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Abstract 

Accurate and detailed studies in crop mapping are crucial in precision agriculture, yield 
estimations, and crop monitoring. This study focused on exploring the utility of Sentinel-2 data in 
mapping of crop types and testing the two machine learning algorithms which are Random Forest 
and Support Vector Machine performance in classifying crop types in a heterogeneous agriculture 
landscape in Free state province, South Africa. Nine crop types were successfully classified. The 
utility and contribution of different bands for classification were evaluated using RF mean decrease 
GINI for variable importance. Validation of results was done using a confusion matrix which 
produced overall accuracy, errors and prediction measures. The best performance was attained by 
SVM with an overall accuracy of 95% and a kappa value of 94%. RF also performed fairly well with 
85% of overall accuracy and kappa value of 83%. It was concluded that Sentinel-2 data performs 
better using the SVM classifier compared to RF classifier.  

 
Keywords: Sentinel-2 Multispectral Instrument (MSI), (SVM) Support vector machine,  
(RF) Random Forest; machine learning algorithms, Remote sensing, Image processing, 

heterogeneous landscape. 
 

1. Introduction 

Globally food security remains a major challenge especially in the developing countries (Shafiee 
and Cai, 2016). This is a consequence of population expansion as well as the impacts of climate 
change in food production (Altieri and Nicholls, 2017). Although the rest of the world has made 
substantial progress towards alleviating food insecurity, Africa, especially Sub-Saharan Africa 
remains behind (Blein et al., 2013). Agriculture is the backbone of South Africa’s economy and it 
has grown by 22% in the last 5 years contributing 2.2% to the country’s GDP (Boshoff and Fourie, 
2020). In spite of this, the agricultural sector in the country has not been able to meet the demand for 
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the main food items consumed domestically since 2000 (Greyling, 2012; Cai et al., 2017). To meet 
the unending future food demands, there is a need for effective agriculture management and planning 
to understand crop dynamics and distribution. This involves using accurate, reliable and inclusive 
agriculture intelligence technology to better manage the agriculture landscape and map crops (Löw, 
2013).   

Crop type mapping has been traditionally carried out using a field-based survey. However, census 
and the ground-based survey are not feasible in a large scale agriculture landscape as it is laboriously 
expensive and prone to errors and time consuming hence the use of timely, less expensive and faster 
methods of crop mapping has become a necessity (Ouzemou et al., 2018, Defournya, 2019). Remote 
sensing (RS) technology has emerged as an effective and important source of land use information 
allowing enhancing broad-scale agronomic management and within field monitoring such as 
precision agriculture. This technological advancement gives crop information which enables effective 
Spatio-temporal monitoring of crops as well as providing valuable data used to identify crop types 
and their corresponding location, the nutrient status of each crop, expected crop yield and assessment 
of actual crop distribution and extent of damage thus saving time and resources (Asgarian et al., 
2016).  

In South Africa, the use of remote sensing technology in agriculture is particularly challenging as 
most of the communal landscape is characterized by fragmented, small parcel sized fields and 
different crop types within a pixel as well as highly heterogeneous crop cover (Cai et al., 2017). This 
presents a limitation because different crop types have high variability in phenological stages within 
fields such as early sprouting, establishment and maturation which might lead to the same spectral 
signature at some point in their development (Asgarian et al., 2016). In the absence of distinct crop 
border, crop type identification becomes a challenge as there is need to employ expensive high 
spectral resolution to identify features which distinguish one crop from another (Veloso et al., 2017).  

The availability of the satellite-based imaging technology provides multi-spectral data which is 
collected on regular revisiting intervals and free from weather disturbances which have made the 
mapping of crop types possible at all seasons (Li et al., 2014). High spatial resolution sensors such 
as SPOT and ASTER have been used to accurately differentiate between agriculture crops (Conrad 
et al., 2010; Inglada et al., 2015; Gilbertson and Van Niekerk, 2017). However, high-resolution data 
is costly and has low temporal revisits. The introduction of free and easily accessible Sentinel-2 multi-
spectral instrument (MSI) gives new possibilities for classification of crop types. 

The improved characteristics of Sentinel-2 meet the requirements for crop mapping as it has 
shorter revisit periods to cater for the temporal dynamics of crop growth together with medium spatial 
resolution over wide spectral channels enabling the discrimination of acute vegetation spectral 
signatures (Malenovský et al., 2012, Defournya, 2019). Additionally, it possesses high radiometric 
and spectral resolution that allows acute vegetation properties to be identified. MSI data with a 
medium spatial resolution has been previously used for crop mapping (Conrad et al., 2010, Li et al., 
2014, Ouzemou et al., 2018, Defournya,2019).  
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The development of machine learning algorithms offers an interesting prospect to further 
investigate how the classifiers perform in a heterogeneous agriculture landscape. Besides selecting 
the appropriate RS data for the area, the choice of classification method is also equally important for 
a successful crop type mapping (Sothe et al., 2017). The most commonly used machine learning 
algorithms in heterogeneous land cover classification include Decision trees, Artificial Neural 
Network (ANN), Random Forest (RF), and Support Vector Machine (SVM) amongst others. 
Nonparametric classifiers are considered suitable and superior because of their ability to ignore the 
assumption of a normal distribution for the dataset and also statistical parameters are not required 
when separating image classes (Adam et al., 2014; Inglada et al., 2015; Sothe et al., 2017; Ouzemou 
et al., 2018). As such, modern algorithms have been recommended (RF and SVM) as they overcome 
the shortcomings of the traditional algorithms because they can synthesize classification functions 
using either discrete or continuous datasets (Sothe et al., 2017). They are also insensitive to noise 
which makes them not to be constrained by parametric distribution assumptions (Löw et al., 2013). 
Particularly, SVM classifier with the use of Gaussian Kernal density function has emerged superior 
in most studies (Nitze et al., 2012; Inglada et al., 2015, Kumar et al., 2017), although other studies 
report that RF performs marginally better than SVM in heterogeneous landscape classification (Adam 
et al., 2014). However, there is a gap as to which classifier is suitable to distinctively classifying crop 
types in particular. 

This background motivated the present study to investigate the performance of Sentinel-2 MSI 
data as well as evaluating the performance of RF and SVM for mapping crop types in a highly 
heterogeneous agriculture landscape of Free State province in South Africa. The province contributes 
a significant input to the country's food security, hence need to promote and invest in agriculture 
technology. 
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2. Methods and materials 

2.1. Study Area 

 

Figure 1: Location of study area indicated in topaz sand colour in South Africa and within  
Free State province districts. 

The study area is located in the middle to the upper part of Free State, South Africa and forms part 
of the former QwaQwa homeland. Farmers in this area apply the principle of crop rotation and 
irrigation scheme to enhance the agriculture intensity (Butler et al., 1978).  

 

2.2. Data acquisition and pre-processing 

This section presents the methods, procedures and data employed during the study until the 
generation of results. The work was divided into four stages, namely; field data collection, use of spot 
6/7 for visualization with sentinal-2 imagery, pre-processing of imageries and classification of R-
studio using two classifiers, see figure 2. Section 2.2.1 to 2.3.3; explain in details the methodologies 
used in this study. 
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Figure 2: Steps followed from the study design throughout data collection and processing. 

 

2.2.1. Field data collection 

The ground control points were randomly collected through a field survey conducted in February 
2019. A Global Positioning System receiver (GPS) was used to record the longitude and latitude 
coordinates of the different crop types and land use classes in the study area. More ground points 
were manually digitized using visual interpretation of SPOT 6/7 on Google earth and Sentinel-2 MSI 
imagery. The ground control points were split into 70% training and 30% validation for subsequent 
classification. 

 

2.2.2. Satellite data acquisition and pre-processing  

To provide blanket coverage of the study area, nine Sentinel-2 Multi-Spectral sensor imageries 
were acquired for February 2019 with a cloud cover of less than 10%. The images were obtained 
from the USGS’ Earth Explorer portal (https://earthexplorer.ugs.gov/). The acquisition dates 
correspond to the sprouting and or harvesting time of the crops in order to make discrimination 
between the crops easier.  
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2.2.3. Image pre-processing  

The imageries were atmospherically corrected using the Level 2A prototype processor (Sen2Cor) 
which is a plugin in the SNAP software package. The generated output images were resampled and 
generated with an equal spatial resolution (10m) for all bands. The corrected bands were stacked 
chronologically into one image for further analysis. 

All images were individually cleaned to remove speckle and noise using edge trimming, haze 
reduction and cloud masking. To achieve radiometric equivalence for all nine scenes, histogram 
matching was done using the best scene as a reference scene. The procedure was performed band to 
band using a mathematically determined lookup table to convert the histogram of one scene to be like 
the histogram of the reference scene (ERDAS, 1997). Spectral reflectance values of the ground points 
were extracted from the image and used to model the classifiers. 

 

2.3. Image classification 

Support Vector Machine and Random Forest algorithms were used to classify the area. These two 
classifiers were selected due to their high performance in classifying crop types and heterogeneous 
landscapes (Nitze et al., 2012). 

 

2.3.1. Support Vector Machine classification 

Support Vector Machine is a supervised nonparametric technique which is trained to find an 
optimal classification hyperplane by grouping classes based on the statistical learning theory thus 
there is no assumption on the underlying data distribution (Mountrakis et al., 2011). The hyperplane 
in SVM was developed using the training data (70%) and validated using the independent testing data 
set (30%). Radial basis function was selected because of its popularity in remote sensing studies as it 
outperforms the other kernels (Pal and Mather, 2005, Inglada et al., 2015, Kumar et al., 2017). The 
equation for the Radial Basis Function is as follows (Kumar et al., 2017):  

𝐾𝐾: (𝑥𝑥, 𝑥𝑥𝑥𝑥) = (−𝑦𝑦 ∥ (𝑥𝑥𝑥𝑥, 𝑥𝑥𝑦𝑦) ∥ 2),𝑦𝑦 > 0 [1] 

Where y is the gamma which controls the width of the Gaussian kernel function. The accuracy of 
the SVM algorithm is determined by algorithm parameterization which requires the regularization of 
parameter C-cost and definition of the kernel parameter Y- gamma (Oommen et al., 2008). 10-fold 
cross-validation was utilized which overcomes the overfitting problems (Huang et al., 2002). Pairs 
of Y and C were tested hence parameters with the best performance were automatically used for 
training the SVM model. The optimized SVM parameter values were obtained from gamma value 
0.33 and cost value 100 which was then used to classify the images. The SVM model was run in R 
statistical software using caret and e1071 package (Hornik et al., 2006). 
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2.3.2. Random Forest classification 

Random Forests are an ensemble of tree predictors that depend on the value of independent random 
vector sampled for all the trees in the forest (Breiman, 2001). The algorithm is combined with many 
ensemble regression and classification trees to build binary classification trees using several bootstrap 
samples with other trees drawn from the original dataset. It is superior to many tree-based algorithms 
since it is not sensitive to noise, highly accurate, robust to outliers as well as the calculation of 
different internal diagnostic indicators like out of bag (OOB) and variable importance thus not subject 
to over-fitting (Breiman, 2001). RF constructs many decision trees using the training dataset (70%) 
which is a random, bootstrapped subset hence keeping the remaining dataset (30%) for the internal 
error testing (Nitze et al., 2015).  

Two parameters were defined to initiate the algorithm, the number of trees used in the forest (ntree) 
and several random variables used in each tree (mtry) (Breiman, 2001). For improved accuracy, the 
parameters (mtry and ntree) that provide sufficiently low correlation with adequate predictive power 
were optimized using a grid search approach. The optimum results were obtained by setting the 
number of variables (m) equal to the square root of the number of overall variables (M) as suggested 
by Breiman (2002). The algorithm makes use of the Classification and Regression Trees (CART) to 
generate trees (Breiman, 2001), hence the tree node is split according to a criterion. The GINI index 
criterion which measures the impurity of a given element concerning the rest of the classes 
(Rodriguez-Galiano et al., 2012), was used to perform the split. GINI Index can be written as the 
equation below (Ok et al., 2012): 

∑∑𝑗𝑗≠𝑖𝑖 �
f(ci,T)

|T|
� �f(ci,T)

|T|
�  [2]  

Where T is the 70% training set, Ci is the class that a randomly selected pixel belongs to f(Ci, T) 
|T| is the probability that the selected case belongs to class Ci. The relative importance of different 
variables was calculated using the mean decrease during the Out-of-bag (OOB) error calculation.  

 

2.3.3. Accuracy assessment 

The accuracy assessment was done on the classified image in order to evaluate the ability of the 
sensor in discriminating the crop types using the 30% validation data. Confusion matrices were 
constructed to compute the overall accuracy, kappa coefficient, omission error, commission error, 
user accuracy and producer’s accuracy for both classifiers.  

 

3. Results 

3.1. Optimization of the algorithms  

The classification algorithms were optimized to select the best parameters to. SVM used 10-fold 
cross-validation which yielded a gamma (Y) of 1, with the lowest error produced from the 
combination of gamma (γ) value of 0.1 and cost (C) value of 100 (Figure 3 a). The RF input 
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parameters of mtry value of 4 combined with ntree value of 3500 produced the lowest OOB error rate 
of 21.5% and mtry and ntree values of 8 and 4500 respectively produced the highest OOB error rate 
of 25 %.( Figure 3 b). 

 

Figure 3: (A) SVM parameter optimization (B) RF optimization  

 

3.2. Feature importance determined by random forests 

While the primary goal of the RF analysis was to identify feature subsets for classification and to 
compare it with the SVM classification, interesting conclusions can also be drawn from the RF results. 
RF was used to provide a variable importance measurement to indicate every band’s contribution to 
the agriculture landscape mapping. The most important bands were allocated in blue, SWIR1, SWIR2 
and all the vegetation red edge bands. This result is likely due to the dominant crop cover type in the 
region which is maize.  

The two classification methods used in this study generally showed a reasonable accurate visual 
depiction of the heterogeneous agricultural land use. Nine crop types were accurately classified 
(Figure 4). Similar to the study of Myburgh and Van Niekerk (2013), confusion matrix was computed 
for both classifiers to obtain Overall Accuracy (OA), Kappa Coefficient and errors for accuracy 
assessment. RF performance was observed to be low with 85% overall accuracy compared to SVM 
which performed higher with 95% overall accuracy. To complement the accuracy of the two, RF 
produced a kappa of 0.83 while SVM produced a kappa coefficient of 0.94. Both classifiers were 
computed at 95 % confidence intervals.  

A B
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Figure 4: Classification maps showing crop types in Free State upper region- February 2019 using 
(a) SVM algorithm (b) RF algorithm. 

Also, commission error (CE) and omission error (OE) percentages were computed for all classes 
(Figure 5.a-c). The omission error indicates the areas which were misclassified while the commission 
error percentage indicates the misclassification of values which have been predicted in another class 
which they do not belong. The results show that RF has more errors compared to SVM making SVM 
a better classifier with fewer errors. This is evident with bare soil, dry beans, grassland, sorghum and 
vegetables have a high percentage of omission error. The commission errors are high in RF classifier 
compared to SVM. However, both classifiers showed no error in classifying wheat (Table 1 and  
Table 2).  

To further assess the accuracy, analysis based on the user and the predictors were also computed 
(Table 1 and Table 2). The assessment based upon the user’s accuracy (UA) and predictor's accuracy 
(PA) revealed that SVM based on prediction accuracy (PA) outplays the RF classifier except in 
classifying lucerne where it is lower and equal on maize classification, on the other hand, the 
similarities occur also in user accuracy were SVM performs better than RF on average (Table 1 and 
Table 2).  
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Table 1: Random Forest Statistical Results. 

Land Cover Omission 
Errors RF% 

Commission Errors 
RF% 

Prediction Accuracy 
RF 

User Accuracy RF 

Bare soil 22.12 12.04 56.89 87.96 
Dry beans 3.39 23.53 88.64 76.47 
Fodder 31.25 45 23.91 55 
Grassland 12.63 6.67 82.35 93.33 
Groundnuts 2.52 5.30 92.86 94.70 
Lucerne 16.67 2.53 89.53 97.47 
Maize 0 4.42 100 95.58 
Sorghum 2.10 8.20 95.73 91.80 
Sunflower 0 35.53 98.99 64.47 
Vegetables 3.03 28.38 96.47 71.62 
Water 0 0.87 99.13 99.13 
Wheat 0 0 91.89 100 
OA % Kappa 

   

84.57 0.83 
   

 

 
Table 2: Support Vector Machine Statistical Results. 

Land Cover Omission 
Error SVM% 

Commission Errors 
SVM% 

Prediction Accuracy 
SVM 

User Accuracy SVM 

Bare soil 43.11 12.90 77.89 87.10 
Dry beans 11.36 7.57 96.61 92.43 
Fodder 10.87 47.62 68.75 52.38 
Grassland 17.65 2.35 87.37 97.65 
Groundnuts 7.14 1.90 97.48 98.10 
Lucerne 16.28 5.41 83.33 94.59 
Maize 0 2.22 100 97.78 
Sorghum 2.56 4.11 97.90 95.89 
Sunflower 0 1.11 100 98.89 
Vegetables 3.53 5.88 96.97 94.12 
Water 0 0 100 100 
Wheat 0 0 100 100 
OA%  Kappa 

   

94.62 0.94 
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Figure 5. a:  Omission Errors (SVM&RF) 

 
Figure 5. b: Commission Errors 

(SVM&RF) 

 
Figure 5.c: Prediction Accuracy (SVM&RF) 

Table 3: Area classified by SVM and RF 
classifiers based on Sentinel 2 MSI data. 

 

As shown in Table 3, the area was dominated by maize (1670418 ha) in SVM and 259502 ha in 
RF, dry bean classified the lowest by both algorithms, 28201 ha for SVM and 25896 ha for RF. There 
is less area unclassified by the SVM algorithm compared to RF. This is an indication that SVM 
classifier classified best compared to the RF classifier. For this statistical analysis, other classes such 
as water, bare rock, bare soil and other artificial land cover types were removed since the main 
objective of the study is to classify crop types.  

 

4. Discussions  

The present study sought to utilize the recently launched Sentinel-2 missions to evaluate the 
machine learning algorithms RF and SVM performance in discriminating heterogeneous agriculture 
landscape. Past researchers have used this available data and augmented their experiments by using 
vegetation indices and phenological information from long term field survey (Asgarian et al., 2016) 
and with the use of pixel-based classification (Immitzer et al., 2016, Vuolo et al., 2018), and object-
based image analysis (Schultz et al., 2015). This study aimed to demonstrate that crop types can also 
be accurately mapped without using vegetation indices like the NDVI and phenology concept. The 
results of this study show that in places where ground data is unavailable, low spatial resolution 
multispectral data can be used to digitize the location of the crop types. This study has proved that 
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supervised models can be trained to classify heterogeneous areas, which become less costly compared 
to other manual mapping techniques.  

The results generated from the methodology includes digital maps, tables and graphs derived from 
Sentinel-2 MSI imagery classification, where; variable importance and accuracy assessment were 
evaluated to determine the best method and bands to use when classifying crop type in a 
heterogeneous landscape. From the classified maps (Figure 4), it is evident that the area has been 
classified into 12 classes for February 2019 and these classes were detected and distinguished 
accurately. Concerning the multispectral data used for this study, Sentinel-2 MSI obtained 
comparatively high classification accuracies showing the considerable capability of the moderate 
spatial resolution data in accurately identifying and distinguishing the different crop types and land 
use classes with areas in hectares (Table 1 and Table 2).  

The study tested two familiar machine learning, RF and SVM in crop identification. The 
classification results demonstrated that both RF and SVM algorithms are valuable in mapping and 
understanding complex agriculture landscapes as both classifiers produced equally good overall 
accuracies (Table 1 and Table 2) as noted by Nitze et al., 2012; Ouzemou et al., 2018). The 
importance of each of the bands in each sensor on the classification output was successfully 
determined in the study by utilizing RF’s variable importance. Congalton and Green (2008), 
postulates that this is an important contribution for resolving classification errors which are often 
associated with utilizing multi-spectral imagery. The study demonstrated the value of each band in 
enhancing the accuracy of crop type classification classes. It also confirmed the high contribution of 
the red edge and shortwave infrared (SWIR) bands in crop type mapping as postulated by (Immitzer 
et al. 2016) in vegetation and crop mapping.  

Regarding the performance of the classifier, it was observed that SVM produced slightly higher 
classification accuracy than RF when applied to Sentinel-2 data. The present study found that 
nonlinear kernel function is efficient in SVM classification because it can solve inseparability 
problems that may be found in land use classes in a heterogeneous landscape. This result agrees with 
the findings of Löw et al. (2013), who examined the influence of feature space size on SVM and RF 
performance for field-based crop classification using multispectral Rapid Eye data. The study also 
agrees with the work of Gilbertson and Van Niekerk (2017), wherein they studied the value of 
dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning 
and concluded that SVM algorithm can be used to the full set of features generated. 

 

5. Conclusions  

The present study assessed the capability of the relatively recent and free sensors, with advanced 
machine learning classifiers - RF and SVM - to identify and discriminate crop types from the co-
existing land-use types in a highly heterogeneous agriculture environment. The outcome of this 
research provides local confirmation of the performance of Sentinel-2 for classifying crop types for 
a complex regional landscape. Sentinel-2 data achieved superior results showing that the vegetation 



South African Journal of Geomatics, Vol. 9. No. 2, September 2020 

345 

red-edge bands are noteworthy thus agreeing with other researches that also indicated the importance 
of these spectral bands in vegetation classification. SVM proved to be flexible as the same parameters 
were used in all experiments. The utilization of RF algorithm allowed for rigorous evaluation of the 
band importance for classification of crop types and it was easy to manipulate because the optimized 
parameters were minimal. In conclusion, this study showed that the adopted approaches to using 
machine learning algorithms for crop type mapping were promising. The results of this study are 
relevant not only for crop monitoring and planning for food security management but also for 
subsidizing actions for precision agriculture for the communal farmers in South Africa without 
forgetting that the study allows the mapping of small scale farms also to know the farm boundaries 
and their yields allowing the right distribution of inputs to smallholders. 

 

6. Recommendations  

The interpretation of results in this study can only be regarded as preliminary, therefore; further 
research is needed to widen the use of multi-spectral imagery on mapping crop types in a 
heterogeneous landscape. There is a need for further research to develop a technique capable of 
accurately analysing and discriminating the different crop types found in the small agriculture fields 
in the African landscape. Furthermore, the use of high spatial resolutions data results in 
misclassification of the crop types that have the same high spectral characteristics, especially within 
small fields. Therefore, further investigation is needed on the use of medium resolution data by 
employing other classification approaches like object-based classification technique. Additionally, 
the study recommends the use of diffusion data of multispectral data and radar data such as Sentinel-
1 for crop type mapping. 
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