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Abstract 

The classification of three-dimensional (3D) point clouds derived through the use of cost-effective 

and time-efficient photogrammetric technologies can provide helpful information for applications, 

particularly in the mapping context. This paper presents a practical study of 3D Unmanned Aerial 

System (UAS) – Structure-from-Motion (SfM) point cloud classification using mainly open-source 

software. Following a supervised classification approach that makes use of only the dimensionality 

of points, the entire scene was classified into three land-cover categories: ground, high vegetation, 

and buildings. By applying the above-mentioned approach, the level of competence in classifying a 

3D point cloud of a heterogeneous scene situated in the University of KwaZulu-Natal, South Africa, 

was evaluated. The resulting overall classification accuracy of 81.3%, with a Kappa coefficient of 

0.70, was determined by means of a confusion matrix. The results achieved indicate the potential use 

of open-source software and 3D UAS-SfM point cloud classification in mapping and monitoring 

complex environments and in other applications that might arise.  
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1. Introduction 

Unmanned Aerial System (UAS)-based photogrammetry has proven to be a cost-effective method 

of acquiring point cloud data (Liu and Boehm, 2015). A point cloud is a collection of points, each 

associated with XYZ coordinates in a three-dimensional (3D) coordinate system. Additional 

information, such as reflectivity values and colour, may be included in a point cloud (Van Genechten, 

2008). The ability of UASs to perform a simultaneous collection of high-resolution imagery and to 

generate a photogrammetric point cloud poses a unique advantage, thus allowing for a wide range of 

applications (Gevaert et al., 2016). Classified point cloud data are useful in a wide range of 

applications, including but not limited to environmental modelling, navigation and cultural heritage 

(Grilli et al., 2017; Roynard et al., 2018; Croce et al., 2021). Other disciplines, such as forestry, 

geomorphology, agriculture and damage assessment, have relied on point cloud classification for 

solutions (Wallace et al., 2012; Zhang and Kovacs, 2012; Gevaert et al., 2016).  
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Classifying LIDAR data into different land-cover categories has been at the centre of attention in 

many studies (Sithole and Vosselman, 2004; Antonarakis et al., 2008). Moreover, high financial costs 

are involved in acquiring LIDAR point clouds. However, using new technologies to generate 3D UAS 

Structure-from-Motion (SfM) point clouds is time-efficient and cost-effective. Numerous studies 

have focused on classifying natural environments into primary classes (Vandapel et al., 2004; Lalonde 

et al., 2006; Brodu and Lague, 2012; Jurado et al., 2020). The present study focuses on classifying 

point clouds in heterogeneous urban environments.  

The initialism SfM originated from the computer vision community which denotes that the 

structure is created from images captured by a moving sensor (Westoby et al., 2012). SfM 

photogrammetric techniques can produce high-quality point clouds at a low cost. Firstly, a sparse 

point cloud is produced in bundle adjustments (Snavely et al., 2008). Subsequently, Clustering for 

Multi-View Stereo (CMVS) and Patch-based Multi-view Stereo (PMVS) algorithms are implemented 

to derive a densified point cloud (Furukawa and Pounce, 2009; Furukawa et al., 2010). 

Point cloud classification is the operation of classifying and assigning some semantics to a group 

of points (Weinmann et al., 2015). Supervised, unsupervised, and interactive classification 

approaches are commonly used to assign class labels (Grilli et al., 2017). The automatic classification 

of point cloud information is essential and challenging at the same time. State-of-the-art includes both 

shallow and deep-learning techniques (Roynard et al., 2018). Researchers have applied different 

classification algorithms; Becker et al. (2018), for instance, used geometry and colour information to 

classify photogrammetric point clouds. Furthermore, in addition to the geometry, and owing to the 

incorporation of colour information, improved classification results were subsequently obtained. 

Conditional Random Fields (CRF), used by Niemeyer et al. (2012) to classify 3D urban scenes, have 

produced results with a high potential in classifying urban scenes. The CRF technique is based on a 

non-linear decision surface that accurately isolates the object groups in feature space. Brodu and 

Lague (2012) developed a semi-supervised classification algorithm that uses the dimensionality of 

points at multiple scales to classify LIDAR point clouds. Numerous researchers have used this 

classification algorithm: Grilli et al. (2017), for instance, analysed popular algorithms and techniques 

for 3D point cloud classification. Stones and vegetation in their archaeological site were filtered 

successfully. Farella (2016) automatically separated artificial and natural structures for mapping 3D 

underground environments. Another study conducted by Bonneau and Hutchinson (2019) identified 

and interpreted the geomorphological processes occurring along a cliff face by separating vegetation 

and granular material.  

This study aimed to evaluate the use of 3D UAS-SfM point clouds to classify heterogeneous urban 

environments for mapping and monitoring, and for other applications that might arise. Furthermore, 

it aimed to assess the accuracy of the classified 3D UAS-SfM point cloud. As such, it was successful 

in using a multi-scale dimensionality criterion, to classify a modern heterogeneous environment into 

three land-cover categories, namely, ground, buildings and high vegetation. Based on training on 

small samples, classifiers that could be applied to unknown scenes were developed.  
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2. Study Area 

The University of KwaZulu-Natal (UKZN), Howard College Campus, was selected for this study. 

It is situated in the environmental conservancy area of Glenwood, Durban (UKZN, 2017). The 

Howard College Campus sports field comprises various land-cover categories, including but not 

limited to grass, tarred and concrete surfaces, buildings and trees. Figure 1 shows an orthophotograph 

of the UKZN Howard College sports field. 

 
 

Figure 1: Orthophotograph of the UKZN Howard College Campus sports field. 

 

3. Materials and Methods 

3.1. Materials 

The apparatus used included a DJI Phantom 3 Professional UAS as the primary instrument for this 

study and a Trimble R4 GNSS receiver. The UAS was used to capture the images of the study area. 

It is equipped with a CCD camera with a resolution of 12 megapixels and an image size of 4000 by 

3000. Additionally, the aircraft is remote-controlled and has satellite positioning systems 

(GPS/GLONASS) to allow for the navigation and geotagging of aerial images (DJI, 2017). The 

Trimble R4 model 3 GNSS receiver was used to measure the ground control points (GCPs). This 

instrument provides high accuracies for static GNSS, post-processed, and real-time kinematic 

surveying styles (GEOIM, n.d.). Moreover, various software programmes were used, including 

PrecisionFlight for creating and controlling the UAS flight mission and Web Open Drone Map 

(WebODM) to process the UAS images. Python 2.7, Pip, Windows Powershell and Docker were used 

to run WebODM. MATLAB R2018b programming language was used for camera calibration. To 

georeference the orthophotographs, Arc Map 10.7.1 was used. Lastly, the Pix4D Mapper trial version 

and CloudCompare 2.11 Alpha performed the point cloud classification.  
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3.2. Methods 

The methods employed in this study are discussed in this section. The phases involved are as 

follows: (i) UAS camera calibration, (ii) acquisition of UAS Imagery, (iii) GNSS survey, (iv) 3D 

point cloud generation, (v) point cloud classification and (vi) accuracy assessment of point cloud 

classification.  

3.2.1.  UAS Camera Calibration 

In computer vision and photogrammetric applications, camera calibration is a fundamental tool to 

determine the intrinsic and extrinsic camera parameters and to allow for the use of a camera as a 

measuring device (Nedevschi et al., 2002; Fetić et al., 2012). Moreover, in UAS mapping, low-cost 

digital cameras mounted as payloads are often used. Hence, camera calibration is considered to be 

crucial in obtaining mapping measurements of high accuracy (Yusoff et al., 2017). Tiscareño et al. 

(2019) studied different camera calibration methods on a camera-projected measuring system. 

Among these was a Zhang calibration method which accounts for and compensates for decentring, 

radial and prism distortions. This study concluded that compared to the Tsai and Direct Linear 

Calibration methods, the Zhang method provides better results in that it reveals only minor errors in 

the measurement results and extrinsic parameters. Therefore, the camera calibration toolbox based on 

the algorithm by Zhang (2000) was adopted for this study.  

3.2.2. UAS imagery 

Before any aerial photogrammetric project, flight planning is necessary to ensure reliability, 

precision and effectiveness in the acquisition of images (Hernandez-Lopez et al., 2013). A visual 

inspection of the research area was conducted to find information about the site and to determine the 

land-cover categories to be classified in the 3D point cloud. A grid flight plan was created using the 

Precision Flight application, with the flight mission parameters listed in Table 1.  

 

Table 1: Flight mission parameters 
Parameter Measurement 

Area 4.9 hectares
Flying height 60m 

Mission Duration 7min 53 sec 

Overlap 80%
Sidelap 70%
Resolution 2.6cm/px 
  

The UAS flight missions might be affected by weather conditions, specifically the wind (Wheeler 

et al., 2006). In fact, the presence of strong wind consumes more battery from the UAS as it tends to 

counteract the movement caused by the wind. This is important in this context as it is crucial that the 

drone should be stable in the air (Calvo et al., 2017). Therefore, the data were collected on a clear 

day with favourable atmospheric conditions. During this mission, a DJI Phantom 3 professional UAS 
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equipped with a digital CCD camera as a payload was used to capture 90 vertical images in auto-

flight mode.   

3.2.3. GNSS survey 

To achieve the best in accuracy, the GCPs should be placed around the edges of the study area. 

However, by applying a stratified distribution and by arranging the GCPs within the project area, it 

is also possible to improve the vertical accuracy (Martínez-Carricondo et al., 2018). Henrico et al. 

(2016) evaluated the geolocation accuracy of high-resolution satellite ortho-images by using different 

ground control methods. The findings from their research indicate that manual GCPs produce a more 

accurate ortho-image in terms of positional accuracy. The GCPs in the current study were measured 

by using a method that was similar to the one applied throughout the fieldwork in the study by Henrico 

et al. (2016). A connection to a virtual reference station (VRS) was established and site calibration 

was performed with reference to the published South African trigonometrical beacons. The GCPs and 

check points were measured on-site by using the Trimble R4-3 GNSS receiver. These points were 

positioned around the edges and evenly distributed within the study area. All points were surveyed 

as observed control points to increase the accuracy of the measurements. Furthermore, the measured 

coordinates of the GCPs were used to georeference the orthomosaic and the 3D point cloud. 

3.2.4. 3D point cloud 

For this research study, WebOpenDroneMap (WebODM) was used to generate a 3D point cloud 

and other photogrammetric products with a ground sampling distance (GSD) of 0.025m. WebODM 

is a free and open-source API (Application Programme Interface) to the OpenDroneMap (ODM) 

software and requires that Python, Pip and Docker be integrated to run the WebODM programme. 

The afore-mentioned can be achieved by making use of the Git or Windows Powershell command 

line (WebODM, 2021). Even though a 3D point cloud and other photogrammetric products were 

generated using WebODM, Pix4D Mapper was also used to generate the same products. This was 

performed to facilitate comparative studies of the point clouds that were produced. Pix4D Mapper is 

a photogrammetric software programme for processing drone images (Pix4DSA, 2019). Unlike 

WebODM, Pix4D Mapper does not require any programming skills. Both programmes use the SfM 

technique to derive photogrammetric products. However, for this research, WebODM was the 

specific programme that produced a 3D point cloud of high density.  

3.2.5.  Point cloud classification 

The main classification was performed using the CloudCompare software. However, Pix4D 

Mapper was also used to compare the classification results of both algorithms. The classification tool 

incorporated into Pix4D Mapper uses pixel values and geometry to classify points. This classification 

algorithm is completely unsupervised. Hence, the operator has no control over the training of 

classifiers. However, the tools for managing and refining the classification are provided (Pix4D, 

2021). Pix4D Mapper comprises pre-established classification categories. The automatic 

classification was performed to filter the ground, high vegetation and buildings classes.   
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The supervised classification was performed using the CAractérisation de NUages de POints 

(CANUPO) plugin incorporated into CloudCompare. CANUPO is based on the local dimensionality 

characteristics of points in a point cloud. Points can be classified as 1D, 2D, or 3D, depending on a 

specified scale and location. For example, consider a site consisting of a power line, a ground surface, 

trees, and buildings. At a scale of a few centimetres, the ground surface and the building walls will 

appear as 2D and the trees as a mixture of 1D (branches) and 2D (leaves). At a sizeable scale (~50cm), 

the ground surface will still come across as 2D, and the trees will appear in 3D, while the power lines 

will remain as 1D (Brodu and Lague, 2012).  

The combination of information from various scales results in signatures that recognise several 

classes of objects in the scene. These signatures are automatically generated through the training 

point, thus enabling optimization of class separability. A combination of information from various 

scales contributes toward the creation of descriptors that are able to recognize other object classes 

present in the scene. The creation of a classifier involves two steps: firstly, the data are projected onto 

a plane of maximal separability; secondly, the classes in that plane are separated through a boundary. 

CANUPO is a binary classifier; therefore, when the classifier is applied, a point cloud is divided into 

two subsets, and only one classifier is permitted at a time (Brodu and Lague, 2012). Once a classifier 

has been created, a classification confidence value is provided. In that it uses the number of points 

present in each class, Equation 1 (Brodu and Lague, 2012) is used to determine the balanced accuracy 

measure that indicates the classifier performance. On the other hand, Equations 2 and 3 (Brodu and 

Lague, 2012) are used to determine the accuracy of the two classes. 

𝑏𝑎 ൌ ଵ

ଶ
൫𝑎௩ ൅ 𝑎௚൯                                                                                                             [1] 

𝑎௩ ൌ
௧ೡ

௧ೡା௙೒
                                                                                                                           [2] 

𝑎௚ ൌ
௧೒

௧೒ା௙ೡ
                                                                                                                           [3] 

Where: 

ba             - Balanced accuracy 

𝑣   - Particular class v 

𝑔         - Particular class g 

𝑎௩             - Accuracy of v 

𝑎௚  - Accuracy of g 

tv  - Number of points truly classified as v 

tg   - Number of points truly classified as g 

fv  - Number of points falsely classified as v   

fg   - Number of points falsely classified as g 
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The Fisher Discriminant Ratio (fdr) is used to evaluate the separability of the classes. A large value 

of ba denotes a good recognition measure. Likewise, well-separated classes are denoted by a high 

value for the fdr (Brodu and Lague, 2012). Equation 4, derived from Brodu and Lague (2012) and 

Theodoridis and Koutroumbas (2008), was used to determine the fdr, where 𝜇𝑐 and 𝑣𝑐 represent the 

average and variance of 𝑑 for class c; d is a signed distance to the separation line. 

𝑓𝑑𝑟 ൌ
ሺఓమିఓభሻమ

ሺ௩భି௩మሻ
                                                                                                                 [4] 

The training data were extracted from the point clouds in different areas. The former were also 

generated by applying the SfM technique. Training samples were merged to increase the chances of 

creating classifiers with a high recognition rate. Two classifiers were created; Classifier A was trained 

to filter ground from non-ground points, while Classifier B filtered high vegetation and buildings 

from the remaining points. Both classifiers were trained at 12 different scales. The scales ranged from 

as small as 0.04m to 50m and were selected on account of their improved separability rate. Since 

CANUPO is a binary classifier, the filtering of multiple classes is a complicated process in that it, 

allows only two classes at a time. A hierarchical classification procedure, as shown in Figure 2, was 

used to classify the entire point cloud. 

 
Figure 2: Proposed hierarchical classification procedure. 

3.2.6. Accuracy assessment 

Point cloud classification accuracy was evaluated using a georeferenced orthophoto generated 

from aerial imagery. Ground truth sites were randomly selected from the orthophoto to validate the 

classification. The point clouds were georeferenced before classification in Pix4D Mapper and 

CloudCompare. The ArcMap programme was used to facilitate the validation of the classified points 

against the ground truth site. A site visit was also conducted. 
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The qualitative assessment approach applied by Sithole and Vosselman (2004) for classifying bare 

earth and object classes was used to assess the competence of the classification. This approach is 

based on visual inspection and comparison of the classified points. Associated errors of omission 

(EO) and commission (EC) (Type I and Type II errors) were identified. The performance of filtering 

algorithms provided by both Pix4D Mapper and CloudCompare was evaluated. The CANUPO 

classification results were further assessed quantitatively by using a confusion matrix to determine 

the accuracy and the kappa coefficient to determine reliability. Random check points were generated 

over the entire extent of the study area by using Arc Map. This was performed to eliminate bias in 

the selection of the check points. However, because no points were randomly allocated, a few points 

were manually added to the buildings category.  

 

4. Results and Analysis 

4.1. UAS camera calibration 

The intrinsic parameters of the camera lens resulted in a focal length of 3.64mm +/- 0.10mm, 

which is almost 3.61mm per the specifications of the camera. The value of the pixel error was found 

to be [0.28 0.21] pixels, which is very small. The overall calibration process indicates an excellent 

state of the camera for use as a measuring device. Table 2 shows the calibration results with 

uncertainties.   

Table 2: Camera calibration results 
Parameter  Value 

Focal length (fc) [ 2346.62700 2349.88146 ] +/- [ 61.58243 61.28156 ] microns 

Principal point (cc) [ 2014.79146 1510.17880 ] +/- [ 5.93212 9.38874 ] mm 

Skew (alpha c) [ 0.00000 ] +/- [ 0.00000 ] 

Angle of pixel axes 90.00000 +/- 0.00000 degrees 

Distortion (kc) [ -0.00318 -0.00460 0.00293 -0.00042 0.00000 ]  
+/- [ 0.00348 0.00613 0.00057 0.00048 0.00000 ]  

Pixel error [ 0.28358 0.20695 ] pixels 

 

4.2. Georeferencing 

Georeferencing is the transformation from a local to a global coordinate system. It requires a 

minimum of three common and identifiable targets in both coordinate systems (Van Genechten, 

2008). In this study, the GCPs were used as the targets for georeferencing. They are necessary when 

conducting aerial surveys since they bring the projected to the spatial coordinate system and improve 

the accuracy of the data obtained (Garcia and Oliveira, 2020; Geavis, 2020). Moreover, they make it 

possible for real-world measurements to be obtained from the georeferenced spatial data. Boon et al. 

(2016) investigated the use of UAS photogrammetry as a tool to map wetlands. This study assessed 

the geometric accuracy, obtaining 0.018m and 0.0025m for the overall and vertical Root Mean Square 

Errors (RMSEs). The results obtained indicate that UAS photogrammetry can produce 

photogrammetric products of high accuracy for application to the mapping of wetlands. In the current 
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study, the point cloud georeferencing performed using 3D GCPs in Pix4D Mapper and 

CloudCompare indicated good results at an average GSD of 0.025m. In this case, overall RMSEs of 

0.032m and 0.053m were achieved, respectively. According to these results, the accuracy obtained is 

comparable to that of a study by Lucieer et al. (2014), where UAS-SfM photogrammetry was 

employed and an overall RMSE of 0.042m was obtained, thus beating the RMSE of 0.09m by 

Ouédraogo et al. (2014). 

4.3. Point cloud classification 

Points were classified into appropriate land-cover categories. However, misclassifications were 

noticed in each category. The classification results obtained using Pix4D Mapper show the category 

of interest while other categories were subtracted/hidden from the classified point cloud. For example, 

to show the high vegetation category, all other points were removed, isolating only this category. 

Figure 3 below shows the classification results obtained using Pix4D Mapper.    

 

    

    
Figure 3: (a) Study area before classification; (b) Classified point cloud showing ground;  

(c) Classified point cloud showing high vegetation; and (d) Classified point cloud showing 
buildings. 

(a) (b) 

(c) (d) 
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In every classified land-cover category, errors of commission and omission were present. The 

Type I error was dominant across all classes, except for the ground category, which was mainly 

affected by the Type II error. Visual inspection of the overall classification indicated satisfactory 

results. Misclassifications were addressed by manually allocating points to the appropriate land-cover 

categories. 

The CANUPO classification conducted using CloudCompare provided excellent results during the 

classifier training phase. Classifier A achieved a ba value of 0.994 and an fdr value of 6.826. On the 

other hand, a ba value of 0.957 and an fdr value of 6.038 were achieved for Classifier B. Classification 

thresholds of 90% and 85% were used for Classifier A and B, respectively, resulting in the correct 

classification of more points. Figure 4 shows the CANUPO classification results. The statistics of 

classified points are shown as a percentage in Figure 5. 

    

       

 

Figure 4: (a) Study area before classification; (b) Classified point cloud showing all classes; 

(c) Classified point cloud showing high vegetation and buildings (ground class removed); and  

(d) Unclassified points. 

 

  Ground  High Vegetation  Buildings  Unclassified 

(c) 

(a) (b) 

(d) 
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Figure 5: Percentage number of points classified in each land-cover category 

About 13% of the points were not allocated to any class. In most cases, the unclassified points 

were located on sites where a possible intermediate land-cover category was observed. For example, 

the high vegetation and ground categories were found to be separable. Furthermore, the high grass on 

the site appeared to be unclassified, but in some cases, it was categorized as either ground or high 

vegetation. Another similar occurrence appeared where the steps were unclassified or classified as 

either ground or buildings. Both classification algorithms achieved results that were more-or-less 

similar.  

Table 3 presents the results of the qualitative accuracy assessment. The ratings used in Table 3 are 

explained in Table 4.  

Table 3: Qualitative assessment of classification algorithms 

Feature Dominant Error CANUPO rating 

Ground Type II *** 

High Vegetation Type II *** 

Buildings Type I ** 

   

  Pix4D Mapper rating 

Ground Type II *** 

High Vegetation Type I *** 

Buildings Type I ** 

                    *: poor, **: fair, ***: good. 
 
  

78%

3%

6%

13%

Ground

High Vegetation

Buildings

Unclassified
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Table 4: Explanation of ratings 

Rating Item filter rating Influence rating 

Poor Item not filtered most of the time (<50%) Large influence on neighbouring points 

Fair Item not filtered a few times Small influence on neighbouring points 

Good Item filtered most of the time (<90%) None 

 

The ground category achieved good results for both algorithms. In fact, this category was affected 

by only a few cases of the Type II error. Fair results were obtained in the building category. The Type 

I error was dominant in both filtering algorithms. Pix4D Mapper indicated more cases of the Type I 

error for the high vegetation category, while the CANUPO classification was associated with Type II 

errors. 

The results of the quantitative accuracy assessment of the CANUPO classification are shown in 

the confusion matrix in Table 5. The reference and classified data indicate the number of ground truth 

sites and the classified sites, respectively.  

 

Table 5: Confusion matrix of CANUPO classification 
 Reference Data  

C
la

ss
if

ie
d 

D
at

a 

 Ground High Vegetation Buildings Sum UA (%) EC (%) 

Ground 36 2 1 39 92.3 7.69 

High Vegetation 2 18 2 22 81.8 18.18 

Buildings 2 1 11 14 78.6 21.43 

Unclassified 2 1 2 5   

 Sum 42 22 16 80  
 PA (%) 85.7 81.8 68.8    

 EO (%) 14.29 18.18 31.25    

        

 OA (%)      81.25       

           𝒌෡     0.70     
 

The performance of the CANUPO classification achieved an overall accuracy of 81.3%. The 

corresponding Kappa coefficient of 0.70 was achieved, indicating a substantial agreement according 

to the Kappa ratings. The ground category was less affected by errors of omission and commission. 

Misclassifications were noticed where sharp edges with slopes on the ground were classified as 

buildings. This was due to the geometry of points similar to those in the building category. The 

building category was mainly affected by both errors of omission (EO) and errors of commission 

(EC). It was noticed that flat rooftops were classified as either ground or unclassified. The training 
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samples used for the building category were mainly 3D by nature, while the ground category samples 

on most scales were 2D. 

 

5. Discussion and Conclusion 

The quality of 3D UAS-SfM point clouds produced in this study was affected mainly by 

discontinuities. In contrast to the LIDAR point clouds used by Brodu and Lague (2012), Farella 

(2016) Bonneau and Hutchinson (2019), the 3D photogrammetric point cloud used in this study was 

associated with some data discontinuities. This appeared to be a significant factor contributing to 

misclassifications. Another was the mixed pixel problem, which occurs when different classes on the 

observation scale contribute to the pixel's observed spectral response (Deer and Eklun, 2003). As a 

result, approximately 13% of the points did not belong to any class. Also, the buildings where side 

views were not reconstructed were classified as either ground or unallocated. The UAS images from 

which the point cloud was generated were vertical (nadir), lacking data from the side views. However, 

the incorporation of oblique images might address this issue during the SfM process since it improves 

the final point cloud by reducing data discontinuities and systematic errors (Nesbit and Hugenholtz, 

2019). Initially, the water body (swimming pool) was one of the land-cover categories of interest. 

However, this category was eliminated because the 3D point cloud that was generated did not have 

the water body adequately reconstructed. The swimming pool category was associated with 

discontinuities. 

A comparison with related studies on classifying 3D UAS-SfM point clouds was conducted. 

Zeybek and Şanlıoğlu (2019) classified ground and non-ground points by using different filtering 

algorithms. This work evaluated the performance of different filtering algorithms on UAS-based point 

clouds. Although these algorithms are mainly used to classify LIDAR data, the results indicated that 

UAS-SfM point cloud data are suitable for classifying bare earth surface features. Also, Zeybek 

(2021) classified 3D UAS-SfM point cloud data in the urban environment on the basis of their 

geometric properties. The overall classification accuracy was 96%, and the associated Kappa index 

was 91%. Similarly, the present study classified the 3D UAS-SfM point cloud data in the urban 

environment, achieving comparable accuracy. However, improving the classification accuracy and 

addressing the misclassifications are essential measures to take if reliable results are to be achieved.  

The dimensionality of an object is the main component in a CANUPO classification. The results 

revealed that extracting classifiers from the point cloud subject to classification provides excellent 

results. However, in this study, the classifiers created were applied to a scene that had never been 

seen before. The CANUPO classification threshold also affected the classification results. It was 

noticed that a classification threshold of 100% provided fair results, with fewer points correctly 

classified for a particular class. The other class would then be the most likely to be affected by  errors 

of commission. Classifier A separated ground from non-ground points; a classification threshold of 

100% resulted in some ground points being classified as non-ground or unclassified. The threshold 

for Classifier A was reduced to 90% and produced improved results. The second classifier, Classifier 
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B, was initially applied at a threshold of 90%. Improved results were achieved at a threshold of 85%. 

It was noticed that by reducing the classification threshold, the results for both classifiers could be 

improved upon.  

This study has demonstrated that photogrammetric products of good quality can be produced by 

using the low-cost UAS-SfM technique. Satisfactory CANUPO classification results were achieved, 

thus indicating the potential use of 3D UAS-SfM point clouds in mapping heterogeneous urban 

environments and other applications that might arise, and moreover, in advancing the recognition and 

use of free and open-source software for application in classification problems. Future research 

possibilities lie in the exploration of underwater environments and the possibility of combining 

terrestrial and aquatic point cloud data. Furthermore, yet another avenue for research would be to 

develop a 3D point cloud classification model that can classify objects of interest that are submerged 

underwater. 
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