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Abstract 

Uromycladium acaciae, also known as wattle rust, is a rust fungus that has adversely impacted 
black wattle (Acacia mearnsii) in South Africa. This study assessed the potential of the Landsat 8 
multispectral sensor to detect canopy damage caused by wattle rust on two plantation farms near 
Richmond, KwaZulu-Natal. The Landsat 8 bands and vegetation indices detected forest canopy 
damage caused by Uromycladium acaciae with an accuracy of 88.24% utilising seven bands and 
the Partial Least Squares Discriminate Analysis (PLS-DA) algorithm. Additionally, the model was 
optimised using the Variable Importance in Projection (VIP) method which only selected the most 
influential bands in the model. The coastal aerosol band (430nm-450nm), red band (640nm-
670nm), near infrared (850nm-880nm) and NDVI were exclusively used in the optimised model and 
an accuracy of 82.35% was produced. The study highlighted the potential of remote sensing to 
detect canopy damage caused by a rust fungus and contributes towards a monitoring framework for 
analysing trends using freely available Landsat 8 imagery.  

 

1. Introduction 

Plantation forestry covers about 1.2 million hectares and predominantly occupies the 
Mpumalanga and KwaZulu-Natal provinces located in the eastern seaboard of the country. 
Softwood tree species include Pinus species while hard wood species are dominated by Eucalyptus 
and Acacia species (Forestry South Africa, 2017). One of the most common species grown by 
wattle growers in South Africa is Acacia mearnsii, which is also known as Black Wattle. 
Approximately 112 029 ha of land is planted with Acacia mearnsii which contributes 7.4% to the 
market for timber and pulp production (Meyers et al., 2001). The bark of Black Wattle is 
considered to contain one of the richest sources of tannins which has various industrial uses, 
including that of leather tanning (Sherry, 1971). Apart from its characteristic in the bark, wattle 
trees are also utilised in soil reclamation, as wind breaks, fire fuel, mining timber and paper pulp 
(Rusk et al., 1990; Sherry, 1971). In South Africa, Black Wattle is mostly grown for chip export 
and the production of charcoal (Crickmay and Associates, 2010). Furthermore, there are large areas 
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of unmanaged wattle stands and woodlots which contributes towards the livelihoods of rural 
communities. Black Wattle is therefore an economically important tree species for plantations and 
is also socially important to the rural communities of South Africa. Nonetheless, with the constant 
increase in demand for timber products, forest production is under pressure and the future 
sustainability of the industry is at risk. One of the major threats identified by the South African 
National Forest Protection Strategy and adopted by the Department of Agriculture, Forestry and 
Fisheries (DAFF) is the escalating impact of pests and pathogens (Dyer et al., 2010). 

During 2013, an outbreak of a new disease has been observed in Black Wattle around the 
KwaZulu-Natal Midlands area, caused by a rust fungus. The pathogen has spread fast to all wattle 
growing areas in the country, becoming a major concern for wattle growers in the region 
(McTaggart et al., 2015). A concerted research effort has been undertaken by the Tree Protection 
Co-operative Programme (TPCP) together with the Institute for Commercial Forestry Research 
(ICFR) and industry partners to develop an effective management strategy to reduce the impact of 
the rust. Recent DNA sequencing techniques have been used to identify the rust as Uromycladium 
acaciae (McTaggart et al., 2015). Some of the symptoms of the affected trees include leaf spots, 
petiole and rachis deformation, defoliation, gummosis, stunting and dieback of seedlings (Figure 1). 
Fungicides are currently being tested for the control of Uromycladium acaciae. However, more 
research needs to be undertaken to understand the seasonal cycle of the rust and environmental 
triggers of outbreaks to optimise the timing of interventions.  
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Image Picture Symptom 

 
Image A  

 

The slime as seen on black 
wattle in Enon an Etterby 
plantations. 

Image B 

 

Leaf curl seen on a few 
trees. 

Image C  

 

Telia present on the leaves. 

Image D  
 

 

Uredinia present on leaves 
and stem. 

Figure 1. Uromycladium acaciae impacts on Acacia mearnsii trees. 

To effectively respond to the impact and spread of the rust, forest managers and researchers 
require up-to-date information related to the current spatial extent, variability and severity of such 
infestation.  Monitoring and surveillance are in fact a key component of an effective pest and 
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disease management strategy, however, there is currently no system in place in response to this 
need. More generally, the need for a forest health surveillance system has been identified as a 
priority for the South African forestry sector (Dyer et al., 2010). Current capabilities are inadequate 
with conventional field-based methods being prohibitively expensive, labour intensive and time 
consuming. According to Oumar and Mutanga (2010) field-based assessments are the most accurate 
in determining forest health, however, this is not a feasible option when larger areas of forest health 
estimates are needed. Earth observation technologies such as satellites provide local to global 
coverage on larger areas where field measurements are unfeasible on a regular basis. Remote 
sensing technologies as an alternative, offer the potential to enhance forest management strategies 
by providing a synopsis of forest health rapidly and over vast geographic extents (Wanger et al., 
2010).  

This study seeks to develop an impact detection methodology that can be used for mapping and 
monitoring the presence of wattle rust using remote sensing technologies. The development of such 
methodology will not only play a key role for the management of the wattle rust to ensure the 
sustainability of wattle resources into the future (Forestry South Africa, 2017) but will also 
contribute towards the development of a broad national forest health monitoring system.  

New generation, moderate resolution space-borne imagery can be an inexpensive, effective 
technology for the mapping, monitoring and risk assessment of new canopy pests and pathogens 
(Asner et al., 2011; Wang et al., 2010). This technology has been widely adopted for the monitoring 
of forest health and in support of integrated pest management strategies (Kennedy et al., 2010; 
Meigs et al., 2011; Verbesselt et al., 2010; Wulder et al., 2012). For example, the Landsat sensor is 
particularly sensitive to changes in forest structure in the near infrared and short-wave infrared 
channels (Wulder et al., 2006). Image transformations in the near infrared and short-wave infrared 
regions have shown an 86% success rate in mapping subtle changes in canopy due to Mountain pine 
beetle red-attack damage. This result was achieved utilising a logistic regression approach (Wulder 
et al., 2006). Ismail and Mutanga (2006) visually assessed damage to pine compartments triggered 
by Sirex noctilio attacks. The visual inspections were classed in a severity scale of damage. Using 
high resolution imagery (5m x 5m) they could show significant differences in the vegetation indices 
derived from the imagery between healthy and visually damaged pine compartments (Ismail and 
Mutanga, 2006). Oumar and Mutanga (2013) used the WorldView-2 sensor to detect 
Thaumastocoris peregrinus (Bronze Bug) damage in Eucalyptus plantations. Vegetation indices and 
environmental variables were entered separately into a Partial Least Squares (PLS) regression 
model and then combined in one model to test the collective strength of predicting Thaumastocoris 
peregrinus damage. An accuracy of 71% was achieved using the PLS regression model and bands 
in the red-edge and near infrared were identified as important predictors of damage (Oumar and 
Mutanga, 2013). Lottering and Mutanga (2015) successfully mapped levels of Gonipterus 
scutellatus damage in commercial Eucalyptus stands utilising a pan-sharpened WorldView-2 image. 
NDVI, Simple Ratio and Enhanced Vegetation Index were used as variables to detect damage. As 
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with previous studies (e.g. Oumar and Mutanga, 2013) it was observed that NDVI values were most 
significant in detecting defoliation in forest plantations.  

In summary, the sudden outbreak of Uromycladium acaciae has caused serious concerns towards 
the sustainability of the South African wattle industry. Black wattle is one of the most profitable 
tree species per hectare due to its bark and wood properties and requires urgent mitigation against 
the rust fungus. It is within this context, that this study aims to detect damage and map the current 
spatial extent of damaged plantations using medium resolution and cost-effective Landsat 8 
operational land imager (OLI). The Landsat 8 sensor has seven spectral bands with a spatial 
resolution of 30 meters and would be advantageous for site interventions if successful in detecting 
disease defoliation in plantation forestry. A Partial Least Squares Discriminant Analysis (PLS-DA) 
framework is adopted in this study owing to the recent success in forest type applications globally 
(dos Santos et al., 2017; Peerbhay et al., 2013; Peerbhay et al., 2014; Peerbhay et al., 2016) and to 
the best of our knowledge the method has not being used for forest defoliation mapping using 
remotely sensed data in South Africa.   

 

2. Methods and materials  

2.1. Study area 

The study area is located near Richmond (29.8667° S, 30.2667° E) in the KwaZulu-Natal 
province of South Africa. It covers an area of 875ha and is situated at an altitude range between 
900m and 1400m above sea level. The area receives annual rainfall ranging from 800mm to 
1280mm and has an average annual temperature of 17  Celsius. The area has deep well drained 
soils where timber and sugar cane are the primary resources planted across the arable land. Acacia 
mearnsii and Eucalyptus smithii are the most common tree species planted. The study area was 
chosen due to intense oubreaks of wattle rust and the noticable decline in tree health and 
productivity (Mucina and Rutherford, 2006).      
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Figure 2. Location of the study area with the boundary of Enon and Etterby forest plantations. 
 
2.2. Landsat 8 

The Landsat 8 image has a scene size of 170km north-south by 180km east-west. The image 
consists of seven spectral bands and 30 meters’ resolution (Table 1). NDVI values were also 
calculated due to the success in previous studies to detect forest defoliation (Oumar and Mutanga, 
2013). The image area under investigation was acquired from the United States Geological Survey 
website (www.usgs.com) and prepared for image processing. The image was atmospherically 
converted to radiance and then surface reflectance using the dark image subtraction method 
(Chavez, 1988). Using the field survey plots, image spectra were extracted using ENVI 4.8 to 
develop an input dataset into the PLS-DA model for discrimination (Congalton and Green, 1999). 
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Table 1. Landsat 8 Operational Land Imager (OLI) bands and wavelength 
Bands Wavelength (nanometres) Resolution (meters) 

Band 1 - Coastal aerosol 430-450 30 

Band 2 - Blue 450-510 30 

Band 3 - Green 530-590 30 

Band 4 - Red 640-670 30 

Band 5 - Near Infrared (NIR) 850-880 30 

Band 6 - SWIR 1570-1650 30 

Band 7 - SWIR 2110-2290 30 

 
2.3. Field data collection  

Following the industry protocol developed in conjunction with the TPCP and Forest Agricultural 
Biotechnology Institute (FABI), 79 field plots were set in wattle compartments between the ages of 
7 and 9 years and which were greater than 7ha (approximately 9 pixels) to avoid spectral noise from 
adjacent land cover. Each field plot was surveyed to determine the presence, level of infestation and 
impact of the rust, Uromycladium acaciae, on the forest canopy.  Each field plot consisted of a 
rectangular plot of 30m x 30m consisting of 100 trees planted at a spacing of 3m x 3m. A 
differentially corrected handheld GPS was used and recordings were taken at each plot centre. Since 
the presence of the rust was surveyed to be widespread with no clear identification of a non-infected 
wattle stand, 31 plots showing no symptoms of the wattle rust were used as control plots and were 
located in the Mpumalanga region. 

 

3. Statistical Analysis 

3.1. Partial Least Squares Discriminant Analysis (PLS-DA) 

PLS-DA is a regression based prediction model that identifies a correlation between the predictor 
variable (X = spectral bands) and the response variable (Y = wattle rust) (Wold et al., 2001). The 
goal of using PLS is to provide dimension reduction in the dataset. In this study, the response 
variable was the wattle rust which is binary and classed into presence of damage and absence of 
damage. The PLS-DA model creates a few eigenvectors which explain the variance of the spectral 
reflectance as well as the correlation with the response variable (Peerbhay et al., 2013). 

Due to the large number of correlated variables in a PLS-DA model, a cross validation analysis 
was performed to test the significance of each component using Tanagra statistical software 
(Rakotomalala et al., 2005). Components were added numerically until the lowest coefficient of 
variation (CV) error rate was obtained. The purpose of cross-validation is to avoid using too many 
low order components which may reduce the model accuracy (Peerbhay et al., 2013).  

The Variable Importance in the Projection (VIP) method was used to select bands that have the 
highest importance in a PLS-DA model:  
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                                           [1]        

Where VIPk is the importance of the kth waveband based on a model with α components. Wαk is 
the corresponding loading weight of the kth waveband in the αth PLS-DA component. ta, wa and qa 
are the ath column vectors, and K is the total number of wavebands of X (Gomez et al., 2008).  

This method scores each waveband in the dataset and ranks them in order of importance. Bands 
that score higher than one have the highest influence in the model. The model was then re-run using 
the VIP bands to test if the classification accuracy improved or regressed (Peerbhay et al., 2013). 
 
3.2. Accuracy assessment 

Approximately, 70% of the data was used for model training and 30% for model testing. A 
confusion matrix was used to validate the accuracy. The overall accuracy was tested using kappa 
(KHAT) statistic which is a measure of how well the classifier predicts the reference data. KHAT 
values range from -1 to +1, where +1 represents perfect accuracy between training and test datasets 
(Congalton and Green, 1999) 

 

4. Results 

4.1. Mean Uromycladium acaciae reflectance 

The mean reflectance of Uromycladium acaciae infected trees is shown in Figure 3. The 
reflectance indicates a normal spectral vegetation curve with low reflectance in the visible spectrum 
and a sharp spike in the Red and Near Infrared regions. 

Figure 3. Reflectance of Uromycladium acaciae infected trees from Landsat 8 bands (n =7) 
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4.2. PLS-DA model optimization  

The addition of components to the PLS-DA model reduced the error rate as depicted in Figure 4. 

Using the first component which produced an error rate of 17.89. However, as more components 

were progressively added to the model, the error began to decrease with the lowest error recorded 

by 6 components at 4.09%. The model thereafter stabilised on the 7th and 8th component. Using 6 

components, the PLS-DA model was then developed with all 7 bands including NDVI.  

 

Figure 4. Testing PLS-DA components to determine the lowest CV error with 7 bands and NDVI 
using tenfold cross-validation. 

4.3. PLS-DA Classification 

The confusion matrix in Table 2 below indicates the performance of PLS-DA in classifying the 
presence and absence of Uromycladium acaciae damage on Acacia mearnsii. The PLS-DA model 
classified the presence of damage and absence of damage with an overall accuracy of 88.24% with 
a KHAT value of 0.76. 
 

Table 2. Confusion matrix using 7 Landsat bands. 
Class Absence of damage Presence of damage Row total 

Absence of damage 60 0 60 

Presence of damage 20 90 110 

Column total 80 90 170 

Producer accuracy 75% 100% Overall accuracy 88.24% 

User  accuracy 100% 82% Kappa 

0.76 
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4.4. PLS-DA model optimization using VIP bands 

The next step was to determine the VIP scores for the 7 bands including the NDVI variable. 
PLS-DA provides a hierarchal scoring system which lists wavebands which are most relevant in the 
model. Costal Aerosol (1.05), Red (1.03), Near Infrared (1.23) and NDVI (1.14) were selected by 
the VIP method.  Band 5 Near Infrared had the highest significance.  
 

Figure 5. Waveband importance as determined by the VIP method. The important wavebands are 
those with VIP values greater than one. 

 
The model was then run again using only the VIP bands as depicted in Figure 6. When 

optimising the model, four components yielded the lowest CV error rate of 6.88% as seen below in 
Figure 6. 
 

Figure 6. Testing PLS-DA components to determine the lowest CV error using the four VIP bands 
and NDVI. 
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The confusion matrix in Table 3 below indicates the performance of PLS-DA in classifying the 

presence and absence of Uromycladium acaciae damage with only the four VIP bands. The PLS-
DA model classified the presence of damage and absence of damage with an overall accuracy of 
82.35% and with a KHAT value of 0.66. 
 

Table 3. Confusion Matrix based on PLS-DA algorithm and variables selected by the VIP. 
Class Absence of damage Presence of damage Row total 

Absence of damage 70 30 100 

Presence of damage 0 70 70 

Column total 70 100 170 

Producer accuracy 100% 70% Overall accuracy 82.35% 

User  accuracy 70% 100% 
Kappa  

0.66 

 
 
5. Discussion 

This study has shown the potential of the freely available multispectral Landsat 8 satellite to 
detect the impact on trees infected with Uromycladium acaciae, in South African wattle plantations. 
The results show the success of the PLS-DA technique combined with remote sensed variables for 
disease damage detection in plantation forestry and contributes towards developing a routine 
monitoring system for repeated Uromycladium acaciae monitoring. Moreover, this study has shown 
that in addition to recent remote sensing techniques, utilizing PLS for pest detection (Oumar and 
Mutanga, 2010) and species classification (Peerbhay et al., 2013), the algorithm can also be 
successfully utilized for disease damage detection.  
 
5.1. Mapping Uromycladium acaciae damage using Landsat 8 and PLS-DA 

The ability to detect Uromycladium acaciae damage remotely provides a practical tool for 
identifying outbreaks thus contributing to mapping trends and the continuous monitoring of the 
disease. The freely available imagery of Landsat 8 and revisit time of 16 days make it a cost 
effective solution for monitoring Uromycladium acaciae damage (Oumar, 2016). Using the Landsat 
8 bands, PLS-DA successfully used 6 components to detect defoliation caused by Uromycladium 
acaciae and produced an accuracy of 88.24% and kappa value of 0.76. The accuracy obtained in 
this study is comparable to that of other studies which have identified other forest pathogens in 
South Africa using remotely sensed information (Poona and Ismail, 2013; Poona and Ismail, 2014). 
For example, Poona and Ismail (2013) used Quickbird imagery and artificial neural networks to 
detect pitch canker disease in Pinus radiata forests. Several vegetation indices were used to 
discriminate healthy tree crowns from infected tree crowns. The neural network model managed to 
produce an overall accuracy of 82.15%. Similarly, Poona and Ismail (2014) used a handheld field 
spectrometer to detect asymptomatic Fusarium circinatum stress in 3 months old Pinus radiata 
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seedlings. The random forest algorithm and the Boruta algorithm were used for classification and 
dimension reduction respectively. The Boruta algorithm highlighted the most important bands as 
well as the least important to discriminate between infected and healthy seedlings. Between the 
various classes of seedlings sampled in the study, the KHAT values ranged from 0.79 to 0.84. 
Additionally, by utilising only the most significant wavebands, the classification accuracy 
improved.  
 
5.2. Mapping Uromycladium Acaciae using VIP variables and PLS-DA  

PLS-DA provides valuable information on important variables based on the VIP method. The 
analysis of important variables selected by VIP has shown that the highest scores in the PLS-DA 
model were the Coastal Aerosol (430nm - 450nm), Red (640nm - 670nm) and NIR (850nm - 
880nm) regions of the electromagnetic spectrum respectively. The results obtained by the VIP 
model produced a slightly reduced overall classification accuracy of 82.35%. This is a reduction of 
5.89% when compared to using all seven bands. However, this process shows the capability of 
using fewer important bands to produce a high classification accuracy greater than 80%. 

The results of this study were in contrast to the study conducted by Peerbhay and Mutanga 
(2013), whereby the VIP analysis improved the classification of forest species. Peerbhay et al., 
(2013) found the accuracy improved to 88.78% utilising VIP bands (n =78) compared to utilising 
all AISA Eagle bands (n =230) which produced an overall accuracy of 80.61%. A possible reason 
for the different results between the two studies is the number of bands utilised. Landsat 8 has 7 
bands whereas AISA Eagle has a total of 230. The many bands of AISA Eagle may have caused 
over-fitting of the model and therefore reduced the overall accuracy. Landsat 8 has a fewer number 
of bands thus reducing the number of bands from 7 to 4 (VIP) lowers the sensors ability to detect 
spectral variation. Future work should consider the utility of employing higher spectral resolution 
multispectral sensors such as Sentinel, with 13 bands or WoldView-3 with 16 bands, to improve on 
detection results.  

The Near Infrared and NDVI indices calculated from Landsat 8 were classified as the most 
important variables for detecting Uromycladium acaciae damage. Vegetation indices calculated 
from Red and Near Infrared are sensitive to plant phenology and thus provide a good measure of 
forest health (Oumar, 2016). This highlights the potential to detect forest damage using the visible 
wavebands. Furthermore, this study illustrates the usefulness of PLS-DA in managing spatial data 
as well as successfully classifying areas that have been damaged by Uromycladium acaciae.  
 
5.3. Future work  

One of the disadvantages of broad band sensors is the discreet changes in spectral reflectance by 
stressed vegetation which can be hidden by field geometry, lighting and the density of the canopy 
(Ismail, Mutanga and Bob, 2007). Hence, the results of this study may be influenced by such factors 
and thus opens up the possibility of analysing the impacts of Uromycladium acaciae under a 
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hyperspectral sensor and using a finer spatial resolution to investigate the changes in reflectance 
throughout the entire electromagnetic spectrum. The narrow bands may reduce the aforementioned 
limiting effects of multispectral sensors and may be capable of distinguishing stages of the impacts 
evident in the life cycle of the rust such as the leaf curl or the occurrence and intensity of the 
teleospores which hold infected spores for dispersal. Such information may be valuable in detecting 
risk before an outbreak occurs and plan for precautionary interventions. Nonetheless, the 
opportunity exists to investigate higher spatial and spectral multispectral sensors combined with 
ancillary information related to the surrounding environment of the pathogen. These may include 
bioclimatic, topographic and edaphic factors in the landscape for an in-depth spatial mapping 
framework.  

 

6. Conclusion 

The aim of this study was to assess the potential of Landsat 8 multispectral imagery in 
conjunction with PLS-DA to detect damaged caused by Uromycladium acaciae at farm level in two 
KwaZulu-Natal forest plantations. The results revealed that the Landsat 8 multispectral sensor 
successfully detected the trees which were under stress by Uromycladium acaciae and that the 
methodology developed in this study may be adopted to implement a monitoring system for the 
wattle rust at a landscape level. Additionally, the VIP PLS-DA method was successful in 
determining the subset of bands which are most useful to detect Uromycladium acaciae canopy 
impact. In this case, bands within the 430nm - 880nm range were most effective. This opens up the 
possibility to investigate Uromycladium acaciae under a higher resolution sensor to bolster 
monitoring efforts as well assess the pathogen at different lifecycles, where smaller symptoms of 
the pest are not detectable using multispectral imagery.  
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