residential Areas 

The residential areas used in the study were in Soshanguve and the inter-seasonal variations for 
1997 and 2015 are shown in Figure 9. In 1997 winter, highest temperature was 26.1°C and lowest, 
was 15.2°C while in summer highest LST was 36.5°C and lowest, was 23.1°C. In 2015 winter, highest 
LST was 33.6°C and lowest, was 23.2°C while in summer highest LST was 43.1°C and lowest, was 
32.8°C. High peaks were experienced in newly established settlements where there was no vegetation 
and depression in areas with little or no impervious surface for example the water body which situated 
at 1500m from the start of the transect.  

 

(a)  

 

(b)  

(c)  (d)  

Figure 9: Spatial profile of LST along a transect (yellow) in the high-density residential areas of 
Soshanguve for a: August 1997, b: December 1997, c: August 2015 and d: December 2015.  
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4.5. Spatial Profile in the City Centre 

There were LST variations in the City Centre as shown Figure 10. In the winter of 1997, the highest 
LST was 21.0°C and lowest, was 15.1°C while in summer highest LST was 38.2°C and the lowest, 
was 27.8°C. In 2015 winter, the highest LST was 30.0°C and the lowest LST was 20.8°C while in 
summer the highest LST was 36.3°C and the lowest, was 29.8°C. Low LST in urban areas was a 
result of vegetation growth within the city and peaks were areas where there was no or little vegetation 
(bare soils and urban areas).  

 

(a)  

 

(b)  

(c)  (d)  

Figure 10: Spatial profile of LST along a transect (white) in the City Centre for a: August 1997, b: 
December 1997, c: August 2015 and d: December 2015. 

 

4.6. Spatial Profile in Mining Areas outside the City 

There were LST variations in the mining area of Cullinan as shown Figure 11for the LST spatial 
profiles of 1997 and 2015 respectively. In winter of 1997, the highest LST was 25.0°C and the lowest, 
was 13.0°C while in summer, the highest LST was 34.8°C and the lowest, was 23.6°C. In winter of 
2015, the highest LST was 34.5°C and the lowest LST was 17.5°C while in summer, the highest LST 
was 38.7°C and the lowest, was 22.0°C. There were some peaks and big depressions (dips) in LST, 
which was because of the opencast diamond mine, which is full of water. Some of the peaks were 
because of impervious surfaces and surrounding bare soils in the surrounding agricultural land. The 
depressions were due to vegetated and cropped areas in and around the Cullinan mine. 
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(a)  

 

(b)  

(c)  (d)  

Figure 11: Spatial profile of LST along a transect (white) in mining area of Cullinan for a: August 
1997, b: December 1997, c: August 2015 and d: December 2015.  

 

4.7. Relationship between NDVI and LST 

The correlation coefficient between LST and NDVI was -0.5701728 and the p-value was 2.2e-16. 
These statistical values are quite significant, and they are in full agreement with outcomes from other 
researches (Abutaleb et al., 2014; Adeline et al., 2014; A Ngie et al., 2016). 
 

 

Figure 12: The scatterplot of LST against NDVI derived from the LST and NDVI bands using R 
programming and the regression line is in red. 
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4.8. Change in LST retrieved from MODIS (MOD11) 

Variations in LST from 2000 and 2015 are as portrayed on Figure 13, retrieved from MOD11 
remotely sensed data using Google Earth Engine. There is a progressive increase in LST in the CoT 
as shown on the trend line with an R2 of 0.0015 and a gradient of 0.0001 and it showing a positive 
increase in LST.  LST increases is as a result of the increase in impervious surfaces, signifying that 
urban areas are leading to the establishment of urban heat islands (Huidong Li et al., 2018). LST 
increase in urban areas is attributed to the concentration of impervious surfaces and increase in air 
pollution, is also in agreement with the temperature data on Figure 14, which was acquired from the 
South African Weather Services where the trend line is showing a slightly increasing trend.  

 

Figure 13: The temporal variation of LST derived from MODIS LST data using Google Earth 
Engine.  

Figure 14: Variation in temperature in South Africa derived from meteorological stations. 

Thermal profiles were used in this study to graphically illustrate spatial variations of LST in the 
urban environment and its surroundings and it showed curves of LST variations with cliffs, peaks, 
depressions and plateaus, which reveals the thermal variations in different land cover classes (Abebe, 
2013; Abutaleb et al., 2014; Huang et al., 2008; Ngie et al., 2014). Anthropogenic activities caused 
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transformation of natural to impervious surfaces, which affected the albedo, thermal capacity, heat 
conductivity (Ngie et al., 2014). Adeyeri et al. (2017) argued that bare surfaces and built-up areas 
have high LST and low LST experienced in vegetated areas. This was in agreement with the results 
of this research. This argument was also supported by. In their study of Beijing China, there was a 
negative correlation between the amount of vegetation and urban heat islands. Bare surfaces 
experience high LSTs because of incident radiation, which was completely absorbed hence high LSTs 
(Adeyeri et al., 2017; Ma et al., 2008). Yue et al. (2007). Research done in Shanghai, China also 
revealed a negative correlation between NDVI and LST in the study, which indicated that where there 
was relatively low NDVI and little vegetation in the urban areas, there was high LST (Yue et al., 
2007). That was also supported in a study done in Kalaburagi, India by D. Kumar and Shekhar (2015). 
A significant increase in LST and spatial extent of urban heat islands were realised in many cities 
including Shanghai, China (J.-j. Li et al., 2009).  

Vegetation assists in reducing the LST of the environment and it also regulates the concentration 
of carbon in the atmosphere thereby reducing urban heat islands (Ali and Mohammed, 2016; Hui Li 
et al., 2013). Vegetation provides shade, which reduces incident radiation and evapotranspiration, 
which helps to regulate overheating (Adeyeri et al., 2017; Hui Li et al., 2013; Mathew et al, 2017). 
Results of this study agree with research outputs by Adeyeri et al. (2017) which show that the lowest 
LST was in water bodies. Water is a special case in the mapping LST because it has low NDVI and 
low land surface temperature (D. Kumar and Shekhar, 2015). An urban area with green vegetation 
suffers less from LST than a non-vegetated urban area (Tomlinson et al., 2012) and this was the case 
in the City Centre where low LST is being experienced due to increase in vegetation. There was a 
variation between winter and summer LST profile and an increase in LST from 1997 to 2015 in both 
seasons. In winter, there was low LST as compared to summer hence there was a significant difference 
in LST between the images of August (winter) and December (summer). In August, LST was lower 
compared to December in both 1997 and 2015. There was a significant increase in LST between 1997 
and 2015 in both seasons and this can be attributed to climate change.  

 

5. Conclusions 

This study used remote sensing data to quantify and monitor LST and found that the thermal 
changes and urban heat island exist in the CoT. The urban thermal environment of CoT is an 
environmental issue leading to a need for a smart city planning with a focus on strategies for reduction 
in temperature that create comfortable living conditions within the area. It had been seen from the 
satellite-derived LST that the factors such as less percentage of green area and high built-up density 
are responsible for urban heating. The vegetated areas regulate the temperatures anomalies between 
the core city and the outskirts. The temperature is comparatively lower on the surroundings of the 
city than the centre. On the other hand, some peripheral areas, however, show a high-temperature and 
this can be due to the developments that would have taken place in the peripheral areas of the city 
and destruction of vegetation in this region. Water bodies and vegetation show very weak urban heat 
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island intensity, which implies that the availability of these land covers is essential for mitigating the 
thermal effects. The peripheral areas are also vulnerable to heating intensity, due to lack of vegetative 
cover and increasing barren land. Although the population density is very less in these areas, heat 
mitigation is the priority in these areas. The findings of this study could be helpful to the planners, 
land administrators, and decision-makers for adopting relevant and useful land use plans, e.g. green 
city plan, for mitigating the rising temperature and thermal discomfort of the city. 
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