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Abstract 

This paper focuses on the mapping of alteration minerals and linear structures associated with 
gold mineralization in the Giyani Greenstone Belt (GGB). Spectral Information Divergence (SID) 
and Linear Spectral Unmixing (LSU) classification algorithms were applied to the ASTER data using 
image extracted endmember spectra which match the spectral profiles of predominant alteration 
minerals (biotite and calcite) related to gold mineralization in the GGB. Directional convolution 
filters were also applied to the ASTER data to extract structural lineaments that may be related to 
gold mineralization. In addition, Fry analysis of known gold occurrences in the GGB was conducted 
to determine the major distribution patterns along which gold mineralization have occurred. LSU 
and SID results show several pixels classified as alteration minerals corresponding to known gold 
occurrences. SID results also show minerals overlapping into the gneissic rock, which is a rare host 
of gold mineralization in the study area. On the other hand, LSU results show high abundances of 
calcite and biotite generally confined within the mafic-ultramafic greenstone rocks, which have been 
hypothesized as the source of gold-mineralized fluids in the GGB. In general, LSU show distinct 
broad regions classified as alteration minerals corresponding to known gold occurrences that have 
been previously reported to host these alteration minerals. Directional convolution filters enabled 
the extraction of predominately NE-SW oriented linear structures, including the major shear zone 
which is associated with gold mineralization in the GGB. Fry analysis revealed three major 
distribution patterns: N-S, NE-SW, ENE-WSW along which gold mineralization have occurred. These 
patterns correspond to major lineaments associated with gold mineralization reported in the previous 
structural studies of the GGB. 
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1. Introduction 

Remote sensing has been widely used for structural mapping (Mwaniki et al., 2015; Taoufik et al., 
2016; Wambo et al., 2016; Hermi et al., 2017; Hewson et al., 2017) and hydrothermal deposits 
exploration (Loughlin, 1991; Huntington, 1996; Gabr et al., 2010; Hosseinjani and Tangestani, 2011; 
Honarmand et al., 2011; Liu et al., 2017; Sheikhrahimi et al., 2019). The spatial position and 
orientation of lineaments are considered essential guide predictions of hydrothermal fluids-related 
ore deposits as they represent the connecting channels between ore-forming fluids and ore deposits 
(Lee and Wiltschko, 2000; Jelsma et al., 2004 and 2009). This is based on the notion that 
hydrothermal fluids find their pathways through these deeply penetrating weak zones such as faults, 
shear zones, lithological contacts and dykes. As a result, these structurally weak zones form focal 
points for hydrothermal fluids-related deposits such as gold and are targeted during exploration (Pour 
et al., 2016; Sheikhrahimi et al., 2019). In remotely sensed images, linear structures are enhanced 
spatially through edge detection techniques such as directional filters (Haralick et al., 1987; 
Aboelsoud, 2014). 

The metal-rich hydrothermal fluids result in alteration of the host rock (Harvey and Vitaliano, 
1964; Ashley, 1974). The application of remote sensing in exploration of hydrothermal deposits 
depends on the capacity and capability of a remote sensor to detect spectral signatures related to 
hydrothermal alteration zones (Gabr et al., 2010; Hosseinjani and Tangestani, 2011; Honarmand et 
al., 2011; Liu et al., 2017; Sheikhrahimi et al., 2019). The alteration zones envelope the orebody and 
the intensity of alteration increases with proximity to the mineralization. These zones are associated 
with alteration minerals such as kaolinite, alunite, chlorite, biotite, pyrophyllite, hematite, muscovite 
and calcite (Harvey and Vitaliano, 1964; Ashley, 1974). Most of these minerals are characterized by 
diagnostic spectral features in the visible-near infrared (VNIR) and short-wave infrared (SWIR) 
spectral regions of the electromagnetic spectrum (Clark et al., 2007; Kokaly et al., 2017). As a result, 
several authors (Rowan and Mars, 2003; Kaliknowski and Oliver, 2004; Gabr et al., 2010; 
Honarmand et al., 2011; Liu et al., 2017; Sheikhrahimi et al., 2019) have used VNIR and SWIR bands 
of different sensors for mapping hydrothermal alteration zones.  

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an advanced 
multispectral remote imaging sensor which was launched on board the Terra satellite in December 
1999. ASTER covers a wide spectral region with 14 bands ranging from the visible to thermal infrared 
region. The spatial resolution varies with spectral region: 15 m in the VNIR, 30 m in the SWIR, and 
90 m in the thermal infrared (TIR). These three spectral regions have three, six, and five bands, 
respectively. Each ASTER scene has a swath width of 60 km2 (Richards and Jia, 2005). The SWIR 
bands of ASTER sensor are more contiguous compared to those of Landsat and yield relatively 
increased accuracy in spectral discrimination of alteration minerals (Crósta and Filho, 2003); which 
makes ASTER relatively superior for mapping hydrothermal alteration minerals.  

Mineral mapping using remote sensing is achieved by comparing the spectral similarities of 
mineral spectra and image pixel spectra using classification algorithms (Hosseinjani and Tangestani, 
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2011; Honarmand et al., 2011; Sheikhrahimi et al., 2019). There are two general types of 
classification algorithms that are used in remote mapping: per-pixel and sub-pixel algorithms 
(Richards and Jia, 2005). Per-pixel algorithms such as Spectral Information Divergence (SID) assign 
a pixel to a single ground cover class (Du et al., 2004); while, sub-pixel algorithms such as Linear 
Spectral Unmixing (LSU) quantify target materials in every pixel of an image by treating a pixel as 
a mixture of materials (Boardman et al., 1995). Often times, a pixel of low spatial resolution, is rarely 
composed of one material and appear to be a mixture of the energy reflected from different materials. 
As a result, a sub-pixel classification has recently attracted increasing interest in alteration mapping 
(Gabr et al., 2010; Hosseinjani and Tangestani, 2011; Honarmand et al., 2011; Tayebi and Tangestani, 
2014).  

To the authors’ knowledge, the GGB has no published previous remote sensing studies concerning 
hydrothermal alteration mapping. This may be due to paucity of lithological outcrops. Consequently, 
the main aim of this study was to examine the ability of per-pixel (SID) and sub-pixel (LSU) 
classification algorithms in the mapping of hydrothermal alteration minerals in the GGB using 
ASTER data. The secondary aims were (1) to implement directional convolution filters to ASTER 
data to map linear structures and (2) to conduct Fry analysis of known gold occurrences to determine 
the major distribution patterns along which gold mineralization have occurred in the GGB.  

 

2. Study area and geological setting 

The GGB is situated in the north eastern edge of the Archean Kaapvaal Craton immediately 
adjacent to the Hout River Shear Zone and proximal South Marginal Zone of Limpopo Mobile Belt 
(Kramers et al., 2014) (Fig. 1). The GGB is approximately 15 km wide and 70 km long. The belt is 
dominated by supra-crustal rocks of the Giyani Group, which is mainly characterized by mafic and 
ultramafic rocks with minor intercalations of metasedimentary rocks and felsic volcanics (Kröner et 
al., 2000). The metasedimentary rocks include quartzite, banded iron formation (BIF) and rare 
dolomite. The Giyani Group is bordered to the west and east by migmatized gneisses and to the south 
by younger granitoids (McCourt and Van Reenen, 1992) (Fig. 1). 
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Figure 1: Simplified geological map of the Giyani Greenstone Belt (after Vorster, 1979). Linear 
structures are fault/shear zones, adopted from McCourt and Van Reenen (1992). Gold occurrences 

were adopted from Carranza et al. (2015). 

Detailed structural studies of McCourt and Van Reenen (1992) and De Wit et al. (1992) revealed 
that the GGB is characterized by ductile shear zones parallel to regional foliation that form the main 
regional structural grain of the GGB. This regional structure is characterized by an upright to steeply 
oblique mineral elongation lineation that plunges northwards. The regional foliation forming the main 
structural grain of the GGB is axial planar to isoclinal and sheath folds, at the regional and local scale, 
oriented NE-SW or ESE-WNW with a moderate to steep northerly dip (McCourt and Van Reenen, 
1992). The younger ductile deformation phase is characterized by discrete NE-SW and ENE-WSW 
trending and subvertical dextral strike-slip shearing. This phase is best developed along the southern 
and northern margins of the belt (McCourt and Van Reenen, 1992). In total, McCourt and Van Reenen 
(1992) described three ductile deformations: the older penetrative (D1), the younger non-penetrative 
(D2) and the latest deformation (D3). The D1 resulted in N-trending regional foliation and was 
responsible for the E-W and ENE-WSW striking shear zones including well-developed mineral 
lineation. The D2 was superimposed on the D1 structures and can be identified by eastward plunging 
folds of the regional foliation or related horizontal crinkle lineation. The D3 is associated with NE-
SW trending discrete strike-slip shear zones in the southern and northern margins of the belt 
postdating the granitoid intrusion. The ultramafic-mafic greenstones were affected by all ductile 
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deformation phases, gneisses by D2 and D3 and granitoid by D3. Gold mineralization is related to 
D1 and D2 shear zones (McCourt and Van Reenen, 1992; Van Reenen et al., 1997). 

 

3. Gold mineralization 

There are more than forty-five known gold occurrences and prospects in the GGB (Carranza et al., 
2015). Six of them are inactive gold mines which include Fumani, Franke, Louis Moore, Klein 
Letaba, Osprey and Birthday. Gold mineralization is hosted along shear zones and close to the 
contacts of lithologies (Pretorius et al., 1988; McCourt and Van Reenen,1992; De Wit et al., 1992). 
Gold mineralization along these linear structures occurs in banded iron formations (BIF), quartz 
veins, quartz-sulphide replacement veins and carbonate veins (Gains et al., 1986). Because wall-rocks 
of deposits are commonly enriched in K2O, CO2 and S, and mineralizing fluids infiltrated wall-rock 
at lower to upper amphibolite facies pressure-temperature conditions, wall-rocks of auriferous veins 
in most deposits typically exhibit pervasive biotite and calcite alteration (Gan and Van Reenen, 1995 
and 1997; Van Reenen et al., 2014).  

The dominant lithologies hosting gold mineralization/auriferous veins are BIF and metasediments 
xenoliths in mafic-ultramafic greenstones, and greenstones themselves (Carranza et al., 2015). In rare 
occasions gold deposits are hosted in granitoid gneissic rocks (Fig. 1). The paucity of detailed studies 
on the genesis of gold mineralization in the GGB impedes proper representation of the source of 
fluids associated with the deposits. Pretorius et al. (1988) reported that the mineralizing solutions 
were possibly derived from greenstones themselves; like gold mineralization in other greenstones 
(Pitcairn et al., 2006). As it can be observed in Figure 1, most gold deposits and prospects are located 
within mafic-ultramafic greenstones which supports the likelihood of greenstones being the source. 

 

4. Materials and methods 

4.1. ASTER data  

The datasets used in this study are ASTER Level 1B cloud-free scenes with Granule IDs of 
AST_L1B_00310042004081157 and AST_L1B_00304092003081333. The two scenes were 
acquired on 04 October 2003 and 09 April 2003, respectively. These ASTER data products were 
retrieved on (https://lpdaac.usgs.gov) maintained by the NASA Land Processes Distributed Active 
Archive Center (LPDAAC) at the USGS/Earth Resources Observation and Science (EROS) Center, 
Sioux Falls, South Dakota. Level 1B products contain radiometrically calibrated and geometrically 
co-registered data for all ASTER channels. Table 1 shows the spectral resolution of the nine ASTER 
bands used in this study. The pre-processing and classification of ASTER images, detailed in the 
following sections, were carried out using Environment for Visualizing Image (ENVI) 5.0 software. 
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Table 1: Wavelengths and spatial resolution of ASTER bands (Richards and Jia, 2005). 
Spectral region Band number Wavelength range (µm) Spatial resolution (m) 
 
VNIR 

1 0.52-0.60  
15  2 0.63-0.69 

3N 0.78-0.86 
3B 0.78-0.86 

 
 
SWIR 

4 1.60-1.70  
 
30  

5 2.145-2.185 
6 2.185-2.225 
7 2.235-2.285 
8 2.295-2.365 
9 2.360-2.430 

 

4.1.1. Image pre-processing  

The VNIR and SWIR bands of individual scenes were stacked together to build two multiband 
images. In the process of band stacking, the SWIR bands were resampled with the VNIR bands to be 
of 15 m spatial resolution using the nearest neighbor resampling technique. In general, during band 
stacking, bands having different spatial resolutions are resampled to be of the same spatial resolution. 
Ideally, bands with low spatial resolution are resampled with bands having high spatial resolution to 
enhance the general spatial resolution which is crucial for subsequent mapping (Research Systems 
Inc, 2008; Muavhi, 2020).  

The two multiband images were mosaicked to form a single multiband image. The resultant 
multiband image was then subset to cover the study area. The log residuals calibration was therefore 
applied to the subset image to convert Top of Atmosphere (TOA) to Bottom of Atmosphere (BOA) 
reflectance (Green and Craig, 1985). Conversion from TOA to BOA reflectance is essential for 
multiband image processing when you want to detect the presence of mineral targets using mineral 
reference spectral library or when you want to compare image extracted endmembers with mineral 
reference spectral library as spectral libraries are nearly always in BOA reflectance (Clark et al., 2007; 
Kokaly et al., 2017). 

 

4.1.2. Endmember extraction 

Following the methodologies of Boardman and Kruse (1994) and Boardman et al. (1995), the 
stepwise procedure for image endmember extraction involved minimum noise fraction (MNF), pixel 
purity index (PPI), n-Dimensional visualizer and spectral analyst. The MNF was implemented to the 
input dataset containing log residuals-calibrated multiband image. The resultant nine MNF 
components had eigenvalues of greater than one, and thus all the bands were retained for subsequent 
data processing. PPI was then applied to the MNF images with 10000 default projection of the scatter 
plot and a default threshold factor of 2.50 (Research Systems Inc, 2008). After calculation of PPI, the 
image derived pure pixels were exported as regions of interest (ROIs) to be used for n-Dimensional 
visualization and endmember extraction. The coordination of the points in n-D space consists of ‘n’ 
values that are simply the spectral reflectance values in each band for a given pixel (Research Systems 
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Inc, 2008). The distributions of these points in n-D space were used to estimate the number of 
endmembers in the image. A total of 13 endmembers extracted from n-D visualizer. To identify the 
extracted endmembers that correspond to the alteration minerals of interest, the ASTER resampled 
mineral reference spectra from USGS spectral library (Clark et al., 2007) were used for comparative 
analysis with the aid of spectral analyst technique. The output of the spectral analyst is a list of the 
reference spectra ranked in order of best-to-worst match with the selected endmember. The score 
ranges from 0 to 1 for each input reference spectrum, with 1 equaling a perfect match with the 
extracted endmember (Research Systems Inc, 2008). From the 13 image extracted endmembers, one 
endmember with diagnostic absorption feature in band 8, attained the highest fitting score with calcite 
(0.889). Another endmember with absorption features in bands 3 and 8 attained the highest fitting 
score with biotite (1.000) (Fig. 2). Calcite and biotite are associated with most gold deposits in the 
GGB (Van Reenen et al., 2014;).  

 
Figure 2: Known mineral spectra vs image extracted endmembers (red). 

 

4.1.3. Spectral Information Divergence 

SID is a per-pixel algorithm that assigns a pixel to a single ground cover class. SID measures 
spectral variability of a single mixed pixel from a probabilistic point of view (Du et al., 2004). This 
algorithm uses a divergence measure to match image pixels to endmember spectra. The smaller the 
divergence measure threshold, the more likely the pixels and endmember match (Du et al., 2004). 
Pixels with a measurement greater than the specified maximum divergence threshold are not 
classified (Research Systems Inc, 2008). SID results in a classified image showing the best fit between 
pixels and endmembers. In addition, rule images are provided showing the divergence measure values 
between each pixel and each endmember. The black pixels in the rule image present smaller 
divergence values, and therefore more similar to the spectra of endmembers (Research Systems Inc, 
2008). The advantage of mapping using rule images is that the user can generate several classification 
images from various divergence measure thresholds, without having to recalculate the entire 
classification, by applying density slice thresholds to the rule images (Research Systems Inc, 2008). 

To date, there is no general agreement as to how to ascertain a definitive threshold value for 
comparing pixel and endmember spectra in SID classification. In general, the selection of threshold 
values is quite subjective and user-defined (Tangestani et al., 2008; Honarmand et al., 2013). In ENVI 
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software, the default maximum divergence threshold of 0.05 (Research Systems Inc, 2008) can be 
considered as the highest acceptable threshold between endmember and pixel spectra in the SID 
classification. In this study, a divergence threshold of 0.015 was selected and used for hydrothermal 
alteration mapping. This value represents a relatively lower threshold value to the default divergence 
threshold (0.05). The smaller the divergence threshold value, the lower the number of classified pixels 
and the more likely the classified pixels represent minerals in question in the ground (Du et al., 2004). 
In this regard, the pixels with divergence values of ≤0.015 are more similar to the alteration mineral 
spectra. Density slice thresholds in the range of 0.000-0.010 and 0.010-0.015 were performed on the 
classified rule images of biotite and calcite for best viewing and interpretation. 

 

4.1.4. Linear Spectral Unmixing 

LSU is a sub-pixel algorithm that quantifies target materials in every pixel of an image by treating 
a pixel as mixture of materials (Boardman et al., 1995). LSU achieves unmixing by assuming that the 
reflectance at each pixel of the image is the linear proportioned-weighted combination of the 
reflectance of each material present within a pixel. In other words, given the input image and the 
endmembers, LSU solves for the abundance values of each endmember for every pixel in the input 
image. The number of endmembers can vary considerably depending on the number of bands and 
spectral complexity of image. However, the number of endmembers cannot exceed the number of 
bands (Research Systems Inc, 2008). 

The LSU results in series of grey-scale images, one for each mapped material depending on the 
selected endmembers, plus a root-mean-square error (RMSE) image. The higher abundances of 
endmembers are represented as brighter pixels. Also, higher errors for RMSE image appear as 
brighter pixels (Research Systems Inc, 2008). When image extracted endmembers exceed the number 
of bands in the input dataset, endmembers can be used interchangeably to conduct LSU classification 
and the resultant RMSE image can be investigated for classification errors for every attempt. The 
combination of endmembers that provides lowest maximum error can therefore be used for final LSU 
classification and subsequent interpretation. In addition, well characterized LSU results have many 
pixels with values ranging from 0.0 to 1.0; where a pixel having 1.0 value for particular endmember 
indicates that the pixel contains 100 % of that particular material (Research Systems Inc, 2008).  

As previously stated, a total of 13 endmembers were extracted from image derived pure pixels. 
Since the number of endmembers (13) exceeded the number of bands (9) in the multiband image, two 
mineral endmember classes (calcite and biotite) were given first priority, while the remaining eleven 
were given second priority. Seven of the eleven endmembers assigned second priority were combined 
interchangeably with calcite and biotite to have nine endmembers (equaling the number of bands in 
the multiband image) for every LSU classification trial. The resultant RMSE image was investigated, 
for every trial, to determine classification error until the lowest maximum error value of 0.01 was 
achieved. 
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4.2. Mapping of linear structures 

4.2.1. Convolution filtering 

In remote sensing, linear structures are enhanced spatially through edge detection techniques such 
as convolution filters (Haralick et al., 1987; Jensen, 2005; Research Systems Inc, 2008; Aboelsoud, 
2014). These filters delineate the edges and make the shapes and details comprising the image more 
noticeable and easier to analyze (Jensen, 2005). The directional nature of geological structures 
emphasizes the need for directional filtering to obtain maximum structural mapping efficiency 
(Tripathi and Gokhale, 2000). Consequently, the directional convolution filtering was used for 
mapping linear structures in the study area.  

Following the methodology of Abdullah et al. (2013), visual inspection of the individual bands in 
the multiband image was carried out, and based on the ability to identify linear features, band 7 was 
selected. The second step of the methodology was to select the kernel matrix type. For this purpose, 
different types of kernel matrices (3 x 3, 5 x 5 and 7 x 7) were tested. Based on visual comparison, 
the 5 x 5 kernel matrix provided better results in terms of edge enhancement and linear emphasis. 
Consequently, four major directional filters: N-S (0°), NE-SW (45°), E-W (90°) and NW-SE (135°) 
with 5 x 5 kernel matrix were applied to band 7 of ASTER. The four major directional filters were 
used because they allow for detection of lineaments in all possible directions (Hermi et al., 2017).  

 

4.2.2. Fry analysis 

Fry analysis is used to assess spatial distribution patterns of mineral occurrences and potential 
controlling structures at regional and local scale (Fry, 1979). The spatial distribution is analyzed, 
maintaining a consistent north, by placing every mineral occurrence at an origin and plotting all other 
occurrences relative to this origin. This method results in an unbiased geometrical examination of the 
distance and direction between each mineralized occurrence, and construction of rose diagram 
showing preferred directions of spatial continuity that may correspond to potential controlling 
structures responsible for mineralization (Vearncombe and Vearncombe, 2002).  

The aims of Fry analysis were to evaluate if the major distribution patterns revealed by this method 
correspond (1) to the trends of mapped linear structures using directional convolution filtering and 
(2) to the mineralization controlling structures reported in previous structural studies (McCourt and 
Van Reenen, 1992; De Wit et al., 1992). The locations of forty-nine gold occurrence sites were 
compiled from the database of the South African Council for Geoscience. These occurrences can be 
classified into gold mines and prospects. Prior to implementation of Fry spatial analysis, the data 
were separated into gold mines (19) and prospects class (30), including composite class comprising 
both mines and prospect (49). The points of each class were horizontally translated following the 
methodology described by Vearncombe and Vearncombe (1999). The resulted translation points of 
the three classes were then used to construct rose diagrams depicting the potential spatial distribution 
patterns of gold mineralization. 
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5. Results and Discussions 

5.1. Alteration mineral mapping 

To map the alteration minerals, SID and LSU classification algorithms were applied on the log 
residuals-calibrated VNIR-SWIR multiband image of ASTER. These classifications were applied 
based on the comparison of image pixel spectrum with the spectra of known endmembers extracted 
from image. The extracted endmembers correspond to the spectral profiles of biotite and calcite. 
These minerals are associated with hydrothermal alteration of gold mineralization in the GGB (Van 
Reenen et al., 2014; Gan and Van Reenen, 1997 and 1995), and therefore can be used for 
hydrothermal alteration mapping. As stated under the methodology, only pixels with divergence 
measure values of ≤0.015 with alteration mineral spectra were classified and discussed hereafter. 

The pixels achieved lowest divergence measure value (DMV) of 0.003 and 0.005 with biotite and 
calcite spectrum respectively, which suggest closer matches between the classified pixels and 
alteration minerals. For biotite, pixels with divergence measure values in the range of 0.003-0.010 
and 0.010-0.015 are in blue and magenta, respectively (Fig. 3a). A distinct broad clustering of biotite 
can be observed in an area situated NE of Birthday Mine corresponding to several gold prospects. 
Also, a few discrete clustering regions exist in the NW of the area (Fig. 3a). However, these regions 
spatially fall within the gneissic rock, a rare host of gold occurrences in the GGB. On the other hand, 
pixels classified as calcite in the DMV range of 0.005-0.010 and 0.010-0.015 are in cyan and magenta, 
respectively (Fig. 3b). Few pixels classified as calcite correspond to areas of gold occurrences. 
However, calcite has no distinct broad regions of clustering and appear as scattered pixels throughout 
the study area. 

The results of LSU classification for each endmember were indicated by the fraction of that 
endmember in each pixel. The gray scale image of biotite (Fig. 3c) revealed that the values of pixels 
were up to 53%. Pixels which contain biotite in the range of 50-53% are shown in red and pixels with 
45-50% in magenta. Pixels showing high abundances of biotite (50-53%) correspond to gold mines 
such as Fumani, Birthday and Osprey, including several gold prospects of previous study (Carranza 
et al., 2015). In addition, the distinct broad biotite clustering situated in the NE of Birthday Mine 
corresponding to several gold prospects in Figure 3a can also be observed in the LSU biotite map 
(Fig. 3c). Generally, the LSU biotite map is almost similar to the SID biotite map. However, the 
distribution of biotite in the LSU map is well confined in the boundary of the greenstones, and do not 
overlap into granitoids and gneissic rocks in the southern margins of the study area. The gray scale 
image of calcite (Fig. 3d) revealed that the values of pixels were up to 48%. Pixels in the range of 44-
48% and 40-44% are in blue and pink, respectively. Like biotite, pixels showing high abundances of 
calcite correspond to gold mines (Fumani, Birthday and Osprey) and prospects in the LSU map (Fig. 
3d). Contrary to the SID map in which calcite is scattered throughout the study area (Fig. 3a), LSU 
map shows distinct clustering regions of calcite. Furthermore, the pixels showing high abundances 
of calcite in the southern parts of the study area are well confined within the greenstones (Fig. 3d). 
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The greenstones have been hypothesized as the source of gold mineralizing solutions in the GGB 
(Pretorius et al., 1988). 

Based on the estimated relative abundances, the alteration minerals appear together in most pixels. 
This spatial distribution relationship of biotite and calcite confirms the pervasive biotite and calcite 
alteration observed in most gold deposits of the GGB (Van Reenen et al., 2014; Gan and Van Reenen, 
1997 and 1995; Pretorius et al., 1988). 

 
Figure 3: Distribution map of alteration minerals derived from SID (a and b) and LSU  (c and d). 
The greenstones (green), BIF (dark umber), metasediments (fire red) and gold occurrences (black 

circles) are superimposed on the map. 

5.2. Linear structure mapping 

The spatial position and orientation of linear structures are considered essential guide predictions 
of hydrothermal fluids-related ore deposits as they represent the connecting channels between ore-
forming fluids and ore deposits (Lee and Wiltschko, 2000). Therefore, mapping lineaments in the 
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GGB can provide essential information for exploration of gold mineralization and identification of 
new prospects. The four major directional filters that were applied on band 7 of ASTER using 5 x 5 
kernel matrix revealed several lineaments in the study area. The most pronounced linear structures in 
images derived from directional filters were extracted and displayed in Figure 4.  

 

Figure 4: Linear structures extracted from study area using directional filters. Major gold mines 
(white circles), minor gold mines (yellow circles) and gold prospects (blue circles) are 

superimposed on the map. 

The dominant trend of linear structures in the area is NE-SW. This orientation is best developed 
in the southern and north western margins of the GGB (Fig. 4). Most of these linear structures in 
these parts of the study area occur in the granitoid and gneissic rocks shown in Figure 1. These rocks 
are rare host of gold mineralization in the GGB (Fig. 1). According to McCourt and Van Reenen 
(1992), the linear structures in the southern and northern margins are related to younger ductile 
deformation phase (D3) which is not related to controlling mineralization lineaments. In addition, the 
directional filters managed to detect and allow the extraction of lineament corresponding to major 
shear zone associated with gold mineralization in the belt (Fig. 4).  

Fry analysis of known gold occurrences in the GGB was conducted to determine the major 
distribution patterns along which gold mineralization have occurred. As stated under the 
methodology, the gold occurrence data were classified into three classes (gold mines, gold prospects 
and composite class). The construction of rose diagrams from translation points of the three classes 
helped to interpret the spatial patterns of gold mineralization (Fig. 5). The results of Fry analysis show 
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that the three classes correspond in terms of the major distribution trends which are oriented N-S 
(0°/7°), NE-SW (35°) and ENE-WSW (65°) (Fig. 5). These distribution patterns are consistent with 
the major lineaments responsible for providing passage for auriferous rich hydrothermal fluids in the 
GGB (McCourt and Van Reenen,1992; De Wit et al., 1992). The NE-SW orientation is also observed 
in the younger linear structures (D3) in the southern edge and northern contact of the study area. Most 
of these linear structures occur in the gneissic rock (Fig. 1) and have no known relationship with gold 
mineralization (McCourt and Van Reenen, 1992). In this regard, linear structures having trends 
revealed as favorable for gold mineralization by the Fry analysis and occurring in or proximal to 
mafic-ultramafic greenstones can be targeted for future exploration work.  

 

Figure 5: Rose diagrams showing major distribution patterns of the three classes. 

 

6. Conclusions 

The aims of this study were to map alteration minerals and linear structures associated with gold 
mineralization in the GGB using ASTER data. Alteration minerals were mapped using per-pixel 
(SID) and sub-pixel (LSU) classification algorithms. Linear structures were extracted from ASTER 
data using directional convolution filters. In addition, Fry analysis of known gold occurrences was 
conducted to determine major distribution patterns along which gold mineralization have occurred in 
the GGB. 

SID and LSU algorithms classified several pixels corresponding to known gold occurrences as 
alteration minerals. SID also show alteration minerals overlapping into the gneissic rock, a rare host 
of gold mineralization in the area. On the other hand, LSU show high abundances of alteration 
minerals generally confined within the mafic-ultramafic greenstone rocks, which have been 
hypothesized as the source of gold-mineralized fluids. In general, LSU show distinct broad regions 
classified as alteration minerals corresponding to known gold occurrences that have been previously 
reported to host calcite and biotite. Although it cannot be conclusively said that one of these two 
algorithms performed better than other, this spatial correspondence may indicate the effectiveness of 
sub-pixel classification in successfully quantifying mineralogical contents of heterogeneous image 
pixel. A pixel of low to medium spatial resolution rarely represents a single mineral but rather a 
mixture of minerals in the ground. 
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Directional convolution filters enabled the extraction of predominately NE-SW oriented linear 
structures. The NE-SW trend is one of the three major distribution patterns (N-S, NE-SW and ENE-
WSW) revealed by Fry analysis as the major orientations along which gold mineralization in the 
GGB occurred. These patterns correspond to major lineaments associated with gold mineralization 
from previous studies. In summary, this study has successfully mapped alteration minerals and linear 
structures in the GGB and show the significance of remote sensing in mapping alteration minerals 
and linear structures. 
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