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Abstract 

Several ecosystems have been significantly altered by anthropogenic nitrogen inputs. The timely 
estimation of nitrogen concentration is essential for ensuring environmental sustainability. 
Academic publications between 1966 and 2016 were reviewed to assess the potential of remotely 
sensed information to estimate nitrogen concentrations for various applications. A discriminatory 
keyword search and a set of inclusion criteria was used to develop a representative sample (n = 
100). Results revealed that the global distribution of academic publications is skewed towards the 
Northern Hemisphere with the largest research gap occurring within Africa. Moreover, prior to 
2006, research into the remote estimation of nitrogen had a minor presence in literature, with the 
agricultural sector being the most extensively researched (56%). Freely available, high spatial and 
temporal resolution imagery has afforded research into the remote estimation of nitrogen in the 
African continent, particularly in the subject area of policy and management, the capacity to grow. 

 
Keywords: foliar nitrogen; hyperspectral; multispectral; radiative transfer models; remote sensing; 

the nitrogen cycle. 
 
1. Introduction 

Nitrogen represents 78% of the atmosphere and is vital for all life on Earth (Socolow, 1999). The 
nitrogen cycle is highly intricate and involves multiple components (Templer et al., 2012). These 
components facilitate the conversion of biologically unreactive nitrogen to a reactive form which 
can be utilised by organisms (Cassman et al., 2002). At the turn of the century, anthropogenic 
activities such as the production of nitrogen-based fertilizers and the combustion of fossil fuels had 
radically transformed the natural nitrogen cycle (Hoegberg et al., 2006). This increase in 
anthropogenic activity has accelerated the introduction of nitrogen from long-term soil and organic 
matter storage (Pardo et al., 2011). This has impacted climate change significantly, as nitrogen-
based trace gasses, such as nitrous oxide, when released into the atmosphere contributes 
considerably to the enhancement of the greenhouse effect (Templer et al., 2012). To safely sustain 
the global use of biologically reactive nitrogen, a safe operating space needs to be established 
(Templer et al., 2012). 
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Planetary boundaries was introduced as a framework to assist in defining a safe operating space 
for mankind (Rockström et al., 2009) and is based on essential biophysical processes which control 
the regulation of Earth’s systems (Steffen et al., 2015). Several authors (Rockström et al., 2009, De 
Vries et al., 2013, Steffen et al., 2015) have stressed that the global planetary boundary for many of 
these processes, such as nutrient cycling, has been substantially exceeded. For instance, both 
Templer et al. (2012) and Pardo et al. (2011), highlight that with the continuous deposition of 
nitrogen, the available nitrogen pool will exceed that of both plant and microbial demand. This will 
result in ecosystems reaching a state of nitrogen saturation (Templer et al., 2012). Many regions 
have already experienced the effects of excess nitrogen, through changes in nitrogen cycling and 
biodiversity. The impacts of which are demonstrated by an increase in eutrophication, nitrate 
leaching rates, and elevated nitrogen concentrations within plant tissue (Pardo et al., 2011). Overall, 
anthropogenic activities emit approximately 140Tg of new nitrogen into terrestrial ecosystems each 
year, equalling the amount of naturally occurring fixed nitrogen (Cassman et al., 2002, Ling et al., 
2014). As a result, the planetary boundary for nitrogen has been exceeded globally and this has 
brought about numerous consequences (Steffen et al., 2015). 

An increase in anthropogenic nitrogen has several damaging consequences for the health and 
functioning of ecosystems. For example, grasslands occupy approximately 40% of the Earth’s 
surface and provides vital ecosystem services (Dzerefos and Witkowski, 2001, Egoh et al., 2011). 
Apart from supporting biodiversity and grazing resources, grasslands provide essential services 
including soil retention, climate regulation, and the regulated flow of water (Naicker et al., 2016). 
In South Africa, the grassland biome sustains a high diversity of endemic flora and fauna and 
occupies roughly 339 240 km2 of land (Mucina and Rutherford, 2006, Driver et al., 2005). These 
ecosystems are biologically adapted to function best under nitrogen constraints (Hoegberg et al., 
2006). Increased nitrogen concentrations can result in nitrate leaching into soils reducing the pH of 
the soil, causing them to become acidic (Socolow, 1999, Hoegberg et al., 2006). Additionally, 
accumulation of nitrates will reduce soil fertility, as minerals and nutrients essential to plant growth 
will leach into ground water (Ling et al., 2014). This will result in nutrient imbalances, which can 
reduce photosynthetic ability and cause stunted growth (Cassman et al., 2002). Since ecosystems 
are designed to function best under nitrogen constraints, nitrogen enrichment can result in a shift in 
the dominant species and reduce overall species diversity and richness (Hoegberg et al., 2006). 
Grasslands provide critical roles within a landscape but are particularly vulnerable to nitrogen 
fluctuations. The quantification of nitrogen within these ecosystems are crucial to facilitate regional 
monitoring and maintain a safe operating space.  

Over the decades, the determination of nitrogen compounds in agricultural, environmental, and 
geo-biochemical applications facilitated the development of several laboratory techniques (Kornexl 
et al., 1999). The Kjeldahl digestion method  (Labconco, 1998) and the Duma’s combustion 
method, described in Muñoz-Huerta et al. (2013), have emerged as reference methods for nitrogen 
content estimation (Kalra and Jood, 1998). Nonetheless these methods have several disadvantages, 
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in addition to them being time consuming and labour intensive, they require noxious reagents that 
can be significantly destructive to samples (Labconco, 1998, Domini et al., 2009). The emergence 
of research into plant optics (Gates et al., 1965, Allen et al., 1969) and the advent of remote sensing 
has allowed for the non-invasive estimation of both biophysical and biochemical information from 
vegetation (Asner, 1998). 

1.1.  The Remote sensing of nitrogen 

Several studies have demonstrated that the remote sensing of foliar biochemicals can be 
achieved through imaging spectroscopy (Gates et al., 1965, Curran, 1989, Martin and Aber, 1997, 
Lepine et al., 2016). The interaction of radiation with plant leaves is dependent on the chemical and 
physical characteristics of the plant (Gates et al., 1965). Photosynthetic pigments (i.e. Chlorophyll) 
absorb both red and blue wavelengths and facilitates visible leaf reflectance (Gates et al., 1965). 
Chlorophyll molecules are the primary plant components responsible for the absorption of 
electromagnetic energy at specific wavelengths in the electromagnetic spectrum (Ponzoni and De 
Gonçalves, 1999). These molecules can, however, be influenced by nitrogen (a compound linked to 
protein synthesis) concentrations (Mutanga et al., 2003). Fluctuations in nitrogen levels can disrupt 
the metabolic function of chlorophyll molecules and affect the photosynthetic process  (Mutanga et 
al., 2003). Through this direct interaction, studies have highlighted the strong relationship between 
foliar nitrogen and chlorophyll (Oppelt, 2002, Mutanga et al., 2003). Following the identification of 
the visible and infrared region of the electromagnetic spectrum as the most characteristic 
wavelengths for vegetation (Allen et al., 1969), further investigations led to the discovery of 
distinctive spectral signatures for nitrogen and leaf constituents (Himmelsbach et al., 1988, Curran, 
1989, Martin et al., 2008). For instance, Himmelsbach et al. (1988) and Curran (1989), documented 
the absorption features of several different biochemicals through laboratory and field studies (see 
table 1).  

 
Table 1. Summarised Absorption features of specific biochemicals based on earlier research by 

Curran (1989), Himmelsbach et al. (1988), and Fourty et al. (1996). 
Absorbing biochemical Wavelength (nm) 

Water 970, 1200, 1400, 1450, 1940 

Nitrogen 1020, 1510, 1730, 1980, 2060, 2130, 2180, 2240, 

2300 

Lignin 1120, 1200, 1420, 1450, 1690, 1754, 1940, 2262, 

2380 

 

The use of imaging spectroscopy for assessing or estimating vegetation health has regularly been 
hindered through low spectral resolutions of previous generation sensors. The advancement of 



South African Journal of Geomatics, Vol. 8. No. 2, September 2019 

194 
 

optical sensor capabilities has facilitated the improvement of foliar biochemical estimation (Asner, 
2000).  

1.2. Hyperspectral remote sensing  

Early exploration by Card et al. (1988) using dried crushed leaves from deciduous and conifer 
trees demonstrated the utility of spectroscopy for estimating substances such as: chlorophyll, lignin, 
and nitrogen. The estimation of foliar biochemical properties using high spectral remote sensing has 
its origins within laboratory spectroscopy (Martin, 1992). This is apparent from studies such as 
Peterson et al. (1988) who replicated laboratory investigations by Card et al. (1988), using an 
airborne imaging spectrometer and a stepwise multiple linear regression to predict foliar 
biochemicals at a forest canopy level. Hyperspectral remote sensing, which comprises of numerous 
contiguous spectral bands that range from 350 nm to 2500 nm, can provide detailed spectral 
information from every pixel in an image (Goetz, 1985). It is an advanced tool that can deliver high 
spatial and spectral resolution data (Serrano et al., 2002). This subsequent data can facilitate the 
detection of absorption features based on the spectral characteristics of the investigated material 
(Goetz, 1985). For example, Wessman et al. (1988) and Johnston et al. (1994), both discovered 
positive relationships between wavelength segments for lignin and nitrogen and their absorption 
feature signals.  

Several studies (Martin and Aber, 1997, Curran et al., 2001, Ollinger et al., 2002) have since 
documented the utility of the near-infrared and the shortwave-infrared regions of the 
electromagnetic spectrum for estimating foliar biochemicals, with the visible and red-edge sections 
showing the greatest potential for chlorophyll estimation (Curran et al., 2001). Nitrogen, a vital 
component to the photosynthetic process, has received significant attention (Card et al., 1988). 
Nitrogen has been documented to have absorption features between 1020 nm and 2300 nm of the 
spectrum (Table 1) (Curran, 1989). However, the spectral regions between 1355 nm – 1450 nm and 
1800 nm – 1950 nm are known water absorption features and are usually excluded from analyses 
(Abdel-Rahman et al., 2010). The red-edge region of the electromagnetic spectrum is often used to 
estimate chlorophyll and nitrogen content (Ramoelo et al., 2015b). Furthermore, several studies 
have demonstrated that the usage of the red-edge part of the spectrum in ratio indices and 
normalised difference indices can aid in estimating chlorophyll and nitrogen content (Abdel-
Rahman et al., 2010, Ramoelo et al., 2015b).  

For instance, Martin and Aber (1997), successfully determined that AVIRIS (400 nm – 2500 nm) 
data and multiple linear regressions could be used to estimate forest canopy nitrogen and lignin at 
20m spatial resolution. In addition, they successfully developed calibration equations linking 
nitrogen and lignin to selected first difference spectral bands with R2 values of 0.87 and 0.77, 
respectively. Similarly, using AVIRIS data, Serrano et al. (2002) tested the possibility of estimating 
canopy nitrogen and lignin in chaparral vegetation with a multiple stepwise regression analysis. 
With Log transformed R indices based on known nitrogen and lignin absorption features, they 
demonstrated a significant correlation with canopy biochemical concentrations. Following this, 
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Wang et al. (2013) in an unrelated study, compared two types of methods systematically to estimate 
the nitrogen concentration of rape seed. They discovered that with canopy hyperspectral reflectance 
data, an artificial neural network is better suited to predicting nitrogen concentrations in rape seed. 
In a different study, Ling et al. (2014) used various platforms to evaluate different methods for 
estimating canopy nitrogen from a tallgrass prairie with varying treatments. Their results 
demonstrated that the best method differed between in situ and aircraft data between seasons. Using 
controlled nitrogen addition and reference plots, O’Connell et al. (2014) demonstrated that the first 
order derivative normalised difference index (FDN) 1235, 549 bands were most strongly correlated 
with foliar nitrogen concentration. Building on this, Lepine et al. (2016) examined spectral 
signatures associated with foliar nitrogen in forests using partial least squares, simple and multiple 
regression calibration equations in tandem with hyperspectral data. The results produced indicated 
that most of the variability in canopy nitrogen percentage is linked to the broad reflectance 
properties in the near-infrared section of the spectrum. This indicates potential for nitrogen 
estimation at a broad canopy scale from an assortment of sensors.  

Nitrogen concentrations within a landscape may vary across different plant species, the ability to 
remotely detect nitrogen deficiency in different species is extremely valuable. Ferwerda et al. 
(2005) attempted to detect nitrogen with hyperspectral normalised ratio indices for several 
vegetative types. They concluded that in a mixed-species scenario, the combined use of bands 693 
nm and 1770 nm within normalised ratio indices will produce the best nitrogen correlation. 
Following this development, Martin et al. (2008) tested a generalisable technique to assess canopy 
nitrogen within diverse forest systems. After conducting a partial least squares regression analysis 
(R2 values extending from 0.69 to 0.85), they concluded that additional research that contains a 
broader variety of ecosystems is needed. These and other studies have proved the utility of 
hyperspectral data to estimate foliar nitrogen and other biochemicals at varying spatial scales 
(Mutanga et al., 2003).  

Hyperspectral data, however, is expensive, particularly over large spatial areas and is often 
difficult to obtain in many regions (Sibanda et al., 2015). In addition to these problems, the foliar 
water content of fresh leaves is often a factor that can mask absorption features of many 
biochemicals, such as nitrogen (Gao and Goetz, 1994). To address this, the water removal method 
was derived (Gao and Goetz, 1994). The procedure utilises a nonlinear least squares spectral 
method that analyses a fresh leaf spectrum as a nonlinear grouping of a fresh leaf water spectrum 
and a dry-matter spectrum (Schlerf et al., 2010). This technique was initially proposed by Gao and 
Goetz (1994), prior to being revised by Schlerf et al. (2010). Thereafter, utilising hyperspectral 
data, Ramoelo et al. (2011) in their study of estimating savanna grass nitrogen, incorporated a 
similar technique to successfully reduce the effects of foliar moisture on the estimation of 
biochemicals.  
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1.3. Multispectral remote sensing  

Spatial and spectral monitoring from space was realised through the LANDSAT programme 
(Serrano et al., 2002). Multispectral sensors use a small number of broad spectral bands across the 
electromagnetic spectrum to obtain spectral data. The data produced by these sensors encompass 
high temporal and moderately high spatial resolutions, and are often freely available to resource 
constrained areas (Lu, 2006). Regardless of this, a large portion of the available research has 
critiqued the low spectral resolutions and large swath widths as hindering the ability to adequately 
discriminate the differences in plant characteristics (Hansen and Schjoerring, 2003).  

However, advancements in multispectral sensors which include improved spectral resolutions 
and improved bandwidths has provided a greater potential for vegetation mapping applications 
(Oumar and Mutanga, 2013). Thus, a growing body of literature has emerged which document the 
capabilities of new generation multispectral remote sensing sensors in estimating biochemical 
properties (Serrano et al., 2002, Perry et al., 2012). For instance, Ramoelo et al. (2012) used the 
RapidEye multispectral sensor, which has a 440nm – 850nm spectral resolution and a 5m spatial 
resolution, to successfully regionally map foliar and canopy nitrogen. They established the potential 
of mapping grass nutrients at a regional scale using a non-linear spatial least squares regression. 
Similarly, Perry et al. (2012) used multispectral RapidEye imagery to rapidly estimate canopy 
nitrogen of cereal crops at a paddock scale. The results produced by the canopy chlorophyll content 
index, however, were indecisive, as R2 values for individual datasets ranged from 0 to 0.70. 
Ramoelo et al. (2015b), achieved more definitive results in their study of monitoring foliar nitrogen 
and above ground biomass using higher resolution Worldview-2 (3m spatial resolution) satellite 
images. Their results indicated that foliar nitrogen concentrations for grass and trees species were 
explained by over 89% by the random forest algorithm and vegetation indices, with red-edge 
derived vegetation indices identified as crucial for estimating foliar nitrogen.  

A few studies have investigated the effectiveness of Sentinel-2 imagery in detecting leaf nitrogen 
content at a broader landscape scale (Sibanda et al., 2015). For example, Ramoelo et al. (2015a) 
tested the potential of Sentinel-2 to estimate leaf nitrogen concentrations within the African savanna 
by resampling field hyperspectral data to the spectral bands of Sentinel-2. They were able to explain 
90% of leaf nitrogen variation using a random forest algorithm. Similarly, Sibanda et al. (2015) 
resampled hyperspectral data to the spectral resolutions of Sentinel-2 and Landsat OLI. They 
concluded that with the use of a sparse partial least squares regression, both Sentinel-2 (R2 = 0.81) 
and Landsat OLI (R2 = 0.76) are promising multispectral sensors for regional scale application in 
resource constrained regions. 

1.4. Radiative transfer models.  

 Several studies have demonstrated the versatility of remote sensing for the estimation of 
vegetation properties at both leaf and canopy level (Feret et al., 2008, Gitelson et al., 2005, Asner 
and Martin, 2015). Historically, two main approaches have been utilised by the remote sensing 
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community to derive plant biochemical information from remotely sensed data, namely: statistical 
methods, and physical methods (Ali et al., 2016). Statistical methods, which includes both 
univariate and multivariate models (such as Partial least squares regressions and machine learning 
algorithms) usually combined with spectral vegetation indices, are used to obtain a relationship 
between vegetation properties and its spectral reflectance (Féret et al., 2017, Asner and Martin, 
2009, Le Maire et al., 2011). These methods allow for the uncomplicated and timely assessment of 
vegetation attributes. However, due to the empirical nature of these methods, these models depend 
on the quality and variability of the data used (Le Maire et al., 2011). Thus, their use can be limited 
to the representativeness of the calibration dataset (Féret et al., 2017). Physical model approaches, 
such as the inversion of Radiative Transfer Models (RTM), provides an alternative (Ali et al., 
2016).  

Radiative Transfer Model (RTM) approaches have been derived to characterise the interaction of 
diverse vegetation properties with incoming solar radiation (Koetz et al., 2007). These models offer 
a clear connection between plant variables and the resultant spectral signature (Koetz et al., 2007). 
RTM approaches have been established and revised since the early 1990s (Vilfan et al., 2016). 
Initial research on leaf reflectance modelling was founded upon the “Kubelka-Munk” radiative 
transfer theory (Allen and Richardson, 1968), which is a dual approximation to the radiative 
transfer equation. Thereafter, Allen et al. (1969), developed the multiple “Plate” model that formed 
the basis of the “PROSPECT” model, derived by Jacquemoud and Baret (1990). The PROSPECT 
model is one of several leaf optical models designed to simulate the radiative transfer of light and 
biochemical properties (Dawson et al., 1998, Le Maire et al., 2011).  It also describes the optical 
properties of plant leaves from 400 nm to 2500 nm with minimal parameters to support model 
inversion (Jacquemoud and Baret, 1990). Several studies have utilised the PROSPECT model to 
derive biochemical properties (Fourty et al., 1996, Jacquemoud et al., 1996, Jay et al., 2016). For 
example, Feret et al. (2008), used PROSPECT-4 and 5 models to separate photosynthetic pigments. 
Their testing revealed that their new chlorophyll (RMSE = 9 μg/cm2) and carotenoid (RMSE=3 
μg/cm2) specific absorption coefficients correlated with available in vitro absorption spectra. Whilst 
in a different study, Ali et al. (2016), successfully inverted the PROSPECT model to estimate leaf 
dry matter content (R2 = 0.83) and specific leaf area (R2 = 0.89). Although few studies have 
successfully utilised RTM approaches to indirectly estimate foliar nitrogen, RTM approaches can 
be considered robust and could be utilised for the large-scale estimation of foliar N, in addition to 
allowing nitrogen estimation models to be transferrable from one site to another. 

Nonetheless, several studies (Martin et al., 2008, Lepine et al., 2016) have also shown the 
capacity of remote nitrogen estimation in regional monitoring. In particular, Martin and Aber 
(1997), concluded that remote sensing is central in monitoring and understanding how changes in 
forest ecosystem function can influence global biogeochemical cycles. As a result, the remote 
estimation of nitrogen is a field which can facilitate the creation of a safe operating space for 
biogeochemical cycles (Ling et al., 2014).  
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This review delivers a systematic account of published literature directly associated with the use 
of remote sensing data in quantifying foliar nitrogen concentrations. Here, we exhibit examples 
from the available literature that summarise; a) the trends and number of studies published, b) types 
of applications and challenges associated with the research, and c) recommendations for future 
research, highlighting gaps and opportunities. In order to accomplish this, the relevant literature was 
methodically searched for explicit information concerning the remote sensing sensor used, the 
application of the research, and its geographical distribution.  

 

2. Methods 

This review paper, systematically focused on academic publications that investigated the 
estimation of foliar nitrogen levels for application in different sectors (e.g. agriculture, policy and 
management, academic research), between the years of 1966 and 2016. The method used to query 
relevant literature undertook a discriminatory keyword search within specific scientific platforms 
(i.e. Scopus and Web of Science) (de Araujo Barbosa et al., 2015). A combined word search for 
“Remote Sensing” and “Nitrogen” was used in each academic platform to produce an extensive list 
of articles. A set of fixed inclusion criteria was applied using the Scopus and Web of Science 
platforms to obtain a more representative body of literature. These criteria included:    

1) Literature should have “Remote sensing” or “Nitrogen” as the main or secondary subject 
area.  

2) The keywords should exist as a whole in either the: title, keywords, or abstract. 
3) The paper should be published in a scientific peer-reviewed journal. 
4) The paper should be written in English (de Araujo Barbosa et al., 2015).  

Figure 1 demonstrates a simplified flow of the literature selection process. Preliminary search 
results produced a vast body of literature (n = 4345). The use of the inclusion criteria drastically 
reduced this list (n = 3069). Furthermore, only papers that met the criteria of peer-reviewed 
publication were included, this meant that books, grey literature, extended abstracts and 
presentations were excluded (n = 2994) (de Araujo Barbosa et al., 2015). The DOI numbers of 
literature that were not excluded during the data extraction process were recorded in an Endnote 
database. This allowed for duplicate papers to be removed from the relevant literature (n = 2527). 
Thereafter, due to the large consortium of literature, the papers were sorted by their DOI numbers 
within and excel database and a random sample was used for closer analysis (n = 100). 
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Figure 1. Flow diagram demonstrating the literature search process (modified from de Araujo 

Barbosa et al. (2015)).                 
 

3. Results 

3.1. Numbers and spatial distribution of Research 

Upon conclusion of the literature search, it was discovered that the amount of academic 
publications directly related to the subject of remote sensing and nitrogen grew from 1 published 
paper in 1966 to a collection of 2527 papers in 2016 (Figure 2). This exponential increase within a 
50-year period denotes a rapid development of interest within this research space. However, on 
closer examination, it is evident that the global distribution of the research undertaken is heavily 
populated within the Northern Hemisphere, with the largest research gap prevalent within the 
African Continent (Figure 3). Other geographical regions that lack research into the remote 
estimation of nitrogen include Central America, Eastern Europe, and the Middle East. This gap in 
geographical focus persists due to a lack of availability and access to remote sensing resources in 
these regions.  
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Figure 2. Number of remote sensing and nitrogen papers published annually between 1966 and 

2016. 

 
Figure 3. Global distribution of all published remote sensing and nitrogen estimation papers 

published between 1966 and 2016. 
 

Figure 4 demonstrates the application focus of publications within the field of remote sensing 
and nitrogen estimation. A large consortium (56%) of the published work exists under the confines 
of agricultural research. Research into precision agriculture for cultivation purposes is the most 
investigated. For example, Fitzgerald et al. (2010), acquired field hyperspectral measurements and 
used both a canopy chlorophyll context index and a canopy nitrogen index to adequately manage 
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nitrogen fertiliser application in wheat crops. In a similar study, Perry et al. (2012) combined 
multispectral data with a canopy chlorophyll context index to rapidly estimate canopy nitrogen and 
provide optimal support for nitrogen fertiliser management in cereal crops. Research into the 
remote nitrogen estimation for rangeland and forestry applications has not been as extensive as the 
investigation into precision agriculture. Several studies have demonstrated that the ability to 
remotely detect nitrogen concentrations is invaluable for rangeland and forestry applications. For 
example, Ramoelo et al. (2012) demonstrated that the red-edge band of the RapidEye sensor can 
assist in mapping grass nutrients at a regional scale. Figure 4 further highlights that limited research 
incorporates remote sensing with the intention to influence nitrogen management, with only 8% of 
publish work referring directly to policy and nitrogen management.  

 
Figure 4. Application focus of Remote sensing and nitrogen publications. 

 

4. Discussion 

4.1. Challenges  

The number of publications that incorporated remote sensing and the estimation of nitrogen 
concentrations has been limited. However, since 2006, the number of publications has grown 
exponentially indicating that more applications are integrating remote sensing for nitrogen 
determination in various disciplines. Despite the successes of the investigations reported, the 
growing rate of publications integrating remote sensing has alluded to regions for further 
development, particularly regarding practical applications. Here we contemplate some of the 
challenges identified within the literature reviewed and present viable solutions. 

The use of hyperspectral and multispectral imagery still faces several challenges. For instance, 
many hyperspectral studies of foliar biochemistry founded on foliar reflectance were recorded 
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under laboratory conditions (Gates et al., 1965, Curran et al., 2001). Inconsistencies regarding 
inadequate signal spread from the leaf to canopy level because of leaf morphology (i.e. leaf area, 
leaf angle, and canopy closure) plague the identification of biochemical absorption features at a 
canopy scale (Asner, 2000). To account for these complications, predictors which are independent 
to vegetation structure are required (Majeke et al., 2008).  

Furthermore, foliar water content of fresh leaves is often a factor that can disguise absorption 
features in the near-infrared and shortwave-infrared regions of the spectrum for many biochemicals, 
principally nitrogen (Gao and Goetz, 1994). An investigation by Curran (1989), revealed several 
biochemical absorption features (including nitrogen) exists within regions of the spectrum 
synonymous with water absorption. To reduce the effect of foliar moisture on the approximation of 
biochemicals, Gao and Goetz (1994) developed a technique to eliminate the impacts of water 
absorption centres on biochemical estimation in fresh foliage. This technique was modified and 
applied successfully by Schlerf et al. (2010) to predict nitrogen concentrations in Norwegian spruce 
needle. Building on this, Ramoelo et al. (2011) in their study of estimating savanna grass nitrogen 
and phosphorus concentrations, deduced that the water removed spectra technique produced a 
greater nitrogen estimation accuracy as opposed to conventional first derivative transformations 
with an R2 of 0.84 and an RMSE of 0.28 compared to 0.59 and 0.45 respectively.  

Lastly, accurate biochemical estimations can be hampered by a high supply of nitrogen. With an 
elevated supply of nitrogen, chlorophyll molecules can reach a stage of saturation, which may 
prevent the detection of excessive nitrogen in plants (Muñoz-Huerta et al., 2013). Nevertheless, this 
can be corrected with relative chlorophyll concentration values, which can be derived from 
reference nitrogen plots (Serrano et al., 2002).  

4.2. The development of new technology and future opportunities 

A large proportion of the research into nitrogen estimation utilised hyperspectral sensors as 
opposed to multispectral sensors. Several studies (Curran et al., 2001, Hansen and Schjoerring, 
2003, Mutanga et al., 2003) have cited the low spectral resolutions and large swath widths of the 
previous generation of multispectral sensors as hindering the ability to adequately discriminate 
differences in plant characteristics. The development of new generation satellites such as high-
resolution Worldview-3 (31 cm) and freely available 13 band Sentinel-2 offer high spatio-temporal 
resolutions to previously resource restricted regions (Kruse et al., 2015). The unique spectral and 
spatial characteristics provide greater opportunities to rapidly detect and monitor environmental 
changes, such as mapping changes in nitrogen concentrations over larger areas of interest. 
WorldView-3 was introduced as a super-spectral, high resolution commercial satellite by 
DigitalGlobe (Wang et al., 2016b). It has an average revisit time of < 1 day and boasts a 31-cm 
panchromatic resolution, 1.24 m multispectral resolution, and a 3.7 m short-wave infrared 
resolution (Kruse et al. 2015). WorldView-3 images can be used for a wide-range of applications, 
such as the monitoring of vegetation, however, the cost of purchasing these images are exorbitant 
(Wang et al., 2016b).  
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Sentinel-2, which offers a high-spatio-temporal resolution and is freely accessible, offers a cost-
effective option. Sentinel-2 is part of the Copernicus programme introduced by the European Space 
Agency (ESA) designed for the operational needs of the “Global Monitoring for Environment and 
Security” program (Clevers and Gitelson, 2013). The satellite is equipped with a Multi-spectral 
instrument (MSI) that will provide high spectral, temporal and spatial resolution imagery. It will 
cover the visible, near-infrared and the shortwave infrared parts of the electromagnetic spectrum 
(Gitelson et al., 2005). This is expected to further improve remote sensing capabilities for mapping 
Leaf Area Index (LAI), Chlorophyll Content, and Foliar Nitrogen (Ollinger, 2011). In addition, this 
will ensure that research into policy and management applications within the Southern Hemisphere 
will not be inhibited by a lack of high spatial and temporal resolution satellite imagery.  

Furthermore, in recent years many studies have combined Light Detection and Ranging 
(LiDAR) with other remotely sensed datasets to facilitate the estimation of foliar nutrients 
(Gokkaya et al., 2015). For example, during an investigation of foliar nitrogen estimation in rice 
using hyperspectral LiDAR, Du et al. (2016), concluded that characteristic wavelengths of 
hyperspectral lidar systems can be flexibly selected according to different requirements and can be 
applied in other research applications (such as environmental monitoring). Moreover, the 
capabilities of Synthetic Aperture Radar (SAR) imagery in facilitating the remote estimation of 
nitrogen concentrations should be investigated. It has been highly effective in other areas of 
environmental research (e.g. studies of mangrove forests) due to its cost effectiveness and large-
scale coverage (Wang et al., 2016a).   

 

5. Summary and Conclusion 

This review has summarized the progression of research from the sole laboratory estimation of 
nitrogen, towards the use of remotely sensed data in estimating foliar nitrogen concentrations. A 
quantitative description showing the number of publications, both temporally and spatially, was 
achieved through a methodical assessment of the available literature. The capacity to remotely 
estimate nitrogen concentrations, particularly over large landscape regions has vastly improved over 
the last decade. Despite this, there are several factors that future research needs to consider. 
Moreover, there is a glaring gap within the research into the policy and management of nitrogen. 
Further investigation into the remote estimation of nitrogen to expressly influence policy is required 
to adhere to the confines of a safe operating space. The introduction of freely available, high spatial 
and temporal resolution imagery has opened the door for future investigation within the Southern 
Hemisphere. 
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