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Abstract 

This study compared two methods used for agricultural statistics generation in Rwanda. The first 
method is area frame sampling, which is also the currently used method in Rwandan seasonal 
agricultural surveys; while the second method is the application of remote sensing technique using 
multi-temporal Normalised Difference Vegetation Index (NDVI) classes to stratify land into 
homogenous agriculture land classes. The analysis of the methodological flow of Rwanda area 
frames and the estimated homogeneity in the resulting frames was mainly based on literature review. 
For the delineation of homogeneous NDVI classes, the study used 10 years data from Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensor (2004 – 2014). The NDVI data were 
classified using ISODATA clustering technique, and the focus was put on agriculture-dominated 
classes, obtained through the intersection with 2010 national land use and land cover data. Analysis 
of Variance (ANOVA) and Fisher’s Least Significant Difference (LSD) statistical methods were 
applied to investigate significant differences between and within NDVI classes and the currently used 
Rwanda strata in terms of area coverage of four (4) dominant crops in Rwanda – banana, maize, 
cassava, and beans. The results of the analysis revealed homogeneity of 85% within NDVI classes, 
and 69% within the current Rwanda strata, at p = 0.05. The NDVI classes were also used to improve 
the Rwanda strata, and the homogeneity has increased by 5%; reaching 74% after NDVI-based 
reclassification. 

 
1. Introduction 

Continuous growth of the world’s population imposes countries to produce more food from limited 
land resources to ensure that “all people at all times have physical, social and economic access to 
sufficient, safe and nutritious food which meets their dietary needs and food preferences for an active 
and healthy life” (Committee on World Food Security, 2009). Agricultural statistics include all 
information contributing to agricultural development and food security in general; and are key to 
achieve food security goals (Boyko and Hill, 2009). In addition, agricultural statistics are required to 
support planning processes of a country; provide information for public policy analysis, debate and 
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advice; observe agricultural sector performance in the country; monitor and evaluate the impact of 
policies and programmes; and enlighten decision-making processes (Kiregyera et al., 2007). 
Moreover, agricultural statistics support the monitoring, evaluation, improvement, and strengthening 
of early warning systems regarding country’s food security (FAO, 2016).  

Finally, agricultural statistics contribute to ideas development and decision making of local people, 
private sector, and importantly, local farmers about their agricultural businesses. Maningas, 
Villagonzalo, and Macaraig (2004) indicated that agricultural information empowers farmers through 
having control over their resources and decision-making processes. Nevertheless, usefulness and high 
quality of the agricultural information depend on three key factors: accuracy – conforming exactly or 
almost exactly to the ground truth; reliability – showing all details about the reality they represent 
and errors they contain; and timeliness – availability on time of need (Cotter et al., 2010; Wigton and 
Bormann, 1978). 

The generally used methods to generate agricultural statistics include census, registers, 
administrative data, and sampling frames (area frame sampling, list frame sampling and multiple 
frame sampling) (Benedetti et al., 2010; Eurostat, 2015; Kennel, 2008; Väisänen, 2009). However, 
remote sensing has recently come into use for land stratification to collect and generate agricultural 
statistics (Boryan et al., Hunt, 2014). This study has focused on two of the above-mentioned methods 
namely Area Frame Sampling, as currently applied in Rwandan Seasonal Agricultural Surveys (SAS), 
and Remote Sensing with the use of Normalized Difference Vegetation Index (NDVI) data.  

The area frame sampling method is firstly based on construction of frames – sets of all agricultural 
holdings in an area of interest based on their homogeneity, using visual interpretation method (Wigton 
and Bormann, 1978). Secondly, the segments – homogeneous land units enumerable ideally in one 
day, are drawn from the frames. Finally, representative sample segments are randomly selected for 
the survey (Kennel, 2008). The method is popular in agricultural surveys because it is believed to be 
cheaper, reliable, save time, and suitable in case of a large population (Menza et al., 2008). It is used 
by renowned organizations such as Food and Agriculture Organization of the United Nations (FAO), 
National Agricultural Statistics Service (NASS) of the United States Department of Agriculture 
(USDA) among others (Cotter et al., 2010). Although the method is claimed to be accurate with the 
ability to select representative sample segments for agricultural surveys, it might be an ideal situation 
different from reality, given the degree of heterogeneity existing in nature (Turner and Gardner, 
1994). Remote sensing is also currently used for land stratification to generate strata for agricultural 
surveys (Carfagna and Gallego, 2005).  

The aim of this research was to apply multi-temporal NDVI data from MODIS, to stratify land in 
Rwanda and generate agricultural statistics for the four (4) main crops in Rwandan agricultural season 
A (September – February of the following year) for 2015 – 2016 agricultural year, and make a 
comparative assessment of homogeneity differences in both currently used area frames and the NDVI 
strata.  
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2. Materials and methods 

2.1. Study area 

The study area for the present research was not based on administrative boundaries. The NDVI 
stratification determined the representative areas for field data collection. The study area was 
composed of four NDVI Classes: NDVI class 24, NDVI class 54, NDVI class 70 and NDVI class 82 
(Figure 1). Classes were spatially distributed into 7 administrative districts. Administratively, NDVI 
class 24 was mainly located in Bugesera district (Eastern Province); class 54 in Nyaruguru and 
Nyamagabe districts (Southern province); class 70 in Nyabihu district (Western Province) and 
Musanze district (Northern Province); and class 84 had a part in Musanze and Burera districts 
(Northern province), and another part in Nyagatare district (Eastern Province) as presented in  
Figure 1 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Selected Sample NDVI Classes for the Study Area  
 

Class 24 covered an area of about 6,485 ha; class 54 covered 57,031 ha; class 70 covered 19,583 
ha; and class 82 covered an area of about 20,769 ha, making a total area of 103,868 ha which is equal 
to 9.3% of entire cropland area in Rwanda, as of 2010.  

Agro-ecologically, as illustrated by Figure 2, class 24 was majorly situated in Eastern Savannah 
of Rwanda: a region with an average altitude of 1,400 m above mean sea level (AMSL), 850 mm of 
average annual rainfall, mean annual temperature of around 21oC, with old infertile soils with a 



South African Journal of Geomatics, Vol. 9. No. 1, February 2020 

92 

variable texture. Class 54 was majorly located in both Congo-Nile divide (area with an average 
altitude of about 2,100 m AMSL, 1,600 mm of mean annual rainfall, mean annual temperature of 
around 19oC, with soil dominated by humic soils at medium altitude), and central plateaus (area with 
average altitude of about 1,700 m AMSL, 1,200 mm of average annual rainfall, mean annual 
temperature of around 17oC, with soil dominated by ultisols derived from volcanic materials). Class 
70 was located majorly in volcanic summits and high plains (area with an average altitude of about 
2,200 m AMSL, 1,500 mm of average annual rainfall, mean annual temperature of about 17oC, with 
soil dominated by ultisols derived from volcanic materials), and Congo-Nile divide. Finally, class 82 
was majorly located in both volcanic summits and high plains and Eastern Savannah. 

Figure 2. Location of Sample NDVI Classes and Field Work Areas in Rwandan Agro-ecological 
Zones 

 

2.2. NDVI data 

Different NDVI products such as those from MODIS, AVHRR, MERIS sensors, etc., have been 
used with success for various studies; either for natural phenomena studies or agro-ecological studies 
(Barbosa et al., 2006; Benedetti and Rossini, 1993; Bolton and Friedl, 2013; Funk and Budde, 2009). 
The rationale for selecting NDVI was that it is one of the radiometric measures of the amount of 
greenness on the land according to the photosynthetic activity present on that land (NASA, 2015; 
Tucker and Sellers, 1986). This attribute justifies the ability of NDVI to group together areas from 
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which vegetation cover appears similar in terms of density and content, to maximise the homogeneity 
within the same stratum.  

This study applied NDVI data from MODIS sensor onboard Terra satellite with 250 m spatial 
resolution (MOD13Q1 products). The main reasons were – quick revisit time, a reasonable spatial 
resolution given the extent of the study area, and wide swath covering a large area. Data are produced 
as 16 days maximum value composites to reduce effects of clouds, directional reflectance and off-
nadir viewing effects, sun angle and shadow effects, and aerosol and water vapour effects (Holben, 
1986; King et al., 2003). In order to ensure continuous and long-term homogeneity consideration in 
sites within the study area, the data’s temporal coverage considered in the present study is 10 years 
(2004 – 2014).  

 

2.3. NDVI data pre-processing and processing 

In total, 221 MODIS-NDVI images (MOD13Q1 products) from 2004 to 2014 were acquired from 
MODIS data pool using MODIS Reprojection Tool Web interface (MRTWeb). They were rescaled 
from original values [ranging from -3,000 to 10,000 and stored under 16-bit signed integer (LP 
DAAC, 2014)] to the normal pixel value range (0 to 255 for pixels stored under 8 bits), and later, 
normalised to the normal NDVI range from -1 to 1. The rescale applied the following equation (de 
Bie, 2015): 

Equation 1: NDVI rescaling 

Where Rescaled NDVI refers to the obtained NDVI values after the rescaling process (ranging 
between 0 and 255, and later, normalised to the normal NDVI range from -1 to 1). Original NDVI 
refers to the original NDVI values as in originally acquired MOD13Q1 images (ranging between -
3,000 and 10,000). Obtained images were stacked and the layer stack was cleaned and smoothed 
using Savitzky – Golay smoothing and differentiation filter, in order to fit the data points optimally 
to a polynomial in the least square logic, to eliminate noise in the data and fit them with optimal data 
(Luo et al., 2005). 

 

2.4. Land stratification based on MODIS – NDVI and representative sampling 

The unsupervised classification was performed on the 221 MOD13Q1 images in order to 
determine similar classes. These images were following the general phenological characteristics of 
crops in Rwanda: where ploughing, planting and germination occur in September, growing of most 
of the crops in October and November, and the maturity stage and harvesting in December and 
January, for Season A. Seasons B, goes with ploughing, planting and germination in February, 
growing of most of the crops happen in March and April, and the maturity stage and harvesting 
happen in May and June. This can be observed later in Figure 6. The classification applied the 
Iterative Self-Organizing Data Analysis Technique (ISODATA) (Ball and Hall, 1965; in 

Rescaled NDVI = Original NDVI * 0.02125 + 43 
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Memarsadeghi., 2007). Minimum number of classes taken was 10 and the maximum was 100, with 
50 as maximum number of iterations, and 1.0 as convergence threshold (Ali et al., 2012). Separability 
analysis using average and minimum separability was used to find optimal number of classes, which 
was found to be 95 for the country (Figure 5). The classes were overlaid with recent Rwanda land use 
data (2010 data), and it was revealed that only 24 classes contain more than 50% of agriculture. In 
the end, the sampling was drawn from the 24 agricultural NDVI classes. The 2010 Rwanda land use 
data were produced by former Rwanda Natural Resources Authority (RNRA), currently Rwanda 
Land Management and Use Authority (RLMUA) in partnership with Regional Centre for Mapping 
of Resource for Development (RCMRD) using both Landsat data, image classification and intensive 
field survey for validation. Moreover, the data considered the “Kagera Agro-Ecosystems” Land use 
map of Rwanda prepared during a workshop held in Huye district, Rwanda, at the Centre for GIS and 
Remote Sensing of University of Rwanda (CGIS – UR), from the 22nd of November to the 3rd of 
December 2010 in the framework of the Kagera TAMP (Transboundary Agro-ecosystem 
Management Project for the Kagera river basin) project, under implementation of FAO and financial 
support from Global Environmental Facility (GEF) (FAO, 2010). The land use data contained various 
land-use types including cropland, forestland, wetland, grassland, settlement and other land. 

 

2.5. Random-representative clustered sampling 

The size of a sample area was equal to the pixel size of the used MODIS NDVI data; which was 
originally 231.66 * 231.66 (53,666 m2 ~ 5.37 ha) after the data acquisition. After data conversion and 
projection to match with Rwandan land use data, the final pixel size became 231.92 * 230.37 m ~5.34 
ha. Similarly, conversions and geometric transformations resulted into a pixel shift of 1.69 m to the 
right (for the upper corner of NDVI data pixels), and 2.51 m to the right too (for the lower corner). 
However, the shift could not meaningfully affect the analysis, given the size of the pixel and aim of 
the study, considering the avoided possibility of half a pixel shift. 

The available fieldwork time prompted the selection of 12 sample sites per sample NDVI class. 
Nonetheless, one site was excluded after visiting the area and realized that there was no vegetation 
cover due to the recent conversion from agriculture into industrial zone construction (Figure 4a and 
4b). Henceforth, the final number of sample areas was 47. Sample areas were selected randomly given 
that they fulfil three conditions. First, being located in the innermost part of a class, to avoid influences 
from outside. Second, being located close to the road, for accessibility. Finally, the spatial distribution 
of sample sites had to follow a pattern of four (4) sample sites (first cluster) in the North or West of 
a class, second cluster in the Centre, and last cluster in the South or East of the class (Figure 2). 

 

2.6. Current area frame sampling in Rwanda 

The assessment of the current area frame sampling method, as applied in Rwanda, was carried out 
mainly based on literature review. The used documents explain not only basic principles, procedures 
and rationale for using the technique in an agricultural survey (Cotter et al., 2010; Wigton and 
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Bormann, 1978) but also how the technique was specifically applied in 2012 – 2013, 2013 – 2014 
and 2014 – 2015 Rwanda Seasonal Agricultural Surveys (NISR, 2013, 2015c, 2015b, 2015a). 
Moreover, the used documents clarify that area frames for the surveys in Rwanda are still constructed 
using 2008 aerial photographs, by the support of visual interpretation technique, to delineate 
“homogeneous” strata (area frames) based on crops intensity. From the defined area frames, segments 
are delineated by the use of physical features such as roads, paths, rivers, etc.  

 

2.7. Data collection 

Land cover types and their area coverage were collected in the field for two months (October – 
November 2015). They were collected using a printed field map with the 2008 high-resolution aerial 
photographs, and the field observation (with recording of geographical coordinates using GPS), and 
unstructured interviews with local farmers found in their agricultural field during the fieldwork. The 
field data were entered into computer system through digitisation process to get final interpreted data 
as shown in the following maps (Figure 3a and 3b). 

  

Figure 3. Example of a Field Map before Data Collection (a) and Interpretation after Field Work (b) 
 

After data entry, the area of each land cover type was calculated and presented in a table for further 
analysis. Table 1 is an example of land cover area data from the sample site 5411 in Figure 3.  

 
Table 1. Land Cover Area Data Collected from the Sample Site 5411 in Figure 3 

 
 
 
 
 

Cover Area (ha) Area (%)  Cover Area (ha) Area (%) 

Banana 0.61 11.49  Grass 1.03 19.35 

Beans 0.77 14.47  Irish potatoes 0.20 3.69 

Bare Soil 0.02 0.37  Maize 0.43 8.12 

Building 0.08 1.52  Peas 0.19 3.54 

Cassava 0.59 11.01  Sweet potatoes 0.72 13.32 

Eggplant 0.27 5.07  Ploughed 0.07 1.36 

Forest 0.32 5.94  Soybean 0.04 0.75 

Total     5.34 100 

a b 
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2.8. Data analysis 

Data analysis took into account area coverage data (ha) of the four main crops of Rwandan 
agricultural season A: banana, maize, beans and cassava. Analyses were carried out in four stages for 
NDVI strata, and two stages for Rwandan Stata. Firstly, one-way ANOVA was applied to find out 
whether the NDVI classes were significantly different between them, to be considered effective as 
separable classes. Secondly, Fisher’s Least Square Difference (LSD) was carried out for the classes’ 
pairwise comparison, to identify specific differences between the classes. Thirdly, one-way ANOVA 
was carried out for clusters within the same NDVI class to evaluate the level of possible significant 
differences between clusters within the same class, to ensure that every single NDVI class is 
homogeneous (if no significant differences between its clusters), or otherwise heterogeneous. 
Fourthly, only in case of significant differences within a class, Fisher’s LSD was applied to identify 
specific differences among clusters pairs of the class, leading to the quantification of the level of 
homogeneity and heterogeneity of the class. 

However, for Rwandan Strata, most of the sample sites (40 out of 47) were located in Rwandan 
stratum 1. Therefore, the analysis was limited to the Rwandan stratum 1, and two first stages of 
analysis, given the fact that there were not enough data to make statistical analysis for the rest of the 
strata. 

 

3. Results and discussion 

3.1. Land stratification with the currently used area frame sampling in Rwanda 

Currently, area frames for Rwanda seasonal agricultural surveys are designed using the 2008 aerial 
photographs. By the use of visual interpretation technique, interpreters consider areas with similar 
crops’ intensity and delineate them as homogeneous strata. Table 2 presents the designed strata for 
the 2012 – 2013 seasonal agricultural survey.  
 

Table 2. Rwanda Seasonal Agricultural Survey Strata 
 

Source: NISR (2015b) 

Strata Description Land Area (ha) 

1 Intensive hillside cropland (50-100% cultivated) 1,535,000 
2 Intensive marshland cropland (50-100% cultivated) 55,100 

3 Extensive cropland (15-50% cultivated) 192,800 

4 Non-cropland (0-15% cultivated) 73,900 

5 Cities and towns (0-15% cultivated) 47,700 

6 Water 130,200 

7 National parks (defined by political boundaries) 219,000 

8 Marshlands, riverbeds with potential for rice (0-15% cultivated 79,200 

9 Forest 172,200 

10 Tea plantation 23,200 
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Three strata dominated by agriculture (Rwanda Stratum 1 – intensive hillside cropland; Rwanda 
Stratum 2 – intensive marshland cropland; and Rwanda Stratum 3 – extensive cropland) were used 
for further sampling design and survey. Rwanda stratum 1 covered 86% of the entire survey area, and 
stratum 2 and stratum 3 covered only 3% and 11% of the total area respectively.  

The three survey strata were divided into Primary Sampling Units (PSUs) using physical 
boundaries (roads, paths, rivers, etc.), from which representative sample PSUs were randomly 
selected using Probability Proportional to Size (PPS) technique. Per sample PSU, Secondary 
Sampling Units (SSUs or segments) were constructed, and one segment was randomly selected as a 
representative for the PSU. The size of one segment was about 20 hectares, except for stratum 3 where 
a segment was about 50 ha in size. For instance, a PSU of 225 ha was divided into 11 segments of 
approximately 20 ha each, and one segment was randomly selected for the survey to represent the 
PSU (NISR, 2013). The total number of sample segments was 327, where 295 segments were for 
stratum 1; 14 in stratum 2; and 18 in stratum 3.  

Rwanda strata data types and level of up-to-date 

The currently used area frame sampling in Rwanda uses the 2008 aerial photographs for the area 
frames design. The photographs have been in use for seasonal agricultural surveys (SAS) since 2012 
till up to now (2020). The use of outdated spatial data for agricultural surveys may result in biased 
sample strata selection which may lead to erroneous data representativeness and error propagation 
into overall national agricultural aggregates. This is supported by the argument of Roser (2015), that 
agriculture is among the most rapidly changing land uses, consequently, it is necessary to rely on up-
to-date data for agricultural surveys. 

Rwanda strata data’s spatial and temporal richness 

Aerial photographs used to define the currently used area frames in Rwanda are of high spatial 
resolution (0.25 m * 0.25 m) (MINIRENA and RNRA, 2009). However, the photographs are one – 
time (2008) data in terms of temporal coverage. Therefore, they have a weakness in encountering 
spatial-temporal land cover and land-use changes that took place after the aerial survey. 

Rwanda strata and sampling process with consideration of natural phenomena 

Land stratification for the currently used area frames in Rwanda is done through visual 
interpretation technique, which might introduce errors. In fact, the stratification depends on personal 
perception and professional experience of the interpreter (Baks et al., 2013). This is not only 
increasing the level of bias in stratification and sampling design but also it might ignore important 
natural phenomena, such as possible abrupt changes in the natural system given the rapid changes in 
agricultural land cover. This is exemplified by the area in figure 4b where agricultural activities were 
cleared 2 months prior to the fieldwork. The land clearance was for the favour of new industrial zone 
construction. However, these changes do not appear in the 2008 aerial photograph (Figure 4a) and 
yet, the area had been classified as agriculture for different seasonal agricultural surveys since 2012. 
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Figure 4. 3rd Surveyed Sample Site as Appeared in 2008 (a) and in 2015 after Site Clearing (b) 
 

Rwanda strata validity period 

Cotter et al. (2010) argued that the currently designed area frames can be used for 15 to 20 years 
without a need to be replaced. The currently designed area frames in Rwanda are valid for 5 years as 
informed by staff in charge of national agricultural surveys, at the National Institute of Statistics if 
Rwanda. Nevertheless, within this period, many changes occur and they might introduce errors in the 
subsequent surveys. 

 

3.2. Land stratification using multi-temporal NDVI data 

Separability analysis of NDVI classes using average and minimum separability values of the 
classification results from 10 to 100, revealed that an optimal number of classes to distinguish 
heterogeneous areas in Rwanda from 2004 to 2014 is 95 (Figure 5).  

 

Figure 5. Separability Analysis of NDVI Classes 

a b 
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The 95 classes were overlaid with the 2010 Rwanda land use data, and 24 classes were found to 
be dominated by agriculture (≥ 50%). For 10 years, a class had had similar behaviour in terms of 
vegetation intensity, but with some changes in some classes. For representative sampling and time 
available for the research, four (4) sample NDVI classes were purposively selected given that all 
classes from those with low vegetation intensity to those with high vegetation intensity throughout 
agricultural seasons are represented (Figure 6). 

 

Figure 6. Average Annual Medians of the Four Sample Agricultural NDVI Classes 
 

Distinctive temporal behaviour of the sample NDVI classes led to the differences in spatial 
distribution as well and; covering parts of 7 districts out of 30 districts, from South – West to North 
– East (Figure 1) in different agro-ecological zones of the country (Figure 2). 

NDVI data types and level of up-to-date 

NDVI classes are defined based on the amount of greenness present in a specific area over time 
(NASA, 2015). This indicates that, no matter how the vegetation cover of an area is rapidly changing, 
if it changes with a similar pattern throughout a year and repeatedly over time, the area should be 
considered as the same class. This makes it an important tool in agricultural surveys, which deals 
with rapidly changing land use. Furthermore, most of the NDVI data are regularly up-to-date. For 
instance, MODIS data used by the present study are available every two days since 1999 (NASA, 
2002). Other data include NOAA-HVRR data which are available every day since 1981 (Tucker, 
2009), but with coarser spatial resolution, thus suitable for surveys over a big sized land such as of a 
continental scale. Additionally, most of the multi-temporal NDVI data are open and free of charge. 
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NDVI data’s spatial and temporal richness 

NDVI data applied by the present study are not very rich in the spatial dimension, as they aggregate 
a 250 m2 into one unit with the same reflectance value “a pixel” (Liew, 2001). However, they are 
very rich in the temporal dimension. Moreover, spatial richness was claimed back through integrating 
the data with recent land-use data (RNRA, 2010) with a high spatial richness to allow the knowledge 
of each land cover contained into a single pixel area and its coverage (in ha and %). 

NDVI stratification process and sampling with consideration of natural phenomena 

NDVI data consider events occurring in nature according to similarities in areas’ vegetation 
photosynthetic activity (Tucker and Sellers, 1986). Nonetheless, the area recently converted for 
industrial zone construction (Figure 4a and 4b) was classified as agriculture because the present study 
did not include NDVI image data of 2015; a year when the changes took place. However, if fieldwork 
would take place the following year (2016), the 2015 image data would have been included, for the 
recent changes to be considered as well for the new stratification. Hence, representativeness is 
improved by the use of up-to-date data. Additionally, the land classification process is done with the 
use of the computer system after the user’s instructions, through unsupervised classification, which 
reduces the bias from the interpreter and promotes replicability of the process. 

NDVI strata time frame validity period 

NDVI-based land stratification should be updated every agricultural year, thanks to the regular 
availability of up-to-date data. The regular data updates ensure that recent spatial-temporal 
heterogeneity is incorporated into new land stratification for the subsequent agricultural surveys. This 
would regularly improve homogeneity within the strata of new surveys. 

Land cover types and area coverage in Rwandan strata 

The land cover data collected from the field per sample NDVI class were overlaid with the 
currently used area frames. It was found that among the 47 total sample sites, 40 were fully located 
in Rwanda stratum 1 “Intensive hillside cropland”; 1 sample site fully in Rwanda stratum 5 “cities 
and towns”, 2 sample sites fully in Rwanda stratum 9 “forest”, 2 sample sites in Rwanda stratum 10 
“tea plantation”, 1 sample site partly in Rwanda stratum 1 and partly in Rwanda stratum 9, and 1 
sample site partly in Rwanda stratum 1 and partly in Rwanda stratum 5 (Figure 7). In the end, only 
the data for sample sites in Rwanda stratum 1 were enough to make further statistical analyses. 

The land cover types identified include main crops of agricultural season A (banana, maize, beans, 
and cassava), and other different crops and cover types. However, looking at the presence and 
intensity of crops and land cover types, the cover types found in Rwandan Strata do not present similar 
patterns in intensity, as it would be expected for cover types from the same stratum which is assumed 
“homogeneous”. In addition, there are crops and cover types which were dominantly found in some 
sample sites but were not found in other sites from the same stratum. This might imply that the 
considered “same” stratum might be presenting a too low level of homogeneity to be considered 
entirely homogeneous. 
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Figure 7: Land Cover Types in Rwanda Strata 

Note: Sample sites in frame were excluded from further analysis due to data unrepresentativeness 

 



South African Journal of Geomatics, Vol. 9. No. 1, February 2020 

102 

Land cover and area coverage in NDVI classes 

There has been identified a remarkable patterns of land cover intensity according to their respective 
NDVI classes and clusters. Looking at dominant land cover types, for instance, cassava dominated 
class 24, but it was hardly present in other classes. The grass was abundant in class 24 and 54, but 
little in class 70 and very little in 82. Sorghum was found in all classes, but dominant in class 82, little 
in class 24, very little in class 54 and only in one sample site in class 70. 

Beans dominated class 82 and 70 and was more dominant in cluster 1 of class 70, where it 
corresponded to local farmers’ information that the area is part of the region selected by policy-
makers to be “a beans model plots area”. Banana (together with maize and beans) was dominant in 
class 82, especially in cluster 3. This might be due to the effect of crop intensification policy (Cantore, 
2013; Kathiresan, 2012), as the interviewed farmers informed that their region is one of the regions 
allowed to grow banana under the ongoing crop regionalisation policy. 

Maize had almost similar proportions in all NDVI classes, except in class 82, where it was among 
the abundant crops (in addition to beans and banana) compared to other classes. Similarly, the forest 
was present in all NDVI classes but dominant in class 24 and 54. Although from this, it would be 
argued that forest segregation might be difficult to achieve in different areas of Rwanda using coarse 
resolution NDVI data, as the focus of this study was mainly on crops, it would be gladly 
recommended for future similar studies to try the relatively high (or moderate) resolution data such 
as Landsat OLI and/or Sentinel 2 NDVI data, for the forest cover differentiation in Rwandan 
heterogeneous landscapes.  

Furthermore, some of the crops and other land cover types such as onions, carrots, sisal, cabbage, 
sugarcane, wheat, tea, coffee, groundnuts, peas, eggplants, tree tomatoes, taro, and soybean were not 
frequent and sometimes found only in one sample site, hence, these very dominated crops can also 
better be studied with high-resolution NDVI data, given their limited spatial coverage in most of the 
Rwandan landscapes. 

Statistical analysis of variance of crops cover area in Rwandan strata 

The following Table 3 presents area size of main season A crops cover per sample site, as collected 
from the field. 
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Table 3. Rwandan Season A Main Crops Cover Area Size (in ha) per NDVI Sample Site 

 
Results of ANOVA showed that there were 75% of significant differences (heterogeneity), and 

25% of non-significant differences (homogeneity) between clusters within Rwanda stratum 1 in terms 
of the main crops at 95% confidence level (p was 4e-4< α (0.05) in terms of Banana cover; and 0.07 
> α (0.05) in terms of Maize cover; and 2e-4 < α (0.05) in terms of Beans cover; and 1e-16 < α (0.05) 
in terms of Cassava cover). However, the pairwise comparison using Fisher’s LSD indicated that, 
overall, Rwanda stratum 1 was 31% heterogeneous (specific significant differences) and 69% 
homogeneous (specific non-significant differences) at 95% confidence level. 

Statistical analysis of variance of crops cover area in NDVI classes 

The ANOVA results revealed that NDVI classes were significantly different in NDVI classes ((p-
value was 0.02 < α (0.05) in terms of Banana; 0.04 < α (0.05) in terms of Maize; 2.02e-6 < α (0.05) 
in terms of Beans; and 2.25e-13 < α (0.05) in terms of Cassava)), at 95% confidence level. Therefore, 
the classes were significantly separable. To investigate specific significant differences within the 
classes, Fisher’s LSD revealed that among total pairs of clusters within NDVI classes; there were 
15% significant differences (heterogeneous), and 85% no significant differences (homogeneous), at 
95% confidence level. All in all, NDVI classes presented higher homogeneity in terms of the four 
main crops, compared to the currently used Rwanda Stratum 1. 

Use of NDVI stratification to improve homogeneity within Rwanda stratum 1 

To analyse the possibility to improve currently used Rwanda strata, the misclassified sample sites 
within Rwanda strata were correctly classified according to the ground truth collected in accordance 
with NDVI classification. This resulted in 4 sample sites being reclassified as part of Rwanda stratum 
1. ANOVA results for the reclassified Rwanda stratum 1 showed that, then, significant differences 
were lowered to 26%, and non-significant differences increased to 74%, at 95% confidence level. 

Crops Banana Maize Beans Cassava 

Sample 
Site No 

Class 
24 

Class 
54 

Class 
70 

Class 
82 

Class 
24 

Class 
54 

Class 
70 

Class 
82 

Class 
24 

Class 
54 

Class 
70 

Class 
82 

Class 
24 

Class 
54 

Class 
70 

Class 
82 

11 0.31 0.61 0 0.37 0.58 0.43 0.26 2.54 0.31 0.77 0.28 1.44 2.70 0.59 0 0 
12 0.56 0.35 0 0.16 0.29 0.34 0.69 1.11 0.27 0.52 2.60 1.98 2.35 0.37 0 0 

13 - 0.59 0.02 0 - 0.28 0.18 0.90 - 0.58 2.33 3.98 - 0.32 0 0 

14 0.15 0.32 0 0.30 0.16 0.06 0.47 0.73 0.06 1.13 2.36 0.57 1.38 0.26 0 0 

21 0 1.21 0 0.22 0.44 0.31 0.13 0.10 0 1.06 0.65 2.40 1.67 0.05 0 0 

22 0 0.45 0 0.22 0.46 0.36 0.16 0.33 0 0.66 0.27 1.49 0.17 0.01 0 0 

23 0.15 0.29 0 0 0.27 0.41 1.28 1.17 0 0.75 1.60 2.49 2.68 0.01 0 0 

24 0.96 0.36 0 0.19 0 0.21 0.23 0.35 0 0.57 0.50 0.79 3.12 0 0 0 

31 1.18 0.30 0 0.18 0.51 0.35 0.79 1.32 0 0.68 0.33 1.72 2.91 0 0 0.12 

32 0.06 0.11 0 1.37 0.10 0.33 0.53 1.16 0 0.81 0.52 1.51 0.61 0 0 0.04 

33 0 0.03 0 1.80 1.98 1.31 0.21 0.47 0.16 0.22 0.25 1.51 1.85 0 0 0 

34 0.02 0.15 0 1.02 0.35 0.49 0.27 0.65 0 0.75 0.49 1.81 1.84 0.12 0 0.20 



South African Journal of Geomatics, Vol. 9. No. 1, February 2020 

104 

Thus, homogeneity in Rwandan stratum 1 was improved by 5% thanks to improved classification 
based on NDVI. 

 

4. Conclusion 

The present study carried out a comparative assessment of homogeneity differences in both 
currently used area frame sampling in Rwandan Seasonal Agricultural Surveys, and multi-temporal 
NDVI stratification. The land use and land cover data collected from the field were used to assess 
homogeneity differences in both Rwanda stratum 1 and NDVI strata, in terms of Rwanda season A 
main crops (banana, maize, beans, and cassava). However, the assessment of other aspects of current 
Rwanda strata such as techniques used to stratify land, data types, etc., was mainly based on literature 
review. 

NDVI stratification resulted in strata different in both temporal behaviour and spatial distribution. 
Furthermore, sample NDVI classes were found to be significantly different in terms of Rwandan 
agricultural season A main crops at 95% confidence level, which confirmed their separability for 
effective representativeness in an agricultural survey. 

Land stratification using NDVI and the currently used area frame sampling were found to have 
differences and similarities, but this study found NDVI stratification to be more reliable for improved 
homogeneity within classes while delineating homogeneous strata for agricultural survey. The most 
important difference lied in the homogeneity encountered in classes. NDVI classes were found to 
encounter a higher level of homogeneity compared to the current Rwanda strata, in terms of the main 
crops at 95% confidence level. ANOVA and Fisher’s LSD results revealed 85% and 69% of 
homogeneity within NDVI classes and Rwanda stratum 1 respectively. Moreover, NDVI 
stratification was used to improve the homogeneity within the Rwandan Stratum 1, and this resulted 
in a 5% homogeneity improvement for the latter, reaching 74%. 

Comparing aspects such as level of updating the data used for stratification, types and availability 
of data, and time of land stratification validity, it was found that land stratification for agricultural 
surveys using NDVI data has more potentials for accurate agricultural statistics and reduction of error 
propagation, compared to the currently used area frame sampling method. 
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