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Abstract 

Data interpolation – construction of new data points within range of a discrete set of known data 
point – is an important modeling activity in geographical studies.  In this study, three commonly applied 
interpolation methods (nearest point, kriging and moving average) were examined in an assessment of 
the varying dispersion of selected physical and chemical parameters of stream-borne effluents from palm 
oil processing area in a growing commercial centre in Ife South local government area in Nigeria. 
Specific objectives were to examine selected physiochemical properties of a stream that receives palm 
oil effluent, and compare results of a kriging interpolation using derived variogram values with that 
which was based on the accepted parametric default in a popular geographical information system. The 
study also presents visualised results of interpolation of selected parameters based on ordinary kriging, 
moving average and nearest point interpolation. Analysis were achieved using PAST 3 and ILWIS GIS 
software. Result showed that although the stream is vulnerable to contamination by the palm oil 
processing activities around the area, it also receives contaminants from other non-source points that 
were not investigated in this study. It also indicated that the different point interpolation methods did not 
produce similar results. Whereas the values of conductivity were interpolated to vary as 120.1 – 219.5 
µScm-1 with kriging interpolation, it varied as 105.6 – 220.0 µScm-1 and 135.0 – 173.9 µScm-1, with 
nearest point and moving average interpolations, respectively. Also, whereas the computed variogram 
model produced the best fit lines with Gaussian model, the Spherical model was assumed default for all 
the distributions in selected GIS software, such that the value of Nugget was assumed as 0.00, when it 
actually varies with data locations distribution. Conclusively, procedure of estimating spatial variation 
always produce results that are influenced by data distribution and model assumptions, and as such the 
data characteristics rather than GIS software’s defaults are appropriate for consideration in geospatial 
evaluation.   

 
Keywords: Palm oil mill effluent; Point-interpolation analysis; Geographical information system; 

Interpolation 
 

http://dx.doi.org/10.4314/sajg.v9i1.4


South African Journal of Geomatics, Vol. 9. No. 1, February 2020 

45 

1. Introduction 

Studies have revealed that water bodies are increasingly becoming threatened by urbanization, 
commercialization and industrialization [1 - 3]. A stream channel is typically subdivided into the up-, 
mid- and down-stream, such that the impact of landuse activities in the upstream and mid-stream are 
usually felt at the downstream, where deposition (rather than erosion) dominates. In geographical 
information systems, information is regarded as point based when it is characterised by 1-D values of 
northings, eastings and selected descriptive attributes [4, 5], and such that information at representative 
point-based locations can be generalized [5]. Point interpolation achieves estimation of defined surfaces 
from data collected at sample points [6]. The procedure is typically required because many scientific 
investigations are based on representative samples rather than the entire population [7-9]. The role of 
geographical information system is to provide decision support system, but it is not clear if the various 
methods of point interpolation available produce similar conclusion for policy making, especially when 
study such as Xie et al. [10] have reported that the effects of the choice of interpolation procedures can 
be profound in the visualisation and interpretation of the dispersion of chemical ions at the farm scale.  

A number of point interpolation methods exist, and popular ones are kriging, moving averages and 
nearest point. Kriging, and its variants; ordinary, co-kriging disjunctive anisotropic and universal kriging, 
are known to interpolate and estimate errors of interpolated values over the area of interest, based on a 
concept of random functions, such that the surface or volume is assumed to be one realisation of a random 
function with a certain spatial covariance [11 - 13]. Kriging is a statistical method that is based on the 
theory of regionalized variables, capable of predicting in different dimensional space that enables 
incorporation of anisotropy (a random process which shows different degrees of autocorrelation in 
different directions) [11, 13, 14]. Moving average method performs a weighted averaging on point values 
of a point, such that the output value for a pixel is calculated as the sum of the products of weights and 
point values, divided by the sum of weights. Weight values are calculated in such a way that point close 
to an output pixel obtain large weights and points further away obtain small weights. Thus, the values of 
points close to an output pixel are of greater importance to the output pixel value, than the values of 
points that are further away. In moving average, a limiting distance must be specified, and points that are 
further away from an output pixel than the limiting distance, obtain weight zero and thus have no 
influence on the output value for that pixel. It also assumes a constant mean, seasonality and time 
variance [14, 15]. In addition, the nearest point interpolation technique is a deterministic method of 
interpolation where the value, identifier, or class name of the nearest point is assigned to the pixels 
according to the Euclidean distance. It is also known as Nearest Neighbour or Thiessen Polygons [13, 
16], and it assumes that constant mean, considers values of nearest point (pixel) rather than neighboring 
point values, and appreciates evenly spaced data.  

Furthermore, it is known that studies from developing countries, especially where the understanding 
of geographical information system is still budding, that uncertainties of software are rarely reported, 
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probably because only the cheaply provided ones are used or for the fact that many users of the software 
often accept their default parametric values. Subsequently, it is rather scarce to find studies where default 
parametric values of software are compared with the ground-truthed values. Whereas Beven [17], among 
others advocated that models be tested for uncertainties for improved understanding of their applications, 
geographical information system (GIS) software have been applied using default parametric values. Also, 
data have been interpolated using approaches that do not conform to data distribution pattern. Many 
studies involving kriging interpolation of results have been performed with no concern for the semi-
variogram parameters, that is; nugget, range and sill [18]. Nugget describes micro-scale variation while 
sill describes the variance of the random effect; range refers to the distance at which data are no longer 
auto-correlated [13, 19]. Gotway et al. [14] argued that the parameters (nugget, sill and range) are 
required to be fitted into procedures, including spherical, exponential and Gaussian models for 
assessment of data quality. Webster [20] noted that quality assured interpolation procedure requires that 
data be first examined with different semi-variogram models, and that the model which accounted for 
the highest percentage of variance in the distribution of data along with the positions (x, y) be selected 
for the spatial analysis of each variable.  
 
2. Statement of Research Problem and Study Objectives 

Spatial and temporal analysis of stream chemistry are case-specific, and waters from different sources 
have their respective distinct chemistry which is imbued upon them by the environment of the source. 
As water flows from one source area to another through various pathways, its chemistry may change; 
hence the need for better understanding of ways of modeling and predicting water pollution [21 - 23]. 
Application of geographical information techniques is relatively recent in many developing countries, 
including Nigeria, and typical practice often involves accepting software defaults, and with little or no 
consideration for sample distribution - which may be different from the one for which the default was 
representative. Spatial dependence (variogram) variables, such as nugget, sill and lag are assumed, and 
users accepting defaults may not report realistic results.  

Examining changes in concentrations of solute loads in a catchment often requires interpolation of 
point-based values of concentration of selected organic parameters, and interpolating the point values for 
interpretation and decision may depend on the methods of interpolation used because of the different 
algorithms and purpose for which the methods have been created. The present study is in three 
perspectives; (a) to examine selected physicochemical properties of a stream that receives palm oil 
effluent; (b) to compare results of a kriging interpolation with derived (computed) nugget, sill and range 
values with that which was based on the accepted parametric default in the Integrated Land and Water 
Information System (ILWIS, 3.3 version); and (c) to visualise results of interpolation based on ordinary 
kriging, moving average and nearest point interpolation 
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3. Methods and Materials 

3.1. Study area 

‘Ere’ or ‘Lucky’ stream, as the headwater stream is known, is situated in Ayepe-Olode, a market town 
in Ife south local government area on latitude 4o 15’N - 4o20’N and longitude 7o35’E - 7o40’E, 
southwestern Nigeria (Figure 1). Ayepe-Olode is largely underlain by the migmatite-gneiss-quartzite 
complex of the metamorphic rocks of granite gneiss, quartzite and banded gneisses. Its population, with 
about 4.5% annual growth was 303,180 in 2015 and will be about 500,000 by 2022. The town provides 
a link to many other villages and as such, many of the residents are traders and farmers who cultivate 
perennial farm products such as cocoa, kola and palm produce. Farmers in the study area also engage in 
oil palm processing; an activity that often require a space with adequate water supply, and thereby often 
make encourage farmers to site the processing mills close to riverbanks [24 -25]. The stream, until recent 
time was a perennial stream; it has become seasonal because of blockage of its channel by waste from 
the palm processing activities. The oil processing activities within the catchment are characterized by 
storage of bunches of palm fruits, grinding and cooking of fresh palm fruits.  

 

3.2. Data collection 

Ere headwater segment was sectionalized into the upstream and downstream regions, with respect to 
location of the discharge of wastewaters from the palm oil processing unit; the points of discharge of the 
wastewaters are referred to as the effluent point (see Figure 1). Different points were identified to provide 
information about chemical gradation with a distance of approximately 4 m interval. In all, a total of 48 
water samples (twice at a point in dry and wet) were sampled at 24 points, in a regular interval. Water 
samples were obtained using a 2-litre polyethylene plastic bottles at four stations, each at the upstream, 
effluent zone point (of the palm oil processing along the stream channel) and downstream in the study 
area. The water samples were obtained in the dry and wet seasons.  

The wet season samples were taken during the peak of the rainy season (July-September) and the dry 
season water samples were collected at the mid-dry season (December, 2015-February, 2016). Water 
sampling was done using depth-integrated method for representativeness, such that the different stream 
depths were sampled in a composite mix. The bottles were rinsed before use and were filled to the brim 
to reduce oxygen reaction during transport of samples from site to the laboratory. 
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Figure 1. The study area, Ere stream catchment in (b) Ayepe-Olode, Southwest Nigeria (a) 
 

Water temperature, pH, dissolved oxygen (DO) and electrical conductivity were determined on the 
field. Sample pH and electrical conductivity were measured in situ using the PCE-PHD 1pH meter. The 
pH probe was standardized from time to time using appropriate buffer solutions and the conductivity 
probe standardized using a set of potassium chloride (KCl) standard solutions. For DO and 5-day 
biochemical oxygen demand (BOD5), glass reagent bottles and dark bottles were used, respectively, to 
collect water samples on the field. Dissolved oxygen was fixed on the field, immediately after collection 
with Winkler’s reagent (manganous sulphate and alkaline iodide), and oxygen content later determined 
by iodiometric titration [26 - 27]. All the water samples were then taken to the Zoology laboratory, 
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Obafemi Awolowo University, Ile-Ife, Nigeria for analysis of total solids (TS), nitrate (NO3), sulphate 
(SO4,), BOD5 and chemical oxygen demand (COD) based on information from previous studies [24 - 
25].   

 

3.3. Laboratory analysis 

Water samples were kept in the refrigerator in the laboratory when not analyzed immediately, to 
reduce bacterial activity that may significantly alter the water chemistry. Water samples were analyzed 
for solid contents (total solids, total dissolved solids; i.e. TS and TDS) and pollution-related chemical 
properties that have been indicated in studies to be relevant to effluent from palm oil processing activities 
(NO3

-, SO4
2-, biochemical oxygen demand-BOD5 and Chemical Oxygen Demand-COD) [24, 26]. The 

analytical determinations of the physico-chemical parameters of water quality analyzed were carried out 
within the holding time of each parameter, following applicable standard methods [26 -28]. The TS and 
TDS in the samples were determined gravimetrically after the samples were oven dried to constant weight 
at 105±2oC. TSS was calculated as the difference between TS and TDS [27].  

The dark reagent bottles used for BOD5 determination were then kept in a dark cupboard for five days, 
for subsequent analysis. SO4

2- and NO3
- were determined by spectrophotometric methods [33]; COD was 

determined by wet oxidation (Chromic-acid digestion) of 100 ml of samples with potassium dichromate, 
acidified with concentrated sulphuric acid (H2SO4) and then titrated with 0.1 N [(NH4)2Fe (SO4)2.6H2O] 
Ferrous Ammonium Sulphate (FAS) with about 10 drops of Barium-Diphenylamine-Sulfonate (BDAS) 
solution as indicator.  

 

3.4. Data analysis  

Data obtained from both field and laboratory were analyzed in two ways. First, the chemical 
characteristics of the upstream, downstream and effluent source point of the Ere stream was descriptive 
and inferential (Analysis of Variance). Spatial variation in the chemical concentration of the examined 
variables was assessed with linear regression. Second, the influence of the different interpolation 
measures was determined using geographical information analysis. The dispersion of the chemical 
characteristics with selected interpolation methods was achieved using ILWIS (Version 3.3) GIS 
software. Value interpolation methods such as nearest point, moving average and kriging using point 
map created for each of the selected chemical variables. Descriptive mapping for visualisation was 
derived using basic GIS procedure in ILWIS, which was preferred because of their rich tessellation 
(raster)-compliant procedure and availability. The principle of ILWIS on interpolation is also not 
significantly different from those of the ‘more popular software’ such as Erdas Imagine and Envi that 
would have been preferred but for their unavailability for students and researchers in developing 
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countries at low-cost or open source like ILWIS. Using the software, maps showing dispersion (output) 
based on nearest point, moving average and kriging techniques were produced. 

For ordinary kriging, the Gaussian model was selected for its simplicity and error map was highlighted 
to be produced. The error map allows uncertainties attached to each sampling point to be produced. In 
doing so, values of the assumed spatial characteristics including sill, nugget effect and range were 
substituted with the calculated ones. Both the calculated and default values were used to produce maps 
for comparison of the effect of spatial dependence.  The variogram characteristics (nugget, sill and range) 
and the acceptable optimizing model (Spherical, and Gaussian) were determined using the open-access 
Paleontological Statistics (PAST3) software of the University of Oslo, Norway. The optimizing model 
was selected by the software based on the distribution of the sampling points and values. 

 

4. Results and discussion 

4.1. Physico-chemical characteristics of selected stream water  

The headwater stream was characterized by mean temperature, pH and electrical conductivity of 26.3 
– 26.5 oC, 5.5 – 8.7 units and 153.4-195.3 µscm-1, respectively; downstream had mean temperature of 
26.3 oC, little less than 26.5 oC at the upstream and effluent discharge, 6.4 unit of pH with total dissolved 
solids of 111.9 mg l-1, 4.95 mg l-1 of DO, 1.9 mg l-1 of BOD5. Conductivity, TDS, BOD5 and COD values 
were unexpectedly significantly greater at the sampling point classified as upstream than either the 
effluent discharge point or downstream (Table 1). While NO3

- and SO4
3- peaked around the effluent 

discharge point the downstream contained higher concentrations of total suspended solids and dissolved 
oxygen than either the upstream or downstream. Whereas the lower concentration of most of the variables 
at the effluent discharge point can be attributed to their being flushed downstream, as the water level 
increased or during rainfall event, that of the increased concentrations of conductivity, total dissolved 
solids, BOD5and COD suggest that the upstream was receiving organic and inorganic wastes that can be 
associated with the variables. The groundtruthing investigation conducted on the stream indicated that it 
is not considered drinkable, although a number of residents wash and bath in the upstream.  
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Table 1. Mean, Standard deviation, range (minimum – maximum) of the selected physical and 
chemical variables investigated at different sections of the Ere headwater stream in Ayepe-

Olode, southwestern Nigeria 
Variables Upstream Effluent Discharge 

Point 
Downstream 

 
Temperature(oC) 26.5±4.0a (25.4-27.3) 26.5±4.3a(25-27.3) 26.3±4.5a (24.9-27.2) 
pH (no unit) 7.8±0.5a (6.4-8.5) 7.2±0.1a(6.0-8.7) 6.4±0.1a (5.5-7.1) 
Conductivity (µScm-1)  195.3±95.6a (105.6-377) 153.4±26.9c (68.1-360) 169.6±66.2b (82.5-220) 
SO4

2-(mg l-1) 2.1±2.5b (0.8-6.4) 3.9±4.5a (1.0-13.4) 3.7±0.2a (0.7-9.9) 
NO3

-(mg l-1) 1.4±0.8b  (0.6-4.2) 8.2±2.8a (0.6-6.6) 0.9±0.3c (0.3-1.4) 
TDS (mg l-1) 129.2±64.2a (68-250) 102±4.9c (45-250) 111.9±55.8b  (70-146) 
Total Solids(mg l-1) 918±331.6a (85-1817) 916.3±7.1a (200-2050) 802±331.6a (161-1170) 
TSS (mg l-1) 789.3±575.1c (3.0-1728) 814.5±93.3b (100-1967) 924.5±189.2a(15-1100) 
DO (mg l-1) 3.4±1.2b (0.0-8.8) 4.7±3.2a  (0.8-8.4) 4.9±2.3a (2.0-8.0) 
BOD5 (mg l-1) 3.1±0.8a (0.0-8.8) 2.5±1.4b (0.4-5.2) 1.9±0.7c (0.4-2.8) 
COD (mg l-1) 19.9±7.2a(9.0-33.8) 8.6±2.6b(1.5-15) 8.4±3.3b(2.0-16.5) 

Note: Mean ± SD with same superscript (lower case alphabet; a, b or c) along same row are not 
significantly different for corresponding chemical variable.  

 

4.2. Seasonal variations in the stream water characteristics   

Evaluation of the seasonal variations showed relatively different patterns from the upstream, through 
the effluent discharge point, downstream (Table 2). Table 2 shows that SO4

2-, conductivity, NO3
-, TDS 

and BOD5 were relatively more in the dry season at the upstream than in wet season. SO4
2-, TDS, TS, 

DO, and BOD5 also occurred in averagely higher concentrations in the dry than wet season at the effluent 
discharge point. Most of the investigated variables, except SO4

2-, NO3
- (wet season), BOD5 and COD 

appeared to have decreased downstream as the water flows downstream. Furthermore, pH, SO4
2- and 

NO3
- appeared to peak at the discharge point while others mostly peaked downstream, except for 

conductivity, TS, and TDS that exhibited obvious influence of season (period of sampling) (Figure 2). 
In general, result of the analysis of variance using Scheffee multiple comparison showed significant 
difference at 95% confidence level in wet season values of conductivity and total dissolved solids; first 
between upstream and downstream, and between the discharge point and downstream (Table 3). There 
was however no significant difference among the three stream phases (upstream, effluent discharge point 
and downstream) in the dry season.  
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Table 2. Dry and wet seasons’ means of selected variables at different section of the stream channel 

 
Table 3: Seasonal and spatial variations  

 Variables Overall ANOVA Upstream 
compared with 

Discharge point 
compared with 

  F-value F-probability Discharge 
point 

Down- 
stream 

Downstream 

Wet Season Temperature(oC) 0.91 0.44 0.97 0.68 0.83 
pH 1.21 0.34 0.90 0.15 0.08 
Conductivity (µScm-1) 1.60 0.25 0.97 0.03 0.05 
SO42-mgl-1 0.64 0.55 0.39 0.75 0.79 
NO3-(mgl-1) 0.41 0.67 0.47 0.99 0.39 
TDS (mgl-1) 6.34 0.02 0.99 0.04 0.04 
Total Solids (mgl-1) 0.11 0.89 0.93 0.54 0.75 
TSS (mgl-1) 0.82 0.47 0.93 0.49 0.69 
Dissolved Oxygen (mgl-1) 0.00 0.99 0.99 1.00 0.99 
BOD5 (mgl-1) 0.90 0.44 0.70 0.74 0.99 
COD (mgl-1) 1.95 1.98 0.47 0.27 0.90 

Dry Season Temperature(oC) 0.91 0.44 0.99 0.93 0.95 
pH 1.21 0.34 0.99 0.73 0.07 
Conductivity (µScm-1) 1.60 0.25 0.59 0.78 0.95 
SO42-mgl-1 0.64 0.55 0.67 0.73 0.99 
NO3-(mgl-1) 0.41 0.67 0.66 0.78 0.29 
TDS (mgl-1) 6.34 0.02 0.62 0.82 0.94 
Total Solids (mgl-1) 0.11 0.89 1.00 0.91 0.91 
TSS (mgl-1) 0.82 0.47 0.99 0.94 0.91 
Dissolved Oxygen (mgl-1) 0.00 0.99 0.69 0.59 0.99 
BOD5 (mgl-1) 0.90 0.44 0.81 0.38 0.75 
COD (mgl-1) 1.95 1.98 0.05 0.11 0.92 

 

Physico-chemical parameters Dry season Dry season 
Upstream Effluent 

Discharge 
Point 

Down-
stream 

Upstream Effluent 
Discharge 

Point 

Down-
stream 

Temperature(oC) 27.2 27.2 27.1 25.8 25.7 25.5 
pH 7.2 7.1 6.3 7.0 7.1 6.2 
Conductivity (µScm-1) 266.4 177.6 148 124.1 129.1 184.0 
SO4

2-(mgl-1 ) 3.3 6.6 6.3 1.0 1.1 1.0 
NO3

-(mgl-1) 1.7 1.6 0.9 1.1 2.6 0.8 
Total Dissolved Solids (mgl-1) 176 119.5 101.5 82.3 84 122.3 
Total Solids (mgl-1) 782 917.5 978 1054.8 915 626 
Total Suspended Solids (mgl-1) 606 798 876.5 972.5 831 503.8 
Dissolved Oxygen (mgl-1) 3.3 5.7 6.3 3.5 3.6 3.5 
BOD5 (mgl-1) 4.0 3.5 2.1 2.2 1.6 1.6 
Chemical Oxygen Demand  (mgl-1) 17.6 7.8  18.6 9.4 12.1 
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Figure 2. Seasonal distribution of selected physiochemical variables in Ere headwater stream in Ayepe-
Olode, southwest Nigeria 

 

4.3. Quality assessment of the streamwater  

Comparison of the mean and range values with the maximum permissible limits as shown in Table 4 
indicated that the stream contained total suspended solids, COD and BOD5 in concentrations that were 
more than the maximum permissible limits for either use as portable water or safe living fishes and 
aquatic life. The above-the-limit concentrations of BOD5 and COD indicate that the stream water is 
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biologically and chemically polluted. The high concentration of total suspended solids also indicates 
turbidity flow in the stream. 

 
Table 4. Result comparison with the maximum permissible limits of WHO and EU for water and 

aquatic life 
Variable WHO [29] Standard for 

portable water 
EU standards for  
fisheries and aquatic 
 life (Chiaudani and 
Premazzi [30]) 

Ere Stream  
(This study) 

Temperature (oC) 32 32 26.4 (24.9-27.3) 
pH (Unit) <8.0 6-9 6.85 (5.5-8.7) 
Conductivity (µScm-1) <250 250 171.5 (68.1-377) 
SO4

2- (mg l-1) 250 100 3.2 (0.7-13.4) 
NO3

-(mg l-1) 1.0 50 1.4 (0.3-6.6) 
TDS (mg l-1) 1000 Not provided 114.3 (45.0-250.0) 
TS (mg l-1) 1000 Not provided 878.9 (85.0-2050.0) 
TSS(mg l-1) 1000 1000 764.6 (3.0-1967.0) 
DO (mg l-1) >5 5-9 4.3 (0.0-8.8) 
BOD5 (mg l-1) <2 3-6 2.5 (0.4-8.0) 
COD (mg l-1) <20 20 12.3 (1.5-33.8) 

 

4.4. Comparison of default and estimated variogram models for interpolation 

Whereas the ILWIS default suggested ‘spherical’ interpolation procedure, the optimization procedure 
used to maximize the distribution of the sample points indicated that the Gaussian model was more 
appropriate for most of the parameters (sample of conductivity, temperature and nitrate are presented in 
Figure 3). In addition, whereas the software default assumed nil (0) nugget, the result of the computed 
variogram did not return nil (0) for any of the parameters, indicating that accepting default will be an 
error. Except for pH, the values of the standard error estimate (Sserror) was relatively lower with 
computed variogram than the default. In terms of spatial dependence, the nugget to sill ratio in all the 
investigated parameters ranged from 60 % (pH) to 237.1 % (nitrate), indicating strong spatial dependence 
in the distribution of the variables over the stream channel, and as such accepting the default values will 
be wrong.  

Further, the interpolation based on the default values shows that variables were generally 
overestimated. For instance, whereas the values of BOD5 varied between 2.2 and 2.6 mgl-1, the default 
kriging interpolation showed a maximum of 3.4 mgl-1, which is 0.8 mgl-1 (30.8%) overestimation of the 
actual maximum values. Also, the TS, conductivity, COD, water temperature, were overestimated by 
375 mgl-1 (3.5 %), 41.75 mgl-1 (20.1 %), 4.25 mgl-1 (22.6 %), 0.25 mg l-1 (0.8 %) respectively, while 
nitrate show underestimation of 1.45 mg l-1 in the default interpolation from the computed value and the 
pH and sulphate shows the same values. The results for pH, conductivity, BOD5, COD and nitrate were 
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over estimated by 0.35 mgl-1 (4.2 %), 34.15 mgl-1 (12.8 %), 1.05 mgl-1 (25 %), 0.65 mgl-1 (3.4 %), and 
0.15 mgl-1 (5.9 %) respectively while sulphate has default underestimation of 1.05 mgl-1 (15.2 %) from 
the computed value. 

 

Figure 3. Samples of visualized results of computed (ai - iv, represent interpolated pH (unit), 
conductivity (μS/cm), water temperature (oC), and biological oxygen demand, BOD5 (mg/l) with 

computed variogram (nugget, sill and range) and default (bi - iv) variogram parameters after kriging 
interpolation  

 

Comparison of selected interpolation methods  

Samples of the comparison of the interpolation by ordinary kriging, nearest point and moving averages 
for each of the selected variables are presented in Figure 4. Values produced by the interpolation varied 
with procedure. For example, the mean values of the moving average interpolation ranged between 1.6 
and 2 mgl-1 for BOD5 were lower than values obtained with ordinary kriging or the nearest point 
interpolation (0.4-3.2 mgl-1 for BOD5). The moving average value showed that the BOD5 values was not 
more than 2 mgl-1, but this was lower than that indicated by the nearest point (whose values was as high 
as 3.2 mgl-1).  
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Figure 4: Samples of patterns of interpolation with kriging, nearest point and moving average methods; 
ai–iv, bi-iv and ci-iv, represent interpolated values of pH, conductivity, biochemical oxygen demand 
(BOD5) and chemical oxygen demand (COD) using ordinary kriging (a) nearest point (b) and moving 

average (c) methods, respectively 
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Also, while the moving average suggested that the stream water varied from slightly acidic to neutral 
(pH value = 6.3-7.0 mgl-1), kriging and nearest point showed that it could be more acidic or close to 
alkaline (pH= 5.7-7.6 mgl-1). Although this study does not provide reasons for the differences, Maleika 
[31] argued that the models used different algorithms whose application vary with the spatial distribution 
of data, and that moving average could yield less precise results compared to other interpolation methods. 
In terms of COD, moving average produced 11.0-12.1 mgl-1 while the nearest point and kriging showed 
2.1-22.1 mgl-1, values that can make significant interpretation problems with the results.  In general, 
ordinary kriging, moving average and nearest point analysis in this study have produced contrasting 
results.  

Given the simple technology-based procedure of many rural regions, wastes generated are often not 
well treated and disposed [33 - 34]. In the study area, wastes from palm oil processing activities are often 
discharged into the adjacent stream, the Ere stream. The stream is one of those whose channel has been 
influenced by the increase in built-up areas over the years in the area. This study showed that the Ere 
stream was characterized by an average of 26.4 oC water temperature, 6.8 pH unit, and about 878.9 mgL-

1 of total solids. The BOD5 and COD concentration indicated high organic and chemical concentration 
of the stream (when compared with the World Health Organization’s concentration limit of potable water, 
and aquatic life respectively [29]. Analysis of variance of the concentration of selected parameters 
between the upstream, downstream and the effluent discharge section of the Ere stream showed that there 
is no significant variation in some of the selected variables. This implies that different section of the 
stream is similarly anthropogenically impaired. Results from many existing studies suggest that the 
upstream should be less contaminated than the downstream or effluent discharge section of a stream [3, 
33 - 35]. The situation at the Ere upstream suggests the possibility of other sources of pollution, which 
cannot be confirmed until research is conducted in that line. The study also showed that the investigated 
variables, except the TS, COD and electrical conductivity occurred in higher concentrations in wet 
sampling period at either the upstream, effluent discharge point and downstream than in the dry period; 
a condition that may be accounted for by dilution effect [36]. 

Comparison of the different dispersion methods employed in this study (ordinary kriging, nearest 
point and moving average) showed that they do not produce similar results. Representation of dispersion 
of variables of water quality could vary with adopted approach. Burrough et al. [5] encourage that error 
estimates and uncertainties of models be presented since different methods of abstraction are 
characterized by different levels of uncertainty and accuracy. Based on the view of uncertainty, the 
algorithms for ordinary kriging in ILWIS also produces error maps that can be used to evaluate the level 
of uncertainties associated with each sampling point.  

Furthermore, values of the spatial characteristics for the distribution of the sample values and location 
(semi-variogram) indicated that the default algorithms of software for geographical information analysis 
often assumes a spherical modelling of point value dispersion whereas it was the Gaussian model that 
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produces less error for most variables. Consequently, it can be argued that dispersion interpolation using 
the default algorithm of standard GIS software does not produce accurate interpolation procedure, as 
inferred from the larger values of their standard errors when compared with the results of the interpolation 
whose values of nuggets, sills and range (typically assumed by standard GIS software) are substituted 
with the calculated values. Studies [37, 38] have indicated that accuracy of modelled (interpolated) 
results can vary with distribution of sampling location, as well as the method of interpolation. This 
variance in the modelled data also impact the interpretation of model results. 

 

5. Conclusion 

Studies have argued that open water systems are like open sewers that receive wastes from landuse 
activities. This study has therefore examined the concentrations of certain physio-chemical variables in 
a stream that receives effluent from locally processed palm oil processing areas in the southwestern 
Nigeria. The study also examined the procedure for modeling dispersion, using different interpolation 
methods: nearest point, kriging and moving average. The results of the study showed that although the 
stream is vulnerable to contamination by the palm oil processing activities around the area, it also 
receives contaminants from other sources which were not investigated in this study. Evidence from this 
study revealed that the general consensus as reflected in the Kyoto agreement that environmental 
pollution in the less developed nations, such as Nigeria is rather minimal probably underestimates the 
effects of biodegradable wastes on the biological and chemical pollution of the aquatic environment. One 
attribute of underdeveloped societies is poor solid and liquid wastes disposal, and the river system is 
often considered a disposal unit in many rural areas.  

Furthermore, the study also showed that modelling of chemical variables in stream channel is 
influenced by method of interpolation, as well as the distribution of samples. Results from the study 
showed that it is important to consider the attribute information of spatial data and appropriateness of 
relevant spatial analysis method before conclusion is made. In general, the error estimates that are derived 
from kriging and nearest point interpolation methods appear to make them preferred to moving average 
method. The study concluded that the geographical information system’s procedure of estimating spatial 
variation in the chemical properties of a stream produced results that are influenced by data distribution 
and model assumptions, and as such users in developing countries should determine their data 
characteristics rather than accepting the software defaults. Further studies are recommended on 
management of palm oil mill effluents and ensuring more predictive data modelling in the GIS 
environment.  
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