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Abstract 

Accurate documentation of land-use/land-cover (LULC) change and evaluating its hydrological 
impact are of great interest for catchment hydrological management. Jukskei River catchment has 
undergone a rapid infrastructural and residential development which had an influence on runoff 
depth. The objective of the study is to integrate Geographical Information System (GIS) and remote 
sensing (RS) techniques with Soil and Water Assessment Tool (SWAT) model to quantify the spatial 
and temporal changes in surface runoff depth resulting from LULC change. Landsat images of 1987 
MSS, 2001 TM and 2015 OLI were pre-processed and classified using a supervised classification 
method with maximum likelihood. Results indicated that, there was a significant increase in built-up 
area from 28700.4ha in 1987 LULC to 36313.6ha in 2001 and 42713.1ha in 2015 at the expense of 
bare surface, intact vegetation and sparsed vegetation. However, during hydrological modelling, soil, 
DEM and climatic data were kept constant except LULC images which were interchanged during 
each simulation phase. Calibrated with observed hydrological data at the catchment outlets, SWAT 
model was used to evaluate the effect of LULC change on surface runoff depth. The analysis of SWAT 
model showed increases surface runoff depth from 70.5mm in 1987 LULC to 134.2mm in 2001 and 
199.3mm in 2015 LULC. The SWAT model indicated satisfactorily results based on model calibration 
and validation results. Therefore, this study concluded that, integration of GIS and RS techniques 
with SWAT model can help in formulating policy guidelines for land-use practices thereby reducing 
hydrological impacts associated with LULC changes.  
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1. Introduction 

In flood prediction and rainfall–runoff computation, physically based semi-distributed 
hydrological models have offered a more feasible approach in recent years (Liu and De Smedt, 2004). 
Soil, topography and land use/land cover (LULC) are the most important factors that control rainfall–
runoff processes following single flood events for a river catchment area (Sanyal et al., 2014). As 
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alterations in soil and topography are insignificant in the short term, changes in LULC are considered 
to be the key elements in modifying the rainfall-runoff (Miller, 2002). Change in LULC can lead to 
significant changes in leaf area index, evapotranspiration (Mao and Chekauer, 2009), soil moisture 
content and infiltration capacity (Costa et al., 2003), surface and subsurface flow regimes including 
baseflow contributions to streams and recharge (Tu, 2009), surface roughness and runoff (Feddema 
et al. 2005).    Within the Jukskei River catchment, there has been a significant change in LULC for 
the past decades were aerial coverage of natural land cover surfaces decreased tremendously due to 
increase in residential and infrastructural development which may have a direct impact on the 
catchment hydrological processes.  

According to Shang and Wilson (2009), urban catchments on average lose 90% of storm rainfall 
to runoff, whereas the non-urban catchments retain 25% of the rainfall, thus only losing 75%. 
Therefore, in many urbanised catchments, the storm drainage system is usually not designed for a 
very high surface runoff volume and this results in flash flooding in areas with low elevation. Another 
problem encountered in urbanised catchments are fast surface runoff caused by large areas of 
impermeable surfaces such as roofs, streets, and parking lots (Metsäranta et al, 2005). Therefore, the 
determination of surface runoff volume is necessary for designing of dams, reservoir management 
and prediction of risks and potential losses caused by flooding (Malekani et al., 2014). There is a 
need for the development of models that can be used to show areas that generate high runoff volume 
due to LULC change to assists in predicting areas at risk of being affected by flash floods. 
Additionally, the development of model can also play an important role in adopting the necessary 
preventative measures, especially in designing hydraulic structures and planning of storm water 
drainage systems that can sustain a high volume of runoff for flood management within the 
catchment. 

The Soil and Water Assessment Tool (SWAT), a physically distributed model incorporated with 
Soil Conservation Service (SCS) is being increasingly used to assess the hydrological behaviour of 
large and complex watersheds (Arnold et al., 1998). For example, Anaba et al. (2017) studied the 
application of SWAT on effects of land use change in the Murchison Bay Catchment in Uganda. The 
results of runoff and average upland sediment yield estimated from the catchment indicated that both 
have increased during the study. Gyamfi et al. (2016) applied SWAT model to examine hydrological 
responses to land use or land cover changes in the Olifants Basin, South Africa. The model output 
results indicated the usefulness of SWAT as a decision support tool in evaluating the impacts of land 
use changes on water resources. Can et al. (2015) assessed the impacts of different land use scenarios 
on water budget of Fuhe River, China using SWAT model. The results of hypothetical scenario 
simulations revealed that increasing the forest land, agriculture land and/or grassland areas and 
decreasing paddy field and urban areas, surface runoff declined whereas groundwater recharge and 
evapotranspiration increased. Apart from this method, there are also other models used in different 
studies, such as: Topographically-Based Hydrological Model (TOPMODEL) (Candela et al., 2005), 
Kinematic Runoff and Erosion Model (KINEROS) (Michaud and Sorooshian, 1994), Hydrologic 
Engineering Centre-Hydrologic Modeling System (HEC-HMS) (Halwatura and Najim, 2013), 
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Artificial Neural Network (ANN) (Sajikumar and Thandaveswara, 1999), Long-Term Hydrologic 
Impact Assessment (LTHIA) (Lim et al., 2001) which also use SCS method and offer quantitative 
simulations of the surface runoff depth based on a certain amount of rainfall.  

This study aims to highlight change in the surface runoff depth within Jukskei River catchment 
during 1987, 2001 and 2015 period and to assess the influence of LULC change on surface runoff 
depth.  To achieve this, specific objectives were outlined (a) historical multi-temporal Landsat images 
of 1987 MS, 2001 TM and 2015 OLI were classified and analysed; (b) the SWAT model was 
calibrated and validated, and (c) quantify the spatial and temporal change on the runoff depth due to 
LULC change overtime. As Jukskei River catchment is frequently affected by hydrological 
phenomena such as flash floods, mapping the areas that having experienced an increase in surface 
runoff is very important to better management option for sustainable LULC and water resources 
development in the Jukskei River catchment.  

 

2. Study area 

The Jukskei River catchment is one of the largest catchment areas in Gauteng Province which is 
largely covered by Cities of Tshwane, Ekurhuleni and Johannesburg Metropolitan Municipality. The 
catchment area covers an area of approximately 800km2 with the Jukskei River being the longest 
river among others (Figure 1). The summer season minimum and maximum temperatures range from 
14 °C to 25 °C and during winter and during winter season the minimum temperature hovers just 
below 0 °C with a maximum temperature of 17°C. However, winters months are dry with the annual 
average rainfall of 713mm, mostly concentrated in the summer months (South African Weather 
Service-www.weathersa.co.za). The Jukskei River is the largest river within the catchment area with 
a total length of about 68km and is joined by numerous tributaries 

. 
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Figure1: Location of the study area 

 

3. Materials and methods 

3.1. SWAT Model Data Input  

SWAT is a highly data sensitive semi-distributed model that requires specific information about 
the catchment characteristics such as DEM, LULC, soil data and its properties, climate data and 
discharge data at the catchment gauging station in a SWAT format. The output results of the SWAT 
model depend on the quantity and quality of data used. The required SWAT model datasets including 
LULC, DEM, soil and climate data were integrated and used for model setup (see Table 1). A warm-
up period (i.e. years) and simulation periods (i.e. monthly) prior to running the model were also 
considered. The following sub-sections provide a brief description of the model dataset inputs. 

 

3.1.1. Land Use/Land Cover 

Temporal remote sensing datasets available since 1972, provided opportunities for sustainable 
landscape management (Ramachandra et al., 2014). Landsat images are among the widely used 
satellite RS data and their spectral, spatial and temporal resolution made them useful inputs for 
mapping and planning projects (Sadidy et al., 2009).  For the purpose of this study, multi-temporal 
satellite images of Landsat-5 Multispectral Scanner System (MSS) 1987, Landsat-5 Thematic Mapper 
(TM) 2001 and Landsat-8 Operational Land 
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Table 1: Description and source of the main input data used 

Data type Data description Spatial 
resolution Period of record Primary use Sources 

DEM Digital Elevation Model 20m        Unknown Model input SANSA 

LULC Landsat MSS, TM and OLI 60m and 30m 1987-2015 Model input (https://earthexplorer.usgs.gov) 

Weather 
Rainfall, minimum and maximum 
temperature, solar radiation, wind 
speed, and relative humidity 

Daily 1990-2010 Model input (https://globalweather.tamu.edu) 

Soil Soil properties 1: 5000 000 Unknown Model input (http://www.fao.org/soils-portal) 

Stream flow Daily stream data Daily 1990-2010 Calibration and 
validation DWA 
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Imager (OLI) 2015 were used to detect change in surface runoff depth. These satellite images were 
downloaded from the United State Geological Survey (USGS) Centre for Earth Resources 
Observation and Science (EROS) (https://earthexplorer.usgs.gov/). Semi-Automatic Classification 
plug in Quantum-GIS (QGIS) Version 3.6 was used for image pre-processing of Landsat images by 
applying DOS1 atmospheric correction. A remote sensing software IDRISI Selva Version 17 was 
used for image classification of the satellite images into different LULC classes. A supervised 
maximum likelihood classification technique in IDRISI Selva Version 17 was used to classify LULC 
classes for 1987, 2001 and 2015. In maximum likelihood classification, the normal probability 
distributions for each of the spectral classes are demarcated using a covariance matrix by selecting a 
sufficient number of pixels in each spectral class as training sample for the classification algorithm 
(Richards and Jia, 2006). Four distinguishable LULC classes were identified in this study as follows: 
built-up area, bare surface, intact vegetation and sparse vegetation (see Table 2).  

Table 2: Description of land-use/land-cover classes in the Jukskei River catchment area 
LULC type Description 

1. Built-up Area This category includes areas with high density of urban settlements, residential, 
industrial and commercial, roads/pavement and recreational utilities. 

2. Bare Surface This describes the area left without vegetation cover, lands exposed soil, eroded 
land due to land degradation, and mining areas 

3. Intact Vegetation 
Area covered with dense vegetation, land allocated for crop cultivation, 
agricultural lands and natural landscaping 

4. Sparsed Vegetation Areas with very little vegetation cover, it consists of areas with scattered 
vegetation, areas with a cover of shrubs and short trees mixed with grasses 

 

3.1.2. Digital Elevation Model (DEM) 

One of the dominant inputs of the SWAT model is a Digital Elevation Model (DEM) which 
represents the topography of an area, is recognised as a first-order control on the hydrological 
response of a basin to rainfall and is a major determinant of flood inundation data (Bates and De Roo, 
2000). Gassman et al. (2007) noted that the spatial resolution of DEM is the most critical input 
parameter when developing a SWAT model. For this study, South African Space Agency (SANSA) 
20m DEM for the Jukskei River catchment with a spatial resolution of 20 m × 20 m used (Figure 1). 
This DEM was acquired through ComputaMaps in 2000 and is primarily used as a reference dataset 
for automated image processing chains (orthorectification), hydrological modelling and defining 
topographic variables. It was interpolated from 1:50 000 (20cm) contour vector lines and spot heights 
and patched with a combination of Shuttle Radar Topography Mission (SRTM) 90m (De Lemos, 
2014). 
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3.1.3. Soil Data 

The characteristics of soil data are among the fundamental characteristics of a catchment area and 
they are important input data into hydrological modelling, similarly to DEM and LULC. Unlike 
LULC features which are constantly changing over time, soil characteristics that are formed by long-
term geomorphological processes are relatively stable, and they are not subject to quick variance by 
human activities (Dessalegn et al. 2014). A Digital Global Soil map at a scale of 1:5 000 000 was 
downloaded from the Food and Agriculture Organisation’s (FAO, 2005) website 
(http://www.fao.org/soils-portal/) and used to derive a soil map of the catchment using ArcMap 
version 10.7 mapping software (Figure 3b).  

 

3.1.4. Climate and Weather Data 

The long-term climate input data are required for SWAT simulation, including daily data of 
precipitation, maximum and minimum temperatures, relative humidity, wind speed and solar 
radiation. These parameters were obtained from the National Centres for Environmental Prediction 
(NCEP) Climate Forecast System Reanalysis (CFSR) website (http://globalweather.tamu.edu/). 
When comparing the CFSR dataset to a ground-based climate station, the latter do not always 
adequately represent the weather occurring over a watershed, since they can be far from the watershed 
of interest and can have a missing data series, or recent data are not available (Fuka et al., 2014). The 
CFSR of the NCEP readily provides weather data for any geographic location on earth from 1979 to 
2013; hence, this source was considered for this study. However, one CFSR weather station located 
at 26°04'12.0"S 28°07'48.0"E within the catchment area (see Figure 3c). The climatic data (i.e. 
precipitation, relative humidity, minimum and maximum temperature, solar radiation, dewpoint and 
wind speed) which have been used for this study covers a period of 21 years from 01 January 1990 
to 31 December 2010. 

 

3.2. SWAT Model Setup 

3.2.1. Watershed Delineation 

Watershed delineation was performed via a SANSA 20m DEM using the watershed delineation 
function in ArcSWAT. The initial stage for creating a SWAT model is to set up a SWAT project. The 
watershed was delineated by following the procedure used by Neitsch et al. (2002). A stream gauge 
A2H044 (see Figure 3c) located at the catchment outlet was selected to be the outlet point of the 
catchment. The selection of the gauge station was based on the period of operation (i.e. 1971-07-18 
to date), availability, accuracy, quality and existence of stream-flow data. Using the ArcSWAT 
default threshold value of 37630 for stream drainage area, the Jukskei River catchment was delineated 
into 23 watersheds with the smallest drainage area of 276.6km2 and the largest with an area of 
5840.7km2 (see Figure 3c). The entire catchment area covers an estimated total area of 752.6km2 with 
the Jukskei River covering 68km from upstream to the catchment outlet. 

http://www.fao.org/soils-portal/
http://globalweather.tamu.edu/
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3.2.2. Slope and Hydrological Response Units Definition 

The multiple slopes discretization approach in ArcSWAT model was used to create a slope map 
of the catchment following guidelines by the classification used by Food Agricultural Organisation 
(2003). The catchment was classified into three slope classes in percentages; namely level to gently 
undulating (< 8%); rolling to hilly (8% - 30%) and steeply dissected to mountainous (> 30%). 
Hydrological Response Units (HRUs) are lumped land areas within the watershed that comprise 
homogeneous LULC, soil, slope and management combinations (Neitsch et al., 2011). According to 
Setegn et al. (2009) the HRUs definition with multiple options that account for a 10% LULC, 20% 
soil and 10% slope threshold combination, gives a better estimation of runoff and sediment 
components. HRUs of the catchment were obtained by performing an overlay analysis of LULC, soil 
and slope datasets. Therefore, in this study, the HRU’s definition with multiple HRUs command was 
adopted to create HRUs that account for 10% for LULC, 20% for soil and subsequently 10% for 
slope. Hence, within the Jukskei River catchment area, 275 HRUs have been generated across the 23 
watersheds, and each has unique LULC, soil and slope combinations. 

Figure 3: Catchment characteristics (a) DEM; (b) soil types; (c) weather and gauge stations; (d) 
watersheds 
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3.3. Sensitive Parameter Analysis, Calibration and Validation 

The first step in building any successful and reliable predictive hydrological model is to carry out 
a sensitivity analysis: this can help in identifying and ranking the parameters that have a significant 
impact on specific model outputs of interest (Saltelli et al., 2000). For this study, the sensitivity 
analysis was carried out using SUFI-2 algorithm in the SWAT-CUP to categorise main parameters 
that have a greater effect on streamflow. Twelve parameters were considered for performing a 
sensitivity analysis and the sensitivity parameters based on the p-value and t-test. The t-test gives a 
measure of the sensitivity of a parameter while the p-value gives the significance of the sensitivity of 
that parameter (Gyamfi et al., 2016). Therefore, parameters with high t-test values and low p-values, 
show greater sensitivity on the stream flow (Jha, 2011).  

The calibration and validation were accomplished by using a SWAT-CUP SUFI-2. The SUFI-2 
algorithm which operates based on the Latin Hypercube sampling procedure, was used to calibrate 
and validate the SWAT model output (Neitsch et al., 2002). A split sample procedure using monthly 
streamflow data (i.e. volume in m3/s) from gauge station A2H044 (Figure 3d) and all the climatic 
conditions were therefore satisfied for both calibration and validation. In this study, daily streamflow 
data (i.e. volume m3/s) from 1990-2010 were acquired from the A2H044 gauging station and were 
used to calibrate and validate the SWAT model output. Moreover, for a better parameterisation of the 
SWAT model and to reduce the model output uncertainty, the SWAT model was warmed up for 3 
years (i.e. 1900 to 1992) and a calibration was performed for a period of 10 years (i.e. 1993-2003) 
while the remaining 7 years (2004-2010) were used to validate the model. 

 

3.4. Statistical Evaluation of the Model Performance 

The evaluation of a model’s performance with the observed data is important and a statistical 
evaluation is regarded as the key method in comparing model outputs with the observed data (Yang 
et al., 2000). In this study, the model’s performance during calibration and validation was evaluated 
by using four statistical criteria, which included Root Mean Square Error-observation Standard 
Deviation ratio (RSR) (Fallah-Mehdipour et al., 2013), Coefficient of Determination (R2) (Talei et 
al., 2013), Nash-Sutcliffe efficiency (ENS) (Tiwari and Chatterjee, 2010), Percent Bias (PBIAS) 
(Moriasi et al., 2007). 

𝐸𝐸𝑁𝑁𝑁𝑁 = 1 −  ∑ (Qsim−Q�sim)2n
i=1

∑ (Qobs−  Q����obs)2n
i=1   

                 [1] 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑄𝑄𝑜𝑜𝑠𝑠𝑠𝑠)𝑛𝑛
𝑠𝑠=1 ×100

∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)𝑛𝑛
𝑠𝑠=1

�                       [2] 

𝑅𝑅2 = � ∑ (Qobs−Q�obs)(Qsim−Q�sim)n
i=1

�∑ (Qobs−Q�obs)2(Qsim−Q�sim)2n
i=0

�                         [3] 
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𝑅𝑅𝑃𝑃𝑅𝑅 =  RMSE
STDEVobs

= � ∑ (Qobs−Qsim)2n
i=1

�∑ (Qobs−Q�obs)2n
i=1

�             [4] 

where Qobs is the observed discharge; Qsim is the simulated discharge; 𝑄𝑄� (obs) and, 𝑄𝑄� (sim) 
represent mean of observed and simulated discharge respectively; and n is the total number of rainfall-
runoff events (months and years).   

 

4. Results and discussion 

4.1. Analysis of LULC Change  

The analyses of the classified images of 1987, 2001 and 2015 revealed that there were noticeable 
increases in the built-up area from 28700.4ha (38.1%) in 1987, 36313.6ha (47.8%) in 2001 and 
42713.1ha (56.2%) in 2015 compared to other classes within the Jukskei River catchment area for 
the past 28-year period. A decrease in vegetation cover was also witnessed with the highest being 
sparse vegetation cover, followed by intact vegetation with varying changes on bare surfaces (see 
Table 3 and Figure 2).  The trends shows that, natural land cover has a slightly potential to recover to 
its original state as the study area is characterised of urban areas where infrastructural and residential 
development are increasing at an alarming rates. Additionally, more than half of the total catchment 
area 42713.1ha (57.4%) was covered by impervious surfaces in 2015 compared to 1987 with 38.1% 
and 2001 with 48.6%, which has reduced rainfall infiltration, thereby accelerating surface runoff 
which in turn generates flash flooding. 

Table 3: Land-use/land-cover change statistics for the past 28-years 
  Aerial Coverage (ha) 

1987 2001 2015 
Classified Images SWAT Code ha % ha % ha % 

Built-up Area BARR 28700.4 38.1 36313.6 48.6 42713.1 57.4 

Bare Surface URDM 6550.6 8.2 6225.1 7.9 3482.9 4.4 

Intact Vegetation AGRC 18567.3 24.3 16154.1 21.1 7455 9.18 

Sparsed Vegetation PAST 27715.4 36.4 19659.6 25.5 1462.1 18.9 
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Figure 2: Land use/land cover change maps overtime (a) 1987; (b) 2001; and (c) 2015 
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5.3 Global Sensitivity Analysis Results Using SUFI-2 Algorithm 

Sensitivity analysis was performed using the Soil Water assessment Tool - Sequential 
Uncertainty Fitting version 2 (SWATCUP - SUFI-2). In this study, twelve parameters which 
govern the runoff generation process in the basin were selected and grouped under three 
categories: (1) surface response (2) sub-surface response and (3) basin response (see Table 4). 
From the initial twelve parameters used in the sensitivity analysis, only eight parameters were 
considered to be sensitive to streamflow based on t-statistics and p-value (p < 0.05) and were 
ranked 1 to 8, where 1 indicates the highest and 8 the lowest (CN2, SOL_AWC, SOL_K, and 
ESCO, (2) sub-surface response (GW_REVAP, REVAPMN, GWQMN, ALPHA_BF, 
GW_DELAY, ALPHA_BNK) and (3) basin response (SURLAG, CH_K2) (see Table 5).  It 
was found that the remaining parameters (i.e. GW_REVAP, GW_DELAY, GWQMN, and 
ALPHA_BF) did not have a significant effect on the streamflow simulation in the basin as their 
p-values were greater than 5% (Table 5). However, other studies (Getachew and Melesse, 2012 
and Gyamfi et al., 2016) also found these parameters to be sensitive in their studies. 

Table 4: List of parameters and their calibrated values (Neitsch et al., 2011)  

 

Parameters Definition Range 

CN2.mgt Soil Conservation Service runoff curve number (dimensionless) 35 - 98 

ALPHA_BNK.gw Base-flow alpha factor for bank storage (dimensionless) 0 - 1 

SOL_K.sol Saturated hydraulic conductivity (mm/h) 0 - 2000 

ESCO.hru Soil evaporation compensation factor (dimensionless) 0 - 1 

REVAPMN.gw Threshold depth of water in the shallow aquifer for “revap” to occur 
(mm) 0 - 500 

SOL_AWC.sol Available water capacity of the soil layer (mm H2O/mm soil) 0 - 1 

SURLAG.bsn Surface runoff lag time (days) 0.05 - 24 

CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm/h) 0.05 - 500 

ALPHA_BF.gw Base-flow alpha factor (days) 0 - 1 

GWQMN.gw Threshold depth of water in the shallow aquifer required for return 
flow to occur (mm) 0 - 5000 

GW_DELAY.gw Groundwater delay (days) 0 - 500 
GW_REVAP.gw Groundwater “revap” coefficient (dimensionless) 0.02 - 0.2 
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Table 5: Sensitive ranking of stream flow parameters in the Jukskei River catchment after 
first iteration with 500 simulations. 

Parameter Name t-Statistics p-Value Ranking Fitted Values 

1:V__CN2.mgt -8.91 0.00 1 66.38 

12:V__ALPHA_BNK.rte 7.54 0.00 2 0.76 

4:V__SOL_K (...).sol -3.05 0.00 3 456.26 

7:V__ESCO.hru -1.47 0.14 4 0.05 

6:V__REVAPMN.gw -1.30 0.20 5 86.94 

3:V__SOL_AWC (...).sol 1.19 0.24 6 0.37 

10:V__SURLAG.bsn 1.16 0.25 7 9.25 

5:V__CH_K2.rte -0.68 0.49 8 180.72 

11:V__ALPHA_BF.gw -0.64 0.52 9 0.36 

8:V__GWQMN.gw -0.57 0.57 10 1668.3 

2:V__GW_DELAY.gw -0.45 0.65 11 72.06 

9:V__GW_REVAP.gw 0.23 0.82 12 0.05 

 

5. SWAT model calibration and validation results  

The split sample method was used in this study with both the dry and wet season being 
considered during both calibration and validation periods. Figure 7a and Figure 7b show the 
time series hydrograph of comparison results between observed and simulated runoff for the 
calibration period (1993-2003) and for the validation period (2004-2010) respectively. The 
model output results revealed that, there is a slightly overestimations and underestimations of 
simulated runoff were observed during validation period where the corresponding observed 
runoff did not match well with the simulated runoff. However, Qiu et al. (2012) have suggested 
that underestimation or overestimation of streamflow discharge by the SWAT model is partly 
due to the use of curve number which cannot gives an accurate prediction of runoff for days 
when several storms may occur. 

 

5.1. Model Performance Evaluation Based on Statistical Comparison 

In this study, four statistical methods were used to evaluate model performance (i.e. R², NSE, 
PBIAS, and RSR) by comparing observed direct runoff with SWAT simulated runoff. The 
objective function during calibration was specified as NSE > 0.5 in SUFI-2 and this was 
achieved during model calibration, where NSE was 0.72, while during validation the NSE value 
obtained was 0.68. The overall simulation shows adequate correlation between observe and 
corresponding simulated runoff with R2 value of 0.84 and 0.68 during model calibration
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Figure 7: Monthly observed and simulated hydrographs (a) model calibration (1993-2003) and scatter plot at 95% confidence level (b) model 
validation (2004-2010) and scatter plot at 95% confidence level
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and validation, respectively. According to Moriasi et al. (2007) if the values of NSE and R2 
are above 0.5, this confirms that the model performs very well. Considering the model 
performance statistics based on the criteria set out by Moriasi et al. (2007), the model 
performance was rated “good” and “satisfactory” with RSRs of 0.54 and 0.63 for both 
calibration and validation, respectively. The monthly modelled runoff results showed that the 
model slightly underestimated runoff during the calibration and validation period with a PBIAS 
of 16.5 and 20.4 which indicates both satisfactory and unsatisfactory performance of the model, 
respectively, when based on the criteria set out by Van Liew et al. (2007). Moreover, according 
to Moriasi et al. (2007), a PBIAS greater than zero is an indication that the model 
underestimated runoff flow. Hence, these values indicate that the model had underestimated 
the observed direct runoff during the validation period and with less accurate model simulation 
for the calibration period. 

 

5.2. Effect of LULC change to surface runoff change overtime 

A “fixing-changing method” was applied in this study where LULC maps were 
interchanged, while keeping other inputs (i.e. climate data, soil, and DEM) constant when 
simulating runoff using the SWAT model (Woldesenbet et al., 2017). Figure 8 a-c shows the 
spatial distribution of the modelled monthly runoff depth in millimetres per watershed: this 
gives an indication of the percentage of rainfall that was transformed to runoff for the year 
1987, 2001 and 2015 LULC respectively. As shown in these figures, there is a correlation 
between change in LULC and change in runoff depth over time. In highly built-up areas, runoff 
depth is high compared to areas with bare surfaces, intact vegetation and sparse vegetation. 
However, the model output results revealed that areas that generates high surface runoff 
increased from 70.5mm in 1987 LULC to 134.2mm and 199.4mm during the year 2001 and 
2015 LULCs condition, respectively. Knebl et al. (2005) found that urban areas are prone to 
flooding due to the large proportion of impermeable surface cover, such as concrete that 
increases the total volumes of runoff during peak flows. The upstream watersheds which covers 
areas such as Doornfontein, Bedfordview, Parkview, Edenvale, Greenstone Hill, Alexandra, 
Sandton, Houghton Estate, Emmarentia, Florida, Randburg and Morningside had more built-
up area with less natural land cover areas, whereas areas such as Rietfontein, Laezonia A.H, 
Monaghan Farm and Lnseria which are located at the downstream toward catchment outlet had 
more natural land cover than the built-up area.  

For the last 28-years surface runoff depth at Modderfontein and Long Lake areas has 
remained unchanged because a large part of this area is covered by Par-Run Modderfontein 
Nature Reserve. Additionally, surface runoff depth at the catchment outlet areas such as 
Lanseria, Vlakfontein and Rietfontein remained unchanged for the past 28 years due to 
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agricultural activities in the area around Northern Farm. According to the results, high surface 
runoff depth areas were related to impervious surface (i.e. built-up area) whereas low 

Figure 8: Spatial distribution of the average surface runoff depth over time (a) 1987; (b) 2001 
and (c) 2015 

surface runoff depth were related to pervious surface (i.e. bare surface, intact vegetation, 
sparse vegetation). Additionally, these results do not only indicate the amount of increase in 
surface runoff depth aerial coverage due to LULC change, but also identifies high surface 
runoff production zones within the catchment area. The surface runoff depth results presented 
in Figure 8 were also found to be of utmost importance for catchment management specialists, 
city stormwater managers, property developers or planners, and disaster management 
personnel for decision making regarding catchment hydrological management.  

 

6. Conclusion  

This study adequately demonstrates the usefulness of an integrated RS and GIS techniques 
with hydrological SWAT model to quantify the spatial and temporal changes in surface runoff 
depth resulting from LULC change between 1987, 2001 and 2015 in the Jukskei River 
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catchment. The hydrological parameters that were used to quantify change in surface runoff 
depth includes LULC, soil type, DEM and climatic data. For the last 28-years (i.e. 1987 to 
2015), LULC change showed that built-up area had increased drastically from 28700.4ha 
(38.1%) to 42713.1ha (57.4%) and simultaneously, the natural land cover areas had decreased 
from 52833.6ha (61.9%) to 12400ha (42.6%) with reference to the total catchment area. In 
order to simulate change in surface runoff depth due to LULC change, SWAT model was used 
using LULC scenario of 1987, 2001 and 2015. The correlation between SWAT simulated 
runoff and observed runoff at the catchment outlet were assessed by using SWAT-CUP-SUFI-
2 algorithm to reduce model uncertainty. However, the SWAT model performance with a NSE 
of 0.72 and 0.68; R2 of 0.84 and 0.68; RSR of 0.54 and 0.63; PBIAS of 16.5 and 20.4 for both 
model calibration and validation, respectively represent the acceptable accuracy of the model 
in simulating runoff depth. The analysis of the results revealed that, conversion of natural land 
cover to built-up area had increase surface runoff depth from 70.54mm in 1987 LULC to 
134.22 and 199.37mm in 2001 and 2015 LULC, respectively. Anaba et al. (2017) showed that 
the increase in urbanization might possibly create impervious layers decreasing the infiltration 
and percolation of water to the shallow aquifers that lead to increases in surface runoff. 
Additionally, the integration of GIS and RS techniques with SWAT model were able to 
quantify the spatial and temporal change of surface runoff depth due to change in LULC 
overtime. To predict the expected change in runoff depth, the SWAT model can be used for 
future LULC scenario. Therefore, a better understanding and modelling of areal extent and 
pattern of LULC changes are vital for the formulation of suitable mitigation measures towards 
sustainable management of catchment hydrological processes and will support cities 
administrators in similar projects. 
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