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Abstract 

LiDAR intensity and texture features have reported high accuracies for discriminating forest 
species, particularly with the utility of the random forest (RF) algorithm. To date, limited studies has 
utilized LiDAR-derived forest gap information to assist in forest species discrimination. In this study, 
LiDAR intensity and texture features were extracted from forest canopy gaps to discriminate 
Eucalyptus grandis and Eucalyptus dunnii within a forest plantation. Additionally, LiDAR intensity 
and texture information was extracted for both canopy gaps and forest canopy and utilized for species 
discrimination. Using LiDAR intensity and texture information extracted for both canopy gap and 
forest canopy, resulted in a model accuracy of 94.74% (KHAT = 0.88). Using only canopy gap 
information, the RF model obtained an overall accuracy of 90.91% (KHAT = 0.81). The results 
highlight the potential for using canopy gap information for commercial species discrimination and 
mapping. 

 
1. Introduction and Literature Review 

The importance of forest species discrimination and mapping has been reported by a number of 
studies (see for example Dalponte et al. 2012; Peerbhay et al. 2013; Peerbhay et al. 2014; Waser et 
al. 2015; Qin et al. 2016; Mulyani and Jepson 2017). The ability to discriminate forest species has 
both economic and conservation benefits (Kim et al. 2009; Shang and Chrisholm 2014). 
Economically, forest species information assists in estimating biomass and wood production, and is 
important to develop growth and yield models (Ko et al. 2013). Additionally, species information 
enables estimating timber volume; invaluable for commercial plantations (Dalponte et al. 2008). 

In conservation, forest species mapping is important for the management of forest communities as 
well as promoting effective assessment of species vulnerability to threats such as pests or drought 
(Hill et al. 2010; Shang and Chrisholm 2014; Abdollahnejad et al. 2017). Furthermore, forest species 
mapping enables biodiversity maintenance and stem volume estimation (Barilotti et al. 2009), 
sustainable forest management (Falkowski et al. 2009), forest disturbance detection (Waser et al. 
2015), as well as habitat mapping (Immitzer et al. 2012). 

Traditionally, field surveys were the main approaches to acquiring information about forest species 
(Immitzer et al. 2012). These methods are however costly, labour intensive, and time consuming (Cho 
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et al. 2012; Peerbhay et al. 2013). Remote sensing provides a more cost-effective and less labour-
intensive approach compared with traditional in situ methods (Bradley and Fleishman 2008; Cho et 
al. 2012). Remote sensing is able to map large forested areas at high spatial resolutions (Xie et al. 
2008; Immitzer et al. 2012). Additionally, passive remote sensing imaging sensors, such as satellite 
electro-optical scanners, have a number of spectral bands to assist in more precise tree species 
discrimination (Arenas-Castro et al. 2013). Passive sensors capture information using solar 
illumination or energy emitted from the Earth’s surface (Chuvieco and Huete 2010; Erdle et al. 2011). 

Subsequently, a number of studies have utilized passive imaging sensors to classify forest species. 
For example, Mallinis et al. (2008) used Quickbird imagery to classify dominant forest vegetation in 
North Greece using an object-based approach and three classification methods including nearest 
neighbour, classification trees, and a combination of classification trees and local indicators of spatial 
association (texture features). The best overall accuracy (78.11%) and KHAT statistic (0.75) was 
obtained using classification trees with texture features. More recently, Abdollahnejad et al. (2017) 
used Quickbird imagery to discriminate dominant tree species in Gorgan city, Iran using random 
forest (RF), support vector machines (SVM), and k-nearest neighbour (k-NN). Of the three classifiers, 
RF was the most efficient, yielding an overall accuracy of 63.85%. 

Very high spatial resolution imagery has been widely used to discriminate forest species. However, 
similarity of species’ spectral reflectance is still a limiting factor (Lucas et al. 2008; Hill et al. 2010; 
Korpela et al. 2010). Data from active, non-imaging sensors such as light detection and ranging 
(LiDAR), overcomes this spatial limitation, and are subsequently capable of discriminating forest 
species more efficiently compared with imaging sensors (Ke et al. 2010). The advantage of LiDAR 
is the provision of three dimensional and species-specific structural information (Ke et al. 2010; Kim 
et al. 2011). For example, Kim et al. (2009) classified seven coniferous and eight broadleaved tree 
species using two LiDAR datasets, i.e. one for leaf-on and one for leaf-off conditions. Using intensity 
features and a linear discriminant function, the authors reported accuracies of 83.4% and 73.1% for 
leaf-off and leaf-on datasets, respectively. The authors further tested a combination of both datasets 
and obtained an improved overall classification accuracy of 90.6%. Ørka et al. (2009) classified 
coniferous and deciduous tree species using intensity and structural features (i.e. normalized height 
features, canopy penetration depth, and crown density features) and linear discriminant analysis. 
Classification accuracies ranged from 70%, using intensity features, to 88%, using a combination of 
intensity and structural features. 

Vauhkonen et al. (2009) and Li et al. (2013) tested the utility of texture information for forest 
species discrimination. In addition to texture features, Vauhkonen et al. (2009) derived tree crown 
approximations such as alpha shape, height, and intensity to discriminate between Scandinavian 
commercial species (i.e. pine, spruce, and deciduous species). Using a discriminant analysis classifier 
and a combination of intensity and texture features, the authors obtained an overall classification 
accuracy of 91% and KHAT of 0.84. Li et al. (2013) assessed the utility of texture features and tree 
crown characteristics (three-dimensional texture, relative degree of foliage clustering, relative scale 
of foliage clustering, and gap distribution within tree crowns) to classify four forest species (i.e. sugar 
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maple, trembling aspen, jack pine, and eastern white pine) in Ontario, Canada. Using a linear 
discriminant analysis, the authors reported a classification accuracy of 77.5% and KHAT of 0.7. 

Several studies have successfully used LiDAR derivatives and the RF classifier for forest species 
discrimination. For example, Korpela et al. (2010) used linear discriminant analysis, k-NN, and RF 
with various intensity features to discriminate Scots pine, Norway spruce, and birch. Using a 
combination of two discrete LiDAR datasets, overall classification accuracies ranged from 89.4% to 
90.8%, with RF obtaining an improved overall accuracy of 90.8% and KHAT of 0.84. Similarly, Yu 
et al. (2014) utilized RF to discriminate between Scots pine, Norway spruce and birch. The authors 
assessed the efficiency of using a combination of full-waveform and discrete LiDAR features 
including mean heights, standard deviation of heights, and a mean of full-waveform data interacting 
with a tree. Using a combination of waveform and discrete LiDAR features yielded the highest 
classification accuracy of 73.4%. Cao et al. (2016) utilized RF to discriminate six forest species using 
full-waveform LiDAR. Overall accuracies ranged from 68.6% to 75.8%, with KHAT values ranging 
from 0.62 to 0.68. 

In South Africa, Eucalyptus is an important commercial forest species, with Eucalyptus grandis 
being the dominant commercial hardwood species, accounting for approximately 48% of all total 
hardwood area (DAFF 2012). Discriminating Eucalyptus species effectively using remote sensing 
would, therefore, be beneficial to the commercial forestry industry. To date, no study has investigated 
the utility of canopy gap information for species discrimination, albeit Li et al. (2013), who looked 
at gaps between tree crowns. Consequently, this study investigates the utility of canopy gap LiDAR-
derived intensity and texture features for discriminating Eucalyptus grandis and Eucalyptus dunnii 
using the RF classifier. 

 

2. Materials and Methods 

2.1. Study Area 

The study was undertaken at the Sappi Riverdale plantation; an area of 5 999ha located near 
Richmond in KwaZulu-Natal, South Africa (Figure 1). Eucalyptus comprises three species, namely, 
E. grandis, E. smithii, and E. dunnii, of which only E. grandis (n = 15) and E. dunnii, (n = 10) were 
used in this study (Macfarlane 2006). The species and respective ages for each compartment is shown 
in Table 1. Table 1 also indicates the total number of canopy gaps present per compartment. 
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Table 1. The four Eucalyptus compartments selected for this study. 

Species Compartment Age (years) Tree height (m) Number of gaps 
E. dunnii C19b 2.48 10.08 59 

C8 5.24 15.95 39 
E. grandis F1 4.81 21.92 54 

F3a 4.38 21.05 68 

 

2.2. LiDAR and Field Data 

All LiDAR and field data were supplied by Sappi Forests. LiDAR data were acquired 15 – 22 
March 2014 using a Leica ALS50-2 scanner (Table 2). Field data was supplied in the form of 
enumerated plot data for each compartment. For each compartment, LiDAR metrics were derived for 
both forest canopy and canopy gaps. To ensure a balanced sample size for RF analysis, 30 canopy 
gaps were randomly selected for each compartment. Additionally, 30 forest canopy samples were 
randomly selected. A total of 60 samples were subsequently used for the analysis. 

 
Table 2: LiDAR data capture information. 

Number of returns 4 
Pulse rate (Hz) 1260 000 
Scan rate (Hz) 53 
Average flying height (m) 820  
Survey period 15 to 22 March 2014 

Figure 1. The Sappi Riverdale plantation is (a) located in KwaZulu-Natal (b), South 
Africa (c). Background image is ESRI ArcGIS online’s 50cm colour imagery 

for South Africa. 



South African Journal of Geomatics, Vol. 9. No. 1, February 2020 

35 

2.3. Deriving LiDAR Metrics 

2.3.1. Intensity Features 

To discriminate E. grandis and E. dunnii, various intensity features (n = 34) were calculated using 
the GridMetrics tool available in FUSION/LDV v3.60 (Yunfei et al. 2008; Maltamo et al. 2014; 
FUSION 2016). FUSION/LDV is a software package developed to view, analyse, and extract LiDAR 
returns and descriptive statistics (features) thereof. The intensity features included; Total return count 
above minimum height, Minimum, Maximum, Mean, Mode, Standard deviation, Variance, 
Coefficient of variance, Interquartile distance, Skewness, Kurtosis, Average absolute deviation, L-
moments (L1 – L4), L-moment coefficient of variance, L-moment skewness, L-moment kurtosis, and 
P01 – P99. FUSION/LDV has previously been used in an array of forest applications including tree 
species differentiation using LiDAR intensity data (Kim et al. 2009), individual tree genera 
classification (Kim et al. 2011), deriving a variety of LiDAR elevation metrics for estimating forest 
biomass and identifying low-intensity logging areas (d’Oliveira et al. 2012), and deriving various 
LiDAR metrics to assist in predicting live and dead tree basal areas (Bright et al. 2013). 

The GridMetrics tool uses command line programs to extract specific LiDAR return information. 
The tool outputs a csv (comma delimited) file containing intensity features (n = 34) for each LiDAR 
input cell. Each intensity feature in csv format was subsequently converted to ASCII grid format with 
a cell size of 1m using the CSV2Grid tool. This was achieved by specifying the column heading using 
the command line prompt corresponding to a specific intensity feature. Subsequently, the intensity 
features in ASCII grid format was used in ArcMap v10.3.1 to extract the intensity information for 
forest canopy (n = 30) and canopy gap (n = 30), for each of the four compartments (ESRI 2015; 
FUSION 2016). 

 

2.3.2. Texture Features 

In addition to intensity features, texture features (n = 12) were calculated for all four compartments 
using eCognition developer 9 (Trimble 2016). Prior to extracting texture features, a multiresolution 
segmentation (MRS) was undertaken to derive object features using the combined LiDAR canopy 
height model (CHM) and intensity raster. MRS is a region merging algorithm that derives image 
objects from pixels (Belgiu and Drăguţ 2014). Image objects are iteratively merged and determined 
by some homogeneity criteria (Rahman and Saha 2008). The homogeneity criteria comprise scale, 
compactness, and a shape parameter (Drăguţ et al. 2010). Scale determines the size of resulting 
objects, whereas shape and compactness determine the overall shape and compactness of resulting 
objects (Definiens 2007; Rahman and Saha 2008). We applied a scale factor of 5, and shape and 
compactness values of 0.1 and 0.5 respectively (Lombard et al. 2017). 

Eight grey-level co-occurrence matrices (GLCM) including Angular 2nd moment, Contrast, 
Correlation, Dissimilarity, Entropy, Homogeneity, Mean, and Standard deviation, and four grey-level 
difference vector (GLDV) texture features including Angular 2nd moment, Contrast, Entropy, and 
Mean were calculated on the resulting image objects. Texture measures the differences in levels or 
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grey tone of objects (Haralick et al. 1973). GLCM measures the spatial relationships of co-occurrence 
grey levels at specific distances and directions, whereas GLDV measures GLCM diagonals 
(Mhangara and Odindi 2013; Dian et al. 2015). Similar to intensity feature extraction, texture features 
were extracted for forest canopy (n = 30) and canopy gap (n = 30) for all the four compartments using 
ArcMap v10.3.1 (ESRI 2015). 

 

2.4. Species Classification Using Random Forest 

Using the extracted intensity (n = 34) and texture (n = 12) features, a random forest (RF) 
classification was employed to discriminate E. grandis and E. dunnii. RF is an ensemble classifier 
that builds a large number of decision trees (ntree) (Breiman 2001). At each node split, a bootstrap 
sample (mtry) of the original data is selected, and used to grow (ntree) classification trees (Breiman 
2001). The final prediction is based on a majority vote of ntree predictions (Liaw and Wiener 2002). 
In this study, ntree = 500 and mtry = square root of the number of features used for node splitting 
within each tree was used (Belgiu and Drăguţ 2016). Additionally, the input dataset was split, with 
70% of the data used for training, and the remaining 30% used as an independent test set. To evaluate 
the influence of tree age on classification accuracy, we modelled combinations of compartments as 
follows: compartment C19b compared with compartment F3a, compartment C8 with compartment 
F1, compartment C19b with compartment F1, and compartment C8 with compartment F3a. The RF 
ensemble was implemented using the randomForest package in R version 3.4.1 (Liaw and Wiener 
2002; R Development Core Team 2017). 

 

2.5. Accuracy Assessment 

RF model accuracy was assessed using a confusion matrix. The out of bag (OOB) error estimate, 
based on the 30% sample, was utilized to estimate training model accuracy whereas the test accuracy 
was assessed using overall accuracy (OA), based on the 70% sample (Cao et al. 2016). Additionally, 
the KHAT statistic was used as an independent measure of model performance. KHAT (Equation 1) 
assesses chance agreement against actual classification agreement and is defined according to the 
following formula (Congalton and Green 2009): 

 

𝐾𝐾� = 𝑃𝑃𝑜𝑜−𝑃𝑃𝐶𝐶
1−𝑃𝑃𝐶𝐶

          [1] 

 

Where: 𝑃𝑃𝑜𝑜 = ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1  is the actual agreement and 𝑃𝑃𝑐𝑐 = ∑ 𝑃𝑃𝑖𝑖+𝑘𝑘

𝑖𝑖=1 𝑃𝑃+𝑗𝑗 is the chance agreement. 

 



South African Journal of Geomatics, Vol. 9. No. 1, February 2020 

37 

3. Results 

In this study, the RF classifier was used to discriminate E. grandis and E. dunnii using LiDAR-
derived intensity and texture features. Classification was undertaken using texture features, intensity 
features, and a combination of texture and intensity features. The respective feature sets were 
evaluated for canopy gaps and a combination of forest canopy and canopy gaps. We further examined 
the effect of age on the ability to discriminate E. grandis and E. dunnii by using both similar aged 
and differing aged compartments. 

Table 3 shows the results for discriminating E. grandis and E. dunnii using LiDAR derived 
intensity and texture features. Overall classification accuracies ranged from 59.09% (KHAT = 0.14) 
to 94.74% (KHAT = 0.88). Classification using canopy gap intensity and texture features yielded 
accuracies ranging from 59.09% (KHAT = 0.14) to 90.91% (KHAT = 0.81). The highest 
classification accuracy was obtained using a combination of intensity and texture features (n = 46), 
whereas the lowest accuracy was obtained using texture features (n = 12). 

Using a combination of canopy gap and forest canopy intensity and texture features resulted in 
improved classification accuracies. However, similar to the results obtained using canopy gap 
intensity and texture features, using texture features (n = 12) yielded the lowest accuracy (65.62%; 
KHAT = 0.31) whereas using a combination of texture and intensity features yielded the highest 
accuracy (94.74%; KHAT = 0.88). 

A closer evaluation of the results revealed differences in classification accuracy when 
discriminating the relative age between tree species. For example, the best classification accuracy 
(94.74%; KHAT = 0.88) was obtained for the discrimination of compartments C19b (E. dunnii) and 
F3a (E. grandis) that had an age difference of 1.9 years. Conversely, a significantly lower 
classification accuracy (72.22%; KHAT = 0.45) was obtained for the discrimination of compartments 
C8 (E. dunnii) and F1 (E. grandis) that had an age difference of just 0.43 years. Additional evidence 
of this finding can be seen when comparing the classification accuracy of compartments C19b and 
F3a (94.74%; KHAT = 0.88) with compartments C8 and F3a (77.78%; KHAT = 0.56). The age 
difference between compartments C8 and F3a is 0.86 years. These results suggest that tree age 
influences the ability to discriminate E. grandis and E. dunnii. Additionally, tree age is related to tree 
height, which results in variable texture (Kayitakire et al. 2006). 
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Table 3. Classification of E. grandis and E. dunnii using LiDAR derived intensity and texture features. 

 C19b and F3a C8 and F1 C19b and F1 C8 and F3a 
Train Test Train Test Train Test Train Test 

Extracted 
from Feature set OOB 

error KHAT OA KHAT OOB 
error KHAT OA KHAT OOB 

error KHAT OA KHAT OOB 
error KHAT OA KHAT 

Canopy gap 

Intensity & 
Texture 
(n = 46) 

7.89 0.84 90.91 0.81 30.23 0.39 64.71 0.29 8.89 0.82 86.67 0.73 19.05 0.61 77.78 0.5 

Intensity 
(n = 34) 21.43 0.57 77.78 0.54 28.57 0.43 66.67 0.33 29.17 0.42 66.67 0.25 17.95 0.64 80.95 0.61 

Texture 
(n = 12) 13.04 0.74 85.71 0.71 38.1 0.24 61.11 0.22 12.5 0.75 85 0.7 34.21 0.28 59.09 0.14 

Combination 
of forest 

canopy and 
canopy gap 

Intensity & 
Texture 
(n = 46) 

3.66 0.92 94.74 0.88 28.4 0.43 71.79 0.43 8.14 0.84 91.18 0.82 16 0.68 77.78 0.56 

Intensity 
(n = 34) 19.1 0.62 80.65 0.61 26.19 0.48 72.22 0.45 29.11 0.42 68.29 0.36 13.64 0.73 84.38 0.69 

Texture 
(n = 12) 15.48 0.69 83.33 0.67 30.68 0.39 65.62 0.31 8.7 0.83 85.71 0.71 27.27 0.46 68.75 0.37 
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4. Discussion 

This study evaluated the potential to discriminate two Eucalyptus species, i.e. E. grandis and 
E. dunnii within a commercial plantation using LiDAR derived intensity and texture features and 
the RF classifier. Specifically, we evaluated the utility of canopy gaps to classify E. grandis and 
E. dunnii and further examined the influence of tree age on model performance. 

Forest species classification has traditionally been undertaken using ground-based methods and 
aerial imagery captured using passive imaging sensors (Donoghue et al. 2007; Dalponte et al. 
2008; Puttonen et al. 2010). However, more accurate forest species information is invaluable for 
commercial forestry as well as conservation sectors (Moffiet et al. 2005; Puttonen et al. 2010). 
Recent studies (see for example Vaughn et al. 2012; Yu et al. 2014; Cao et al. 2016) have reported 
improved accuracies for forest species discrimination using LiDAR data; specifically using forest 
canopy information. However, in this study, LiDAR derived intensity and texture features yielded 
comparable accuracies using forest canopy gaps information; highest accuracy of 90.91% (KHAT 
= 0.81), and improved accuracies when using forest canopy gap and forest canopy information; 
highest accuracy of 94.74 (KHAT = 0.88).  

The RF classifier has been documented to yield accurate forest species discrimination results 
and often outperform other ensemble learners. LiDAR, in combination with RF, is particularly 
useful for forest species classification as shown in literature (Korpela et al. 2010; Yu et al. 2014; 
Adelabu and Dube 2015; Cao et al. 2016). This study has demonstrated that using the RF classifier 
and LiDAR intensity and texture information contained within forest canopy and canopy gaps can 
accurately discriminate forest species. 

Forest species discrimination using RF and a combination of LiDAR intensity, texture features 
and canopy gaps yielded an overall accuracy of 90.91% (KHAT = 0.81). The results of this study 
compare favourably with Korpela et al. (2010), who used various intensity features and obtained 
an overall accuracy of 90.8% (KHAT = 0.84). Using a combination of intensity and texture 
features yielded higher accuracies than Yu et al. (2014), who obtained an overall accuracy of 
73.4% using a combination of full-waveform and discrete LiDAR features. Our results are also 
higher than Cao et al. (2016), with an overall accuracy of 75.8% and KHAT = 0.68 for 
discriminating Masson pine, Chinese fir, Slash pines, Sawtooth oak, Sweet gum, and Chinese holly 
using full-waveform LiDAR features. The findings of this study suggest that using both intensity 
and texture features derived from discrete LiDAR can readily be used for accurate species 
classification. 

 

5. Conclusion  

The overarching aim of this study was to evaluate the potential of using canopy gap information 
in aiding forest species mapping. To this end, LiDAR intensity and texture features extracted from 
canopy gaps was successfully employed to model E. grandis and E. dunnii within a commercial 
plantation. The majority of literature utilized forest canopy information for species classification. 
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Therefore, this work presents novelty, particularly within South Africa. Additionally, the 
developed framework displayed robustness within a forestry plantation and the efficiency of the 
results may be of interest to forest managers and fellow researchers. 
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