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Abstract 

The study aimed to determine the efficacy and capabilities of using high-resolution aerial 

imagery and a convolutional neural network (CNN) to identify plant species and monitor land 

cover and land change in the context of remote sensing. The full capabilities of a CNN were 

examined, including testing whether the platform could be used for land cover and the 

evaluation of land change over time. An unmanned aerial vehicle (UAV) was used to collect 

the aerial data of the study area. The CNN was encoded and operated in RStudio, while 

digitised data from the input imagery were used by the programme as training and validation 

data. The object in this respect was to learn about the relevant features of the landscape, and 

thereafter to classify the Opuntia invasive plant species. Accuracy assessments were carried 

out on the results to test the efficacy of the aerial imagery in terms of its accuracy and 

reliability. The classification achieved an overall accuracy of 93%, while the kappa coefficient 

score was 0.86. CNN was also able to predict the land coverage area of Opuntia to be within 

four percent (4%) of the ground truthing data. A change in land cover over time was detected 

by the programme after the manual clearing of the plant had been undertaken. This research 

has determined that the use of a CNN in remote sensing is a very powerful tool for supervised 

image classifications. It can be used for monitoring land cover in that it is able to accurately 

estimate the spatial distribution of plant species and to monitor the growth or decline in the 

species over time. As such, it is an efficient methodology and its use in remote sensing could 

be extended. 

Keywords: Convolutional Neural Network, UAVs, Remote Sensing, Plant Species 

Identification, Deep Learning, Invasive Species, Albany Thicket, Earth Observation, Land 

Cover/Change, Nature Conservation.  
 

1. Introduction 

Aerial, non-invasive spectral imagery, captured by UAVs, aircraft, or satellites, is an ideal 

method for collecting data across large areas. Multispectral imagery is readily available and 
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captures data from 350-2500nm within the electromagnetic spectrum by making use of three 

to 10 broad spectral bands, the number of which is dependent on the number of detectors within 

a spectral sensor (Fischer & Kakoulli, 2006). However, owing to the limited bands available in 

multispectral imaging, it is not possible to detect vegetation species. Therefore, to remedy the 

situation, a hyperspectral dataset has been developed from a combination of imaging and point 

spectroscopy (Liu, Bruning, Garnett, & Berger, 2020; Lu & Park, 2008). The major difference 

between hyperspectral and multispectral images is that the former contains hundreds of narrow 

(10-20nm) spectral bands (Adam, Mutanga, & Rugege, 2010), which show a two-dimensional 

distribution of the reflected spectral signatures of objects (Liu, 2020), whereas the latter 

captures data within specific wavelength ranges across the electromagnetic spectrum. 

Previous research has made use of multispectral and hyperspectral imaging systems for the 

distribution of vegetation biomes and the identification of plant species, respectively. However, 

although hyperspectral imagery has a high spectral resolution and is capable of identifying 

different plant species, and even distinguishing diseases in plants (Zhang, Yang, Pan, Yang, 

Chen, & Zhao, 2020), multispectral imagery cannot, on account of its low spectral resolution, 

detect and identify vegetation species. As such, an alternative method is needed for 

hyperspectral imaging, as it is a very complex system to use. Likewise, hiring aerial vehicles 

with a hyperspectral sensor on board is challenging, as there are few available and they are 

expensive to hire in South Africa. Therefore, the use of CNNs to classify images and perform 

object detection has been increasingly adopted over the last few years in the fields of remote 

sensing and GIS. 

Although the use of CNNs as an object recognition tool has increased recently, they have 

been primarily used for detecting objects within images, as was done in the study by Kembuan 

et al. (2020), which created an Indonesian sign language dataset consisting of 2659 images and 

26 six-letter categories. Hou et al. (2019) conducted a study whereby they used a CNN to detect 

objects in a video and then tracked those objects as they moved across the field of view. The 

results revealed an efficient way in which to identify objects, with an accuracy result of 89.23%. 

Ji et al. (2019) undertook a study in which they were able to use a CNN algorithm to classify 

electrocardiogram (ECG) data into five different categories, with an average accuracy of 

99.21%, which contributed to the diagnosis of heart disease.  

Even though CNNs have been extensively and successfully applied to object detection and 

recognition, as briefly mentioned above, they have only recently been used as a tool for image 

classification in the field of remote sensing. However, as camera systems have been developed 

and improved, the amount of data that can be collected has increased. This allows for the 

collection of very high spatial resolution aerial images and thus the identification and 

recognition of fine-grained features (Hoeser, Bachofer, & Kuenzer, 2020). Kattenborn et al. 

(2020) undertook a study in New Zealand which captured high spatial resolution imagery of a 
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glacier foreland with a complex vegetation biome that consisted of herbs and shrubs. Four 

vegetation species were classified using a CNN implemented in RStudio, and the results 

showed high accuracy and a reliable classification of the plant species. In a similar study 

conducted by Kattenborn et al., (2019) invasive woody plant species in Chile were classified 

using similar methods to those in the Kattenborn (2020) study mentioned above. In the Chile 

study, a CNN was able to classify the invasive woody species in an aerial image captured at 

the canopy level. Schiefer et al. (2020) used a CNN to map forest tree species at the canopy 

level in Germany, thereby identifying and classifying 14 different species from the aerial 

images, with 89% accuracy.  

Convolutional neural networks were developed from artificial neural networks (ANNs), 

which embrace a layered structure of algorithms on which deep learning, a subset of machine 

learning, relies (O’Shea & Nash, 2015). CNNs were designed specifically to analyse spatial 

patterns and are, therefore, the most effective algorithms for classifying high spatial resolution 

aerial data (Schiefer, 2020). Traditional classifiers used in the field of remote sensing are pixel-

based, while CNNs use textures to detect objects, such as the contextual signal of many 

neighbouring pixels, their corners, edges, shapes, colours and sizes (Kattenborn, 2020; 

Schiefer, 2020). CNNs are also self-learning algorithms, which allow for a more accurate 

classification of an image. Moreover, the basic architecture of a CNN consists of an input layer, 

a convolution layer that applies the filters obtained from the training data, a pooling layer that 

reduces data dimensionality, and a fully connected layer that arranges the output image and 

results (Kembuan, 2020; Lee & Song, 2019; O’Shea, 2015). 

The Albany thicket biome, which is found predominately in the Eastern Cape, South Africa, 

supports a large array of different fauna species and is known to be a highly effective carbon 

sink (Marais, Cowling, Powell, & Mills, 2009). The vegetation within this biome generally 

comprises medium-sized shrubland to low forestland, and owing to the dense shrubland, is 

renowned for being impenetrable (Hoare et al., 2006). However, encroaching alien plants 

threaten the indigenous Albany thicket plant species, capture their resources and destroy the 

natural habitat/ecosystem (Hoare, 2006). In particular, the prickly pear (Opuntia), which is a 

widespread invader of the Albany thicket, thrives in the Eastern Cape and is a fast-spreading 

species. The prickly pear forms dense stands, which can be as much as 10 metres wide and one 

to five metres high (Everitt, Escobar, Alaniz, & Davis, 1991). It is a succulent shrub with large 

rounded thick leaves and thorns as protection.  

Invasive plant species (IPS) have negative effects on the Albany thicket biome and cause 

events, such as natural resource capture, encroachment, and colonisation, which in their turn 

lead to the destruction of the natural vegetation (Kohli, Dogra, Batish, & Singh, 2009). The 

Albany thicket biome is one of seven natural vegetation biomes found in South Africa and 

plays a very important role as the backbone of multiple ecosystems for a range of fauna species 
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(Kota & Shackleton, 2015). Owing to the density of the bush, mapping the spatial distribution 

of plant species in this biome is challenging (Hoare, 2006). However, because a knowledge of 

the distribution of invasive species is vital for conservation efforts, high-resolution aerial 

imagery has been successfully paired with convolutional neural networks (CNNs) to detect and 

identify plant species at the canopy level. It was in this current study that this technique was 

applied for the first time to the Albany thicket to find and map the spatial distribution of the 

prickly pear (Opuntia) plant species.  

 

2. Methodology 

2.1. Study Area 

The data collection site was on the Sibuya Game Reserve, located on the southern coast of 

the Eastern Cape, near Kenton-on-Sea (figure 1). The indigenous flora in the study region is 

made up primarily of Albany thicket vegetation species. The Kowie thicket species (Hoare, 

2006) is widespread across the reserve and thrives in clay-rich soils (Hoare, 2006), which is a 

common soil type in the area. Opuntia is currently the most widespread of the invaders on the 

reserve; it thrives in the prevailing climatic conditions and can easily start growing from a 

segment of itself when dropped or cut (Everitt, 1991). Large fauna species (elephants) are also 

responsible for its widespread distribution across the reserve. As seen in figure 2, three species 

of Opuntia occur on the reserve. However, this study will not attempt to detect the three species 

separately but rather to classify them collectively as Opuntia.  

Data were collected across three plots that range in size from 16 to 22 hectares. The plots 

were chosen on account of the high concentration of the prickly pear invader on them and the 

natural occurrence of thicket, both of which make it difficult to detect alien plant species 

(AIPs). The three plots seen in figure 1 were further broken down into 45 subplots, measuring 

60 by 60 metres in size. This was done to reduce the data dimensionality and to focus on the 

areas of the subplots with high concentrations of Opuntia. Subplots 1 to 20 issued from plot 1, 

subplots 21 to 31 from plot 2, and subplots 32 to 45 from plot 3.  
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Figure 1: Location of the study site. 

 

Figure 2: Three species of Opuntia found in the study area. 

 

2.2. Data Collection 

High-resolution aerial imagery will be the main data source for the data analysis. The images 

were collected utilizing Unmanned Aerial Vehicles (UAVs). UAVs were selected as the 

platform for collecting the images over satellite imagery and manned aerial vehicles, with 
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camera sensors attached such as planes or helicopters due to the flexibility they allow during 

the data collection process and the high resolution of imagery that can easily be captured. 

The UAV used in this study was the DJI Mavic 2 Pro, which had a Hasselblad 20MP 

(megapixel) one-inch complementary metal-oxide-semiconductor (CMOS) RGB sensor 

attached to it with a 3-axis gimbal. In addition, the sensor allowed the drone to be flown at a 

high altitude while still permitting it to capture high resolution images. The DJIFlightPlanner 

was used to create precise flight plans for the UAV over each plot. This allowed for a forward 

and side overlap of 70% between images and a flight speed of 17.7km/h to be maintained. 

Furthermore, it permitted a flight height of 70 metres to secure an image resolution between 

1.94 cm/pixel and 2.35 cm/pixel. The flight plans were then exported to a .csv file to be used 

in Litchi, a software that connected to the drone and controlled it during the data collection 

process, which was based on the flight files that had been imported into the software. 

 

2.3. Data processing 

The processing involved removing any distortions or bad images from the aerial photos and 

then merging the individual images of each plot to create a single orthomosaic of the plots. 

Agisoft Metashape Professional (version 1.8.1 build 13915 (64bit)) software was used to merge 

the images and generate the orthomosaics. When a drone captures images, a geolocation is 

associated with each image, and Agisoft uses this geolocation to align the images and initiate 

the merging process. After the orthomosaic of each plot had been created, the footprints of each 

subplot were cropped from the respective orthomosaic to produce the 60 by 60-metre image 

that would later be classified.  

The classification of the aerial data was performed using a CNN, which is a powerful form 

of artificial machine learning that was specifically developed for the identification and 

recognition of objects in imagery and videos. Moreover, a CNN is a powerful deep-learning 

algorithm, which can detect objects in RGB images, whereas traditional remote sensing 

classifiers require multispectral or hyperspectral imagery for land cover classifications. To 

execute the CNN, RStudio version 1.4.1106 was used to encode and run the classifier. 

Figure 3 presents an overview of a basic CNN architecture and indicates the filter size, 

which is used to extract a portion of the image to be used in the first convolution layer for 

processing. After this, the data is reduced in a pooling layer, which is a single epoch, and yet 

another convolution layer and another pooling layer is then created to improve on the results. 

This process is repeated for the entire image and thus multiple epochs can be set by the user. 

Once the feature extraction has been completed, the data enter the fully connected layer where 

an entire dataset is compiled, with a dense layer thus being formed, which is then used to 

produce the output data. 
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Figure 3: The basic architecture of a CNN. 

 

The U-Net CNN architecture was used for image processing in the study. Developed in 2015 

by Olaf Ronneberger, Philipp Fisher, and Thomas Brox, it was originally developed for 

biomedical image segmentation but has since been adapted slightly and used in other machine-

learning fields. The U-Net architecture has been built in such a way that it has a contracting 

path that captures the context. The architecture also has an expanding path that is symmetrical 

to the contracting path and maps the contextual information to match the original input image 

resolution (Schiefer, 2020). 

In the layout of the U-Net structure used, the contracting path and the expanding path were 

each made up of four blocks, with one block in the centre. Each block in the contracting path 

consisted of two 3x3 convolutions, with each convolution being followed by a batch 

normalisation and a gaussian error linear units (gelu) activation function. After the execution 

of the convolutions and activation functions, a max pooling of 2x2 with a striding of two, was 

performed, which completed each block and reduced the data dimensionality of the feature 

maps by half.  

The central block had the same structure as the contracting path blocks. However, it had 

only two convolutions and activation functions, and not a max-pooling operation. Within the 

expanding path, the four blocks each consisted of an up-sampling of the feature maps by a 2x2 

up-convolution, which reduced the feature maps from the previous block by half. The feature 

maps were then concatenated with feature maps from the equivalent contracting path. Once 

this was done, a 3x3 convolution was performed, followed by a batch normalisation and a gelu 

activation function. This process was repeated three times in each up-block. Through the 

expanding path, the feature map value was halved in each block, and the spatial dimension was 

multiplied by two. Lastly, the pixel-wise classification was executed, and a 1x1 convolutional 

layer with the sigmoid activation function was applied. 
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2.4. Reference data and classification 

The CNN needs reference data to learn the features and attributes of the target class. A 25 

by 25-metre area was drawn up in each subplot. Opuntia from the aerial view was then digitized 

manually and the shapefiles were fed into the CNN programme. A high standard was upheld 

with the execution of the manual digitization process as the CNN learns the plant's shapes and 

characteristics from the input data. Poor quality reference data could negatively affect the CNN 

classification results.  

The programme broke the reference data shapefiles down into tiles of 128 by 128 pixels. 

This was done because the graphics card on the machine used for processing performs best 

with images that size. The digitised, tiled data were then split by the programme into training 

data and validation data. Most importantly, the digitised data from the three plots were used as 

input data for the validation and training data programme.  

This meant, however, that the classifier would have an extremely large dataset to contend 

with and different areas from which to learn, as the training data for Plot 1 would be used for 

classifying plots 2 and 3, and vice versa in the case of plots 2 and 3. Nevertheless, as the images 

of the plots captured slightly different vegetation densities and were taken at different times, 

inputting all data from the three plots enabled a wide range of variables and features to be learnt 

by the classifier, and should have theoretically provided a higher-quality result. 

Once the classifier had learnt the training data, the subplots were inputted for classification. 

The classifier broke each image down into a smaller 128 by 128-pixel tile, classified it, moved 

on to the next tile, and then rebuilt all the tiles to match the size of the original input image. 

Validation was then performed on the output data by the programme.  

 

2.5. Accuracy Assessment 

Two major accuracy assessments were carried out to test the full efficacy of the CNN. The 

first accuracy assessment was conducted to determine how well the CNN had learnt the features 

to be classified. This was encoded in RStudio and a portion of the reference data was used to 

determine the cross entropy and dice coefficient loss functions. These functions are run in each 

epoch1 during the learning phase of a CNN. Cross entropy looks at each pixel and compares 

the class prediction (neural network prediction) with the target vector, or the masks that were 

inputted. The closer the output value of the cross entropy is to zero, the better the performance 

of the neural network. The dice coefficient loss function measures the overlap between the 

 
1 An epoch is a process where the programme extracts information from the training data and learns features. It 
is repeated to increase the accuracy of the learned features. 
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class prediction and the target vector. The output of the dice coefficient is rated 0 to 1, where 

1 represents perfect overlap and 0 represents no overlap. 

The second accuracy assessment was to determine the trustworthiness and reliability of the 

classification of the orthomosaics by calculating the user’s and producer’s accuracy and by 

computing the kappa coefficients, which would rate the classifications. Control points were 

placed on two classes, the Opuntia species and other, the latter included indigenous vegetation, 

bare ground, and any other relevant features in the plots that weren’t Opuntia. The other class 

was selected to test whether the classifier had overclassified or misclassified Opuntia. 

Functions were run in ArcMap to create error matrix tables for each subplot and from this, the 

respective user’s and producer’s accuracy results were calculated alongside the kappa 

coefficient.   

 

2.6. Land cover and change detection 

In the study, the land cover analysis determined the land coverage of Opuntia per plot. Using 

the CNN predictions for each subplot, the area occupied by Opuntia per subplot could be 

calculated in ArcGIS. For each prediction attribute table, a new field called “size” was added 

and the field calculator was used to determine the area of all the predictions in the respective 

subplots. To ensure the accuracy of the predictions and the land cover analysis, a small 10 by 

10-metre area was drawn up in six subplots. Within this area, the Opuntia was manually 

digitised to an extremely high level. Following the steps above, the area of the manually 

digitised Opuntia was then calculated. The CNN predictions were then added, and again the 

steps above were followed to calculate the area of coverage in the small region. The manually 

digitised results could then be compared to the CNN prediction results and the percentage 

difference between them was calculated.  

The change detection aimed to determine whether the CNN could be used to monitor the 

change in vegetation densities and population numbers over time. Unfortunately, to wait for 

more Opuntia to grow was not an option; therefore, a subplot was selected, and the AIPs (the 

Opuntia plants) were manually cleared from the area. However, not all the Opuntia plants were 

removed from the subplot2. Before clearing started, the UAV was flown over the plot and again 

after it had been cleared. The aerial data was then classified, and the land cover quantities could 

be compared.  

 

 
2 This was done on purpose so that the plot would still have training data and it would be possible to determine 
whether the CNN could still detect the remaining plants. 
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3. Results and Discussion 

3.1. Classification training data 

For the classification, a total of 16 701 jpeg image tiles and their respective png masks were 

inputted into the classifier, which split the input data into training and validation data at an 

80:20 ratio (80% to training data). Other studies in plant identification using CNNs have not 

published the amount of data that was inputted into the CNN for training and validation. 

However, the results of the classification (see below) indicate that the number of images that 

was inputted into the programme was more than sufficient for the CNN to adequately learn all 

the features and variables for the study.  

 

3.2. CNN model training results 

The two loss functions that were run during the learning process reached a minimum after 

30 epochs had run over the training data. The loss functions used the validation data to test the 

learning rates and determine the results. In figure 4, the cross entropy and dice coefficient loss 

results can both be seen: by epoch 30, the cross entropy had reached a value of 0,1005602, 

which could result in acceptable classification probabilities. The study conducted by Schiefer 

et al. (2020) achieved a cross entropy between 0.02 and 0.03, which is an excellent result. 

However, the plants and canopy structures investigated by Schiefer et al. (2020) were 

completely different from the ones in the current study, which means that comparing the results 

is not straightforward. In figure 4, the dice coefficient loss attained a value of 0,976899 by 

epoch 30, and with the curve levelling out from the 14th epoch onwards, it could be concluded 

that the dice coefficient loss graph has an ideal shape. This suggests that the programme could 

identify features and achieve a high overlap percentage early in the learning process. 

 

Figure 4: The cross entropy and dice coefficient loss function results. 

 

3.3. Classification results 

Once the features had been learned, the CNN was able to classify all 45 subplot images. The 

outputs of the CNN predictions were in tiff files and were transformed using polygonization in 
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QGIS to structure the predictions in vector polygon format. In figure 5, an example of the CNN 

classification can be seen: the image on the left is the subplot before classification and the 

image on the right is the subplot with the CNN Opuntia classification overlaid in pink.  

 

 

Figure 5: An example of the classification of Opuntia in one of the subplots. The indigenous 
vegetation has not been classified: only the invasive species, which are represented by the 

pink polygons.  

 

3.4. Classification accuracies 

The user's accuracy test is a measurement of the reliability of the classification. The 

producer's accuracy test is a measurement of how well a given area (class) has been classified. 

The overall accuracy test gives a single percentage of how well a map has been classified. The 

kappa coefficient is a measure of the complete agreement of a matrix, and the output is from 0 

to 1, with 0 being poor, 0.4-0.6 being moderate, and 1 being perfect. These accuracy tests were 

selected as they have been well-developed and can be considered benchmark accuracy tests in 

the field of remote sensing. The user’s and producer’s accuracy tests were performed on the 

two classes, namely, the Opuntia class and the other class, which consists of all other features 

in the scene such as the indigenous vegetation and bare ground.  

In table 1, the accuracy results applicable to the 45 subplots are displayed as an average 

value. These results were all very high and do indeed correspond with the learning results 

shown above. For the accuracy results from the two classes, the results were very high and 

showed that the Opuntia had been classified accurately and that the results are trustworthy. The 

overall accuracy of the test was also very good at 93%, thus showing that a high level of 

classification had been achieved. Based on the estimation in the study by Rwanga and 

Ndambuki (2017), the kappa coefficient score average was rated almost perfect.  
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Table 1: The average accuracy results from the 45 subplots. 

Opuntia class Other class Overall 
accuracy 

Kappa 
coefficient User’s 

Accuracy 
Producer’s 
Accuracy 

User’s 
Accuracy

Producer’s 
Accuracy

94% 93% 92% 94% 93% 0.86 
 

The study by Kattenborn et al. (2019) achieved an overall classification accuracy that ranged 

from 84% to 90% for four different plant classes, while the study by Oldeland et al. (2021) 

achieved an overall classification accuracy of 95% and a kappa score of 0.937. These studies, 

alongside the current study, show how well neural networks are able to learn features and 

classify images. However, in the current study, only one plant was observed (one target class) 

and that class, the Opuntia, has a distinct shape compared with the surrounding bush (apart 

from the euphorbia). This allowed the CNN to perform well and easily identify and classify the 

plant, which would have boosted the classification accuracy results. Other studies, which 

investigated multiple species that were similar to plants in the surrounding bush, achieved an 

overall classification accuracy between 84% and 90% (Kattenborn, 2020; Schiefer, 2020). 

However, the classification results show that the CNN is a powerful and efficient tool for land 

classification and further research should be done on different target classes. 

 

3.5. Weaknesses of the classification 

Although the classification proved effective in identifying and classifying Opuntia in the 

subplots, there were weaknesses. Three commonly occurring issues were noted in the 45 

subplots: the misclassification of dead wood and river euphorbia, and the over-classification of 

Opuntia. The misclassification of dead wood occurred only when it had a white-silver 

reflectance, while that of the river euphorbia occurred as a result of its similarity in terms of its 

canopy level, shape, and colour to these particular features of the Opuntia. The programme 

never misclassified the entire stands of dead wood or of euphorbia, however. It classified only 

small portions or pieces of the vegetation. The last shortcoming of CNN was that it occasionally 

over-classified the Opuntia. This occurred when Opuntia was growing alongside the natural 

vegetation such that the programme infrequently classified the natural bush as Opuntia. An 

example of this slight overclassification is evident in figure 6, where it can be seen how the 

classifier made straight lines rather than identifying the shape of the plant.  

 

3.6. Land cover analysis 

Comparisons were made between the manual digitisation and the CNN digitisation of six 

subplots. In table 2, the results from the coverage tests, whereby the square metres covered by 

Opuntia in the six subplots, as well as the average percentage of the land that the Opuntia 
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covered, are shown. Compared with the manual classification, the programme calculated a 

greater square metre area of Opuntia for five of the subplots and less of an area for the other 

subplot. However, the average difference in square metres between the CNN predictions and 

the manual classification was 0.6064 m2, which works out to be a four percent (4%) difference 

between the two (in favour of the CNN classifications). This is an acceptable level of variation 

and shows that the CNN could be used to accurately determine the amount of Opuntia within 

the study area. Land cover studies are very important, and these results show that a CNN 

methodology could be used in future remote sensing studies to look at the land cover coverage 

of objects, especially the finer detailed items, thanks to the high-resolution imagery used. 

 

Table 2: Comparison of manual and CNN digitising of land cover in the same areas. 

Subplots Size of 
area 
(m2) 

Opuntia from manual 
digitising 

Opuntia from CNN 
digitising 

Difference 

Area (m2) Percent 
coverage

Area (m2) Percent 
coverage

Area (m2) Percentage 

1 100 9,3500 9,3% 10,4294 10,4% 1,0794 11,5% 

13 100 22,9232 22,9% 23,9875 24,0% 1,0643 4,6% 

21 100 26,5376 26,5% 27,3776 27,4% 0,8400 3,2% 

27 100 15,7569 15,8% 15,1264 15,1% -0,6305 -4,0% 

34 100 9,0982 9,1% 9,9034 9,9% 0,8052 8,8% 

43 100 8,1749 8,2% 8,6549 8,7% 0,4800 5,9% 

Average 100 15,3068 15,3% 15,9132 15,9% 0,6064 4,0% 

 

3.7. Land cover change 

The land cover change assessment was done to test the potential of the CNN programme in 

detecting land cover change over time. Table 3 shows the results of the clearing of Subplot 28. 

The table indicates the area in square metres covered by Opuntia before and after clearing and 

the percentage cover. According to the coverage results, only 62.082 m2 of the area covered by 

Opuntia was cleared, which worked out to be 11.1% of the Opuntia in the subplot at the canopy 

level. A total percentage coverage change of 1.72% of the total plot coverage was determined. 

While this result was very low, it was expected, as only a small proportion of the area of the 

total plot coverage occupied by the plant had been cleared from the research site Nevertheless, 

the results prove that the CNN was able to efficiently detect a difference in the before and after 

images. 

Table 3: CNN classification of Opuntia before and after clearing. 

Area occupied by 
Opuntia (m2) 

Percent coverage 

Before 
Clearing 

555,784 15,44% 

After Clearing 493,702 13,71% 
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In figure 6, a visual representation of the clearing can be seen. The top left image is an image 

from before clearing while the bottom left is the same area as the top left image, except that it 

shows the area after clearing. As stated above, while nearly all the Opuntia was cleared, some 

plants were left behind, as indicated in the lower portion of the bottom left image. The two 

images on the right are the CNN classifications of the Opuntia for the respective images on the 

left. It can be seen how the entire stand of Opuntia was classified in the upper image, but in the 

lower image, only the remaining Opuntia stand in the lower section was classified.  

The CNN did not become confused by the two images and could still accurately classify the 

Opuntia, thereby indicating the change between the images taken before and after the clearing 

of the plant. This confirms that the CNN programme can be used not only to determine the 

spatial distribution of a plant but also to monitor the change in its distribution over time, thereby 

allowing researchers and landowners to determine whether an IPS is spreading or declining 

and how much of the plant species has been or needs to be removed. Again, this shows how 

the CNN methodology has many applications and much potential in the remote sensing field.  

 

Figure 6: Visual representation of CNN classification before and after clearing. 

 

3.8. CNN overall performance 

The results of the classification revealed that the CNN applied in this study performed at a 

high level. However, even though CNN did perform beyond expectations, the Opuntia has a 
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very distinct shape compared to the surrounding indigenous Kowie thicket species. This would 

have undeniably been a contributor to the highly accurate results for the CNN’s classifications.  

The CNN’s ability to process data and classify plants accurately depends on how well it has 

been trained and the quantity of the input data. However, the specific CNN programme used in 

the current study was the U-Net CNN, which is designed to deal with images as the input and 

is able, therefore, to operate with less input data than other neural networks. Another factor that 

would affect the capabilities of a neural network is the quality of the input data, which refers 

not only to how well the target class has been digitised, but also to the variety in the digitising 

method. Moreover, digitising needs to be precise. If features are not part of the target class or 

if the drawn polygons do not represent the true shape of the target, then the CNN would not 

know what shapes to look for.  

The digitised training data need to include a variety of scenarios focusing on the target class. 

For example, there needs to be training data in respect of the different light and climatic 

conditions (e.g., for sunny and cloudy days); different elevations (e.g. for slightly different 

pixel sizes according to changes in altitude); different plant properties/conditions (e.g., for 

small, large, and even dying plants); and different geomorphological areas (e.g., for flat land, 

hills, or slopes). The greater the variety in the training data (while still maintaining quality and 

quantity), the greater the number of features that the CNN can learn about the target class, and 

the more efficient the performance of the neural network.  

 

4. Significance of Research 

The investigations around this research study relied on the application of a pre-existing tool, 

namely, CNN machine learning in the field of remote sensing to distinguish between the 

various types of land use and to identify objects. Moreover, the study looked at applying a new 

methodology to further extend its capabilities of land classification by looking at the 

identification of small-scale features. Most other classifiers require large multispectral or 

hyperspectral datasets to accurately detect and identify objects; however, in their classification 

of objects, CNNs are powerful enough to require only RGB imagery at a high resolution level. 

This allows new types of land classifications to be performed that contribute to and extend the 

land classification field of remote sensing and GIS. This study shows the capabilities of some 

new techniques and how they could further extend the remote sensing field.  

 

5. Conclusion 

The aim of this research study was to determine the potential of using UAVs and neural 

networks to classify invasive plants within the Albany thicket biome, as well as to assess the 

beneficial aspects of using this method. Neural networks have only recently been used to 
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classify plant species from high-resolution aerial imagery, and this is the first time that a study 

of this capacity has been performed in respect of the Albany thicket in South Africa. The results 

from the study have been promising, in that high accuracy levels were achieved when the 

classification results of this study were aligned with those of other studies that had used similar 

methodologies. This shows that the method of classification has the potential for further 

exploration in the Earth observation field. The results from the land clearing analysis revealed 

that the neural network is able to detect a change between two images of the same area where 

land clearing has taken place, thereby proving that the CNN and high spatial resolution levels 

in the imagery could help landowners and researchers to monitor the growth or decline of plant 

species over time. The study achieved the research aim, namely, to determine the efficacy of 

CNNs in the classification of the high spatial resolution aerial imagery of a select collection of 

Albany thicket plots. Moreover, the study determined the reliability, accuracy, suitability, and 

capabilities of using CNNs and commercially available UAVs for this task.  
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