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Abstract 
The production of land cover maps using supervised classification algorithms is one of the most common 

applications of remote sensing. In this study, the effectiveness of supervised classification algorithms in land 

cover classification using ASTER data was evaluated in the Mankweng Area and its environs. The false colour 

composite image generated from combination of band 1, 2 and 3 in red, green and blue, respectively, was used 

to generate training classes for six land cover types (waterbody, forest, vegetation, Duiwelskloof leucogranite, 

Turfloop granite and built-up land). These were used to construct land cover maps using eight supervised 

classification algorithms: Maximum Likelihood, Minimum Distance, Support Vector Machine, Mahalanobis 

Distance, Parallelepiped, Neural Network, Spectral Angle Mapper and Spectral Information Divergence. To 

evaluate the effectiveness of the algorithms, the land cover maps were subjected to accuracy assessment to 

determine precision of the algorithms in accurately classifying the land cover types and level of confidence 

that can be attributed to the land cover maps. Most algorithms poorly performed in classifying spatially 

overlapping land cover types without abrupt boundaries. This indicates that the environmental conditions and 

distribution of land cover types can affect the performance of certain classification algorithms, and thus need 

to be considered prior to selection of algorithms. However, Support Vector Machine and Minimum Distance 

proved to be the two most effective algorithms as they provided better producer’s and user’s accuracy in the 

range of 80-100% for all land cover types, which represent good classification. 

Keywords: remote sensing; land cover types; supervised classification algorithms; 
accuracy assessment 

 

1. Introduction 

Land cover is the material at the ground, such as vegetation, waterbody, soil, etc. (Comber et al., 
2005). The production of land cover maps is one of the most common applications of remote sensing 
(Alrababah and Alhamad, 2006; Lobo et al., 2004). Land cover maps provide geographical 
information essential in fields such as biological conservation, environmental management and urban 
and rural planning (Jansen et al., 2008; Musaoglu et al., 2005; Fuller et al., 1998). The application of 

http://dx.doi.org/10.4314/sajg.v9i1.5


South African Journal of Geomatics, Vol. 9. No. 1, February 2020 

62 

remote sensing in land cover classification is based on the discrimination of earth’s materials 
considering the difference that exists among their spectral properties (Whateley, 2006). The 
processing technique that allows for the identification of materials in an image according to their 
diagnostic spectral signatures is referred to as image classification (Richards and Jia, 2006). 
Supervised classification is the semi-automated technique that classifies pixels in an image into 
classes corresponding to user-defined training classes (Research Systems Inc, 2008). Training classes 
are groups of pixels that are selected as representative areas of land cover types that the user desires 
to map in the final output image (Richards and Jia, 2006). Supervised classification rests upon using 
proper algorithms to classify the pixels in an image as representing land cover types, and there is 
broad range of algorithms suitable for supervised classification of remotely sensed images (Richards 
and Jia, 2006). 

 Different remote sensors collect different data with various degrees of spatial and spectral 
resolutions. As a result, the number and kind of land cover types that can be identified in remotely 
sensed images can vary significantly depending on the sensors used to gather the images (Whateley, 
2006). Since the launch of Landsat in the early 1970s, remotely sensed images have been widely used 
for land cover classification (NASA, 2013). However, with the launch of Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) in 1999, remotely sensed images with 
relatively better spectral and spatial resolutions became readily accessible and available (Whateley, 
2006). ASTER is an advanced multispectral remote imaging instrument that covers a wide spectral 
region with 14 bands ranging from the visible to thermal infrared region with medium spatial 
resolution. The spatial resolution varies with spectral region: 15 m in Visible and Near-Infrared 
(VNIR), 30 m in the Shortwave-Infrared (SWIR), and 90 m in the Thermal Infrared (TIR). These 
three spectral regions have three, six, and five bands, respectively. Each ASTER scene has a swath 
width of 60 km (Whateley, 2006). ASTER images have been widely used for different purposes such 
as monitoring the rate of environmental changes, construction developments, agricultural activities 
and anthropogenic changes, and mapping of natural resources (Mohd et al., 2009; Bagan et al., 2008; 
Yuksel et al., 2008).  

The aim of the present study was to evaluate the effectiveness of eight supervised classification 
algorithms: Maximum Likelihood, Minimum Distance, Mahalanobis Distance, Parallelepiped, 
Neural Network, Support Vector Machine, Spectral Angle Mapper and Spectral Information 
Divergence in land cover classification using ASTER data. 

 

2. Study area 

The study was conducted in the Mankweng (Turfloop) Area and its environs which is situated in 
the central part of Limpopo Province, South Africa. It is located approximately 10 km east of the 
Polokwane City. The study area also covers the University of Limpopo and Mankweng Hospital. The 
study area extends over an area of 60 km2 (Fig. 1).  
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Figure 1: Locality map of the study area. 

 

3. ASTER data 

The ASTER data selected for this study is ASTER L1T (Precision Terrain Corrected Registered 
At-Sensor Radiance Product) cloud-free scene with Local Granule ID: 
AST_L1T_00310022003081250_20150501020734_95242, acquired on 02 October 2003. The 
ASTER L1T data product was retrieved on (https://lpdaac.usgs.gov) maintained by the NASA Land 
Processes Distributed Active Archive Center (LPDAAC) at the USGS/Earth Resources Observation 
and Science (EROS) Center, Sioux Falls, South Dakota. The ASTER scene’s center is located at 
23°57'52.56" latitude (South) and 29°51'40.68" longitude (East). The path and row of the scene is 
169 and 77, respectively. Only the bands in VNIR spectral region were used in the present study 
(Table 1). The VNIR region was selected based on its spatial resolution (15 m) compared to SWIR 
(30 m) and TIR (90 m) spectral regions, which has significant impact on spatial details of land cover 
classification. 

 
Table 1. Wavelength ranges, and spatial and radiometric resolutions of ASTER bands. 
Spectral region Band number Wavelength range (µm) Spatial resolution (m) 
 
VNIR 

1 0.52-0.60  
15 
 

2 0.63-0.69 
3N 0.78-0.86 
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3.1. Pre-processing of ASTER data 

The three VNIR bands were stacked together to build a new VNIR multiband image. The Log 
Residuals calibration was carried out on the multiband image.  Log Residuals is used to remove solar 
irradiance, atmospheric transmittance, instrument gain, topographic effects, and albedo effects from 
radiance data. This calibration tool converts radiance data to a pseudo reflectance image which is 
useful in mapping land cover types (Green and Craig, 1985). Different band combinations were tested 
on Log Residuals-calibrated multiband image and displayed to create false color composite images 
to enhance information on land cover types. The false color composite image of band 1, 2 and 3 in 
red, green and blue, respectively, enhanced information of land cover types (Fig. 2) and was selected 
for further analysis. 

 
Figure 2: False color composite image showing land cover types. 

 

3.2. Classification of ASTER images 

The false colour composite image (Fig. 2), with the aid of geological map covering the study area 
(Robb et al., 2006), was thoroughly studied to identify pixels representing land cover types. Regions 
of interest (ROIs) for the land cover types were created and extracted from the false colour image to 
be used as training dataset for subsequent supervised classification using: Maximum Likelihood 
(ML), Minimum Distance (MD), Mahalanobis Distance (MhD), Parallelepiped (Pp), Neural Network 
(NN), Support Vector Machine (SVM), Spectral Angle Mapper (SAM) and Spectral Information 
Divergence (SID). The methodologies of these classification algorithms are explained in detail by 
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(Hsu et al., 2007; Richards and Jia, 2006; Du et al., 2004; Kruse et al., 1993). Table 2 shows the 
number of pixels used for individual training classes of land cover types characterizing the study area. 

In this study, the objective was to classify all pixels in the Log Residuals-calibrated ASTER 
multiband image to specific land cover classes. Also, unclassified pixels create a void and affect 
interrelationship and interconnectedness that may exist among land cover classes in the ground 
resulting in an incomplete classification of image scene. For these reasons, the none threshold value 
option, which results in every pixel being assigned to the nearest land cover class for Maximum 
Likelihood, Minimum Distance and Mahalanobis Distance classifications, was selected. The none 
threshold option, resulted in the increased number of unclassified pixels for Parallelepiped 
classification. As a result, a single default maximum threshold value of 3.00 was used for 
Parallelepiped classification. Smaller angle and divergence measure values for Spectral Angle 
Mapper and Spectral Information Divergence, respectively, resulted in large number of unclassified 
pixels. To avoid decreased number of classified pixels, default maximum angle value (0.10) and 
divergence measure value (0.05) was selected for Spectral Angle Mapper and Spectral Information 
Divergence, respectively. For Support Vector Machine classification, the radial basis function kernel 
characterized by default gamma value of 0.33 and penalty parameter of 100.00, was used. The logistic 
activation method of Neural Network with default values of 0.90, 0.20, 0.90. 0.100, 1.00 and 1000.00 
for training threshold contribution, training rate, training momentum, training RMS exit criteria, 
number of hidden layers and number of training iterations, respectively, was used to classify land 
cover types in the study area. 

 
 Table 2. Description of training classes used for supervised classifications. 

 Training class Description Pixel count 
Forest Evergreen forest, Nature Reserve 7179 
Vegetation Agricultural land, shrub and brush, grass and small trees  8668 
Waterbody Streams, lakes and dams 7923 
D-leucogranite Purplish to pinkish granitic rocks 8846 
T-granite Whitish granitic rocks/soils 466 
Built-up land Residential, public utilities, industrial and commercial 

complexes and roads  
744 

 

3.3. Accuracy assessment of classification 

Accuracy assessment is a standard component of any land cover classification map derived from 
remotely sensed images.  Accuracy is assessed empirically by checking the number of sample units 
assigned to each land cover type compared to the validation data also known as reference data or 
ground truth data. The validation data can be obtained by field visit or interpretation of photos, images 
or maps (Richards and Jia, 2006). Prior to selection of method of validation data gathering, the 
following key points were taken into consideration; (1) time and cost can affect the efficiency of 
collection of large validation data through field visit, and (2) the ASTER data used in the present 
study was acquired in 2003 and since there is a considerable difference of time between the 
acquisition date of ASTER data and the date of this manuscript writing, environmental changes and 
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construction developments might have occurred in the study area. For these reasons, interpretation of 
true colour satellite image from Google Earth Pro was used as validation data gathering tool. Google 
Earth Pro can revisit time and zoom in areas of interest at high resolutions; which the author deemed 
significant considering the acquisition date (October 2003) of the ASTER data used. The true colour 
image of the study area acquired in 2003 was thoroughly studied and regions of interest (ROIs) were 
extracted from the sites representing six land cover types. The extracted ROIs were examined for 
homogeneity and separability using n-D Visualizer. N-D Visualizer examines the separability of 
ROIs by looking at the distribution of the points within each ROI and looking for overlap between 
the land cover types. The points within ROIs for every land cover type should cluster together and 
not extensively overlap to other land cover types. The separability measures are reported as values 
ranging from 0-2 and indicate how well the ROIs separate. Values greater than 1.9 indicate that the 
ROIs pairs have excellent separability. Meanwhile, ROIs pairs with lower separability values can be 
improved by either editing the ROIs or selecting new ROIs (Richards and Jia, 2006).  

At first attempts, Turfloop granite and built-up land ROIs pairs achieved low separability 
measures; and the true colour satellite image was used again to select new ROIs for these land cover 
types until their pairs attained better separability measures of 1.91. Other ROIs pairs achieved 
separability measures with values up to 2.00 (Table 3). Fig. 3 shows homogeneity and separability of 
ROIs and from the image the separability difficulty of Turfloop granite and built-up land is evident. 
The ROIs were used as validation classes for their respective land cover types. The number of pixels 
for every validation class is reported in Table 4.  

 

Table 3. Separability values between land cover types pairs. 
Land cover  Forest Waterbody Vegetation D-leucogranite T-granite Built land 
Forest  2.00 2.00 2.00 2.00 2.00 
Waterbody 2.00  2.00 2.00 2.00 2.00 
Vegetation 2.00 2.00  1.99 2.00 2.00 
D-leucogranite 2.00 2.00 1.99  1.99 1.99 
T-granite 2.00 2.00 2.00 1.99  1.91 
Built-up land 2.00 2.00 2.00 1.99 1.91  

 
Table 4. Number of validation pixels for individual land cover types. 

Validation class Pixel count 
Forest 3207 
Vegetation 2497 
Waterbody 2054 
D-leucogranite 2488 
T-granite 374 
Built-up land 469 
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Figure 3: The n-D Visualizer image showing ROIs of the six land cover types. 

 

The validation classes were used to assess the accuracy of the land cover maps using confusion 
matrix. In general, confusion matrix expresses the agreement of validation data and interpreted land 
cover types in the classification map (Richards and Jia, 2006). The most common accuracy measure 
is the overall accuracy, which is calculated by summing the number of validation pixels classified 
correctly for all land cover types and dividing by the total number of validation pixels of all land 
cover types. Another accuracy measure is the Kappa coefficient (K), which provides a difference 
measurement between observed agreement between training data and validation data and agreement 
occurring by chance alone (Jensen, 1986). Besides the overall accuracy and Kappa coefficient, the 
accuracy of individual land cover types can be calculated using producer’s and user’s accuracy, and 
commission and omission error. The producer’s accuracy is the ratio of correctly classified validation 
pixels of a land cover type to total number of validation pixels of that land cover type; while, the 
user’s accuracy can be defined as the ratio between correctly classified validation pixels for a land 
cover type to the total number of validation pixels classified as belonging to that land cover type. 
Commission error calculates the number of validation pixels misclassified as belonging to a land 
cover type while in the ground they represent other land cover types. On the other hand, omission 
error is the number of validation pixels which are not classified for a land cover type while in real 
they belong to that land cover type (Jensen, 1986). 

 

4. Results and Discussion 

The combination of band 1, 2 and 3 in red, green and blue respectively proved to be essential for 
enhancement of land cover types (Fig. 2). The false colour composite image together with the 
geological map covering the study area (Robb et al., 2006), was used in the generation of training 
classes of six land cover types. These were used for the construction of land cover maps using 
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supervised classification algorithms (Fig. 4 (a)-(h)). As it can be observed in Table 5, with the 
exceptions of Spectral Angle Mapper and Spectral Information Divergence, all land cover maps 
attained overall accuracy in the range of 94-99%, which represent good classification (Aronoff, 
1982), and Kappa coefficient values exceeding 0.9 which also indicate good classification (Altman, 
1991). Support Vector Machine land cover map attained highest overall accuracy and Kappa 
coefficient value of 99% and 0.98, respectively.  

Because of high overall accuracy and Kappa coefficient attained by most land cover maps (Fig. 4 
(a)-(f)), it was important to report the accuracy of individual land cover types in the maps. All eight 
classification maps (Figure 4 (a)-(h)) provided higher producer’s accuracy (>95 %) for forest (Table 
5). However, only Support Vector Machine and Minimum Distance maps attained producer’s 
accuracy in the range of 80-100% for all land cover types (Table 6). Spectral Information Divergence 
provided lowest producer’s accuracy for vegetation, Duiwelskloof leucogranite and built-up land; 
while Spectral Angle Mapper attained lowest producer’s accuracy for waterbody. Mahalanobis 
Distance acquired producer’s accuracy of 3% for Turfloop granite which is the lowest value attained 
for this land cover type (Table 6). Producer’s accuracy is an important parameter as it measures how 
well a certain land cover type has been classified (Jensen, 1986). Another important parameter of 
determining accuracy of individual land cover types is the user’s accuracy which measures the 
reliability or precision of algorithm in classifying a land cover type when it is that land cover type 
(Jensen, 1986). This parameter estimates the level of confidence that can be attributed to pixels 
classified as belonging to a land cover type in a map. All eight land cover maps (Fig. 4 (a)-(h)) 
provided higher user’s accuracy (>95%) for forest (Table 7). However, only Support Vector Machine, 
Minimum Distance and Neural Network land cover maps attained user’s accuracy above 80% for all 
land cover types (Table 7).  

Out of the six land cover maps (Fig. 4 (a)-(f)) that attained high overall accuracy and Kappa 
coefficient (Table 5), Mahalanobis Distance have lowest user’s accuracy of <50% for Turfloop 
granite and built-up land. These two land cover types also show high commission and omission error 
in most land cover maps (Tables 8 and 9). This could be attributed to environmental conditions and 
distribution of built-up land and Turfloop granite in the area since there is spatial overlapping and 
lack of abrupt boundaries between the two land cover types (Fig. 2). The separability difficulty of 
Turfloop granite and built-up land was also observed during the examination of ROIs of the land 
cover types with the aid of n-D Visualizer (Table 3 and Fig. 3). Therefore, the high producer’s and 
user’s accuracy attained for forest, waterbody and vegetation by all classification algorithms can be 
attributed to their clear boundaries, which enable the algorithms to assign pixels to their 
corresponding land cover types with less misclassification error (Jensen, 1986). In general, Spectral 
Angle Mapper and Spectral Information Divergence performed poorly in classifying most land cover 
types especially the Turfloop granite and built-up land (Table 7). This supports the findings of 
previous study of Rajashekararadhya and Shivakumar (2017) which demonstrated that Spectral Angle 
Mapper and Spectral Information Divergence perform poorly in classification of land cover types 
without clear boundaries.  
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Table 5. Overall accuracy (%) and Kappa coefficient of algorithms.  
Item SVM MD MhD ML NN Pp SAM SID 
Overall accuracy 99.28 98.82 94.45 97.23 98.39 94.13 66.12 55.47 
Kappa value 0.990 0.984 0.928 0.964 0.979 0.9248 0.5818 0.462 

 
 

Table 6. Producer’s accuracy (%) for land cover types. 
Land cover type SVM MD MhD ML NN Pp SAM SID 
Forest 100.00 100.00 99.97 100.00 99.19 98.60 100.00 99.94 
Waterbody 100.00 100.00 99.90 99.90 99.90 99.95 63.19 73.66 
Vegetation 100.00 100.00 100.00 99.84 100.00 99.98 99.96 54.14 
D-leucogranite 100.00 98.83 98.43 98.07 99.52 88.99 7.68 0.44 
T-granite 81.55 83.69 3.21 35.03 68.98 40.64 9.63 5.88 
Built-up land 98.08 91.47 55.01 97.87 95.31 77.61 22.39 10.45 

 
 

Table 7. User’s accuracy (%) for land cover types. 
Land cover type SVM MD MhD ML NN Pp SAM SID 
Forest 100.00 100.00 100.00 100.00 99.94 100.00 100.00 99.26 
Waterbody 99.95 100.00 99.18 100.00 99.37 100.00 63.19 61.23 
Vegetation 99.92 98.50 99.01 100.00 99.88 90.33 99.96 85.79 
D-leucogranite 99.76 99.96 99.35 99.84 97.83 99.28 18.04 10.09 
T- granite 97.76 88.67 5.41 92.91 97.73 59.85 11.61 1.06 
Built-up land 87.95 89.34 42.64 61.04 81.87 65.94 4.02 3.05 
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Figure 4 (a)-(d): Land cover maps generated using (a) Support Vector Machine,  

(b) Minimum Likelihood, (c) Neural Network and (d) Maximum Likelihood.  
(a) Support Vector Machine and (b) Minimum Likelihood, which attained relatively better 

individual accuracies for land cover types, are visually almost similar. 
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Figure 4 (e)-(h): Land cover maps generated using (e) Mahalanobis Distance, 

(f) Parallelepiped, (g) Spectral Angle Mapper and (h) Spectral Information Distance.  
It is visually evident that (h) Spectral Information Divergence attained highest misclassification 

error for most land cover types. 
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Table 8. Commission error (%) for land cover types. 
Land cover type SVM MD MhD ML NN Pp SAM SID 
Forest 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.74 
Waterbody 0.05 0.00 0.82 0.00 0.63 0.00 7.42 38.77 
Vegetation 0.08 1.50 0.99 0.00 0.12 9.67 0.04 14.21 
D-leucogranite 0.24 0.04 0.65 0.16 2.17 0.72 81.96 89.91 
T-granite 2.24 11.33 94.59 7.09 2.27 40.16 88.39 98.94 
Built-up land 12.05 10.63 57.36 38.96 18.13 34.06 95.98 96.95 

 
Table 9. Omission error (%) for land cover types. 

Land cover type SVM MD MhD ML NN Pp SAM SID 
Forest 0.00 0.00 0.03 0.00 0.81 1.40 0.00 0.06 
Waterbody 0.00 0.00 0.10 0.10 0.10 0.05 36.81 26.34 
Vegetation 0.00 0.00 0.00 0.16 0.00 0.12 0.04 45.86 
D-leucogranite 0.04 1.17 1.57 1.93 0.48 11.01 92.32 99.56 
T- granite 18.42 16.31 96.79 64.97 31.02 59.36 90.37 94.12 
Built-up land 1.92 8.53 44.99 2.13 4.69 22.39 77.61 89.55 

 

5. Conclusion 

This study demonstrated the significance of band combination technique in generating false colour 
composite image to enhance land cover types that can be used to generate training classes for 
supervised classification. The generated training classes of six land cover types: waterbody, forest, 
vegetation, Duiwelskloof leucogranite, Turfloop granite and built-up land formed the basis of 
supervised classifications using eight algorithms. The eight classification maps were subjected to 
accuracy assessment (confusion matrix) to determine the effectiveness of the algorithms in correctly 
classifying the land cover types and level of confidence that can be attributed to their respective land 
cover maps. Support Vector Machine, Minimum Distance, Mahalanobis Distance, Maximum 
Likelihood, Neural Network and Parallelepiped land cover maps attained overall accuracy and Kappa 
coefficient beyond 90% and 0.9, respectively, which represent good classification. All land cover 
maps provided high producer’s and user accuracy for land cover types with clear boundaries (forest, 
waterbody and vegetation). Meanwhile, most algorithms poorly performed in classifying spatially 
overlapping land cover types without abrupt boundaries (Turfloop granite and built-up land). 
Therefore, it can be concluded that environmental conditions and distribution of land cover types can 
affect the performance of classification algorithms. Also, it can be recommended to investigate the 
heterogeneity or homogeneity of a region prior to selection of suitable algorithms and to study the 
separability of land cover types to avoid misclassifications.  

Support Vector Machine and Minimum Distance provided better producer’s and user’s accuracy, 
beyond 80%, for all land cover types. The producer’s and user’s accuracy are significant in 
determining precision of algorithm in classifying the land cover types and confidence level that can 
be attributed to the land cover classification maps. Therefore, the confidence level of beyond 80% 
can be attributed to the pixels classified for all land cover types in the Support Vector Machine and 
Minimum Distance land cover maps. In summary, the most effective supervised classification 
algorithms in the region based on the accuracy assessment are; (in decreasing order of effectiveness) 
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Support Vector Machine, Minimum Distance, Neural Network, Maximum Likelihood, Mahalanobis 
Distance and Parallelepiped. These algorithms can therefore be used to generate and update land 
cover maps for regions of similar environmental conditions; and special preference is given to 
algorithms that attained producer’s and user’s accuracy beyond 80% for all land cover types. 
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