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Abstract 

In Uganda, crop yields have been constrained by recurrent droughts and reliance on rain-fed 

agriculture. As a straightforward measure, irrigation farming has been adopted by the government 

through its rehabilitation of old schemes and its assistance to farmers in the setting up of micro-

irrigation farms. Of consequence is the fact that the maximization of crop yields through irrigation 

necessitates soil moisture data for irrigation scheduling. Both ground-based measurements and 

remote sensing techniques can be used to access this information, with the latter holding the 

advantage of gathering more information over a wider area. Because of its ability to account for 

vegetation cover, the Water Cloud Model (WCM) ─ a remote sensing-based model ─ has been 

widely used in earlier studies to estimate soil moisture content over vegetated areas. However, the 

accuracy of the model is limited by the assumption that vegetation is a homogenous scatterer. 

Thus, the Modified Water Cloud Model (MWCM) was developed in accordance with the debate 

that by considering the heterogeneous scattering nature of the vegetation, it would perform better 

than the WCM. Using Kiruuli Village (in a coffee-growing area), this study compared the 

performance of the WCM and the Modified Water Cloud Model (MWCM) in estimating soil 

moisture. The models were implemented using Sentinel 1 and 2 images acquired on 05 September 

2021 and 02 August  2021, respectively. Results showed that the MWCM performed slightly better 

than the WCM with Root Mean Square Errors (RMSEs) of 3.3346 and 3.7482, respectively. The 

marginality of the results can be attributed to a relatively high vegetation fraction at the time of 

image acquisition and a reasonably small area of comparison. Generally, more work can be 

carried out to compare the models across a larger area with a sparser vegetation cover. 

 Key Words: soil moisture, remote sensing, Modified Water Cloud Model (MWCM) 

 

1. Introduction 

   Soil moisture contributes about 0.001%  to the total volume of water found on Earth and 

plays a significant role in regulating plant growth, weather and climate (European Space Agency, 



South African Journal of Geomatics, Vol. 13. No. 1, January 2024 

24 
 

2021). This is because it is an interface of energy interactions between the land and atmosphere 

that acts as a variable in various processes on the soil surface such as evaporation, infiltration and 

runoff (Ezzahar et al., 2020).  

Amongst its other applications in agriculture, soil moisture is an important variable for the 

determination of the optimal sowing date and for scheduling irrigation inputs. In the field of 

agriculture, soil moisture plays a vital role in different processes and activities, such as, amongst 

others, the determination of the optimal sowing date and the scheduling of irrigation inputs. 

Irrigation-based agriculture constitutes 20% of the total cultivated land and 40% of the total food 

produced worldwide (World Bank, 2020). Because of the increase in the world population, 

urbanization and climate change, the struggle for water resources is expected to increase globally 

and will in the future impact agriculture and food availability.  

In Uganda, the water supply for agricultural activities conducted in terms of a subsistence 

approach is primarily rain-fed. Because of changes in rainfall patterns and the subsequently 

prolonged dry spells, soil moisture deficits occur at times that may be extremely important for 

plant growth (Sundin and Lindbald, 2015; Wanyama et al., 2017). This limits the crop yields 

attained by farmers. According to the World Bank, (2020),  irrigated agriculture is on average at 

least twice as productive per unit of land as rain-fed agriculture. To boost the productivity of the 

country’s agricultural sector, the backbone of the economic sector, the Ugandan government 

operates through various players, amongst others, the Ministry of Agriculture, Animal Industry 

and Fisheries (MAAIF), Ministry of Water and Environment (MWE), Ministry of Energy and 

Mineral Development (MEMD). Furthermore, the  Uganda National Planning Authority (2020) is 

carrying out irrigation developments through the rehabilitation of the existing irrigation schemes 

and by offering assistance to local farmers in the setting up of mini-irrigation schemes. The success 

of these developments will depend on several factors, including amongst others, the efficient 

scheduling of irrigation programmes. Since this developmental issue necessitates soil moisture 

data, it is crucial to accurately monitor this variable over time.  

Soil moisture data can be obtained through field measurements. However, these are costly, 

time-consuming and inefficient in the case of large farming areas where information pertaining to 

soil moisture varies spatially. Several remote sensing approaches provide soil moisture 

information over large areas and on a continuous basis. For example, Abdulrahamani's (2019) 

study to assess the WCM’s capability to estimate soil moisture over the Kakira sugar plantation 

proved successful. However, its accuracy is limited owing to the assumption it makes that the 

vegetation canopy is a homogeneous scatterer. In a bid to mitigate this issue, Zhang et al., (2021) 

developed the Modified Water Cloud Model, which introduces the vegetation fraction parameter 

to account for the uneven distribution of vegetation. Whereas a previous study carried out by Zhang 
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et al., (2021) assessed both models using Radarsat-2 and Landsat-8 imagery over wheatfields, this 

study looked at using Sentinel imagery which has a higher temporal resolution (six days) in 

comparison to that used by Radarsat (24 days) and Landsat (16 days). The methodology to remove 

the effect of vegetation on the measured Synthetic Aperture Radar (SAR) backscatter requires the 

use of a cloud-free optical image captured on the same date as that captured by the SAR image. In 

practice though, there is always a risk of cloud cover when it comes to optical images. When such 

an issue is encountered, it has proved to be more beneficial in cases where less time is needed for 

the next image to be produced, the objective being to facilitate an estimation of the soil moisture 

content. Therefore, this study aimed to evaluate the performance of the WCM and MWCM in 

estimating soil moisture using Sentinel image data across a coffee-growing area.  

This paper is arranged as follows:  In section 2, the study area, data and steps taken to obtain 

results are described. Section 3 expounds on the models. Section 4 presents the results and 

discussions. Finally, section 5 rounds up the discussion with conclusions and recommendations.  

 

2. Study area, data and methods 

Kiruuli Village (the study area) is located between 0°45.55ᇱ𝑆 and  0°47.06′𝑆 latitudes and 

31°27.86ᇱ𝐸 െ and 31°29.23′𝐸 longitudes in Kisaasa parish, Kifamba sub-county, Kakuuto 

county, Rakai district, Uganda. The village has an area of about four  square kilometres (4 𝑘𝑚ଶ), 

which is relatively small compared to the 270 𝑘𝑚ଶ site investigated by Zhang et al. (2021). A vast 

part of the land is used for coffee cultivation. The western part of the village, mainly a hilly area, 

is characterized by grassland vegetation and rocky soils, whereas the central and eastern parts are 

lowlands, with arable soils. Figure 2.1 shows the location of Kiruuli village and its location in 

Rakai district. The coffee growing area was chosen because coffee is, amongst others, the 

country’s leading exported crop and because the coffee plant grows in combination with the sparse 

natural vegetation cover. The latter fact served to make the comparison of the two models as an 

effective tool in the context of this research. 
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Figure 2.1: Location of Kiruuli village 

2.1. In-situ data 

    Soil samples were obtained randomly from different coffee-growing locations within the 

study area and by using a metal core ring, at a depth of five centimetres (5 cm). For each location 

─ as determined by using a handheld GPS instrument ─, three samples were collected within a 

buffer zone of five metres (5m). The soil samples were placed in zipping bags and then transported 

to the laboratory for the computation of their soil moisture content. A total of 16 locations (plots) 

were sampled, 10 of which were of the vegetated area and six of bare soil (Refer to figure 2.2). 

2.2 Imagery  
    Sentinel-1 is a satellite Synthetic Aperture Radar (SAR) mission launched by the European 

Space Agency (ESA). It involves a constellation of two satellites launched at different times ─ that 

is in 2013 and 2016 ─, and results in Sentinel-1a and Sentinel-1b images, respectively (Davids and 

Rouyet, 2018). It offers SAR data in the C band at a temporal resolution of six days and supports 

both co-polarization and cross-polarization. Vertical transmit-Vertical receive (VV) polarization 

was used since it is more sensitive to soil moisture than Vertical transmit-Horizontal receive (VH) 



South African Journal of Geomatics, Vol. 13. No. 1, January 2024 

27 
 

polarization in vegetated areas. This is due to the high sensitivity to the volumetric scattering of 

the latter (Baghdadi et al., 2017; Gao et al., 2017). An IW GRDH (Interferometric Wide Ground 

Range Detected, High Resolution) image corresponding to the same date (05 September  2021) as 

that of the in-situ data was downloaded from the Copernicus open access hub and used for this 

study. 

Sentinel-2 is an optical, wide swathe, high-resolution multispectral imaging mission involving two 

satellites, namely  Sentinel-2A and Sentinel-2B, launched in June 2015 and in March 2017, 

respectively (Gao et al., 2017). It was developed for land monitoring studies (SNAP - ESA Sentinel 

Application Platform V8.0.0, no date). It consists of 13 multispectral bands, four of which are of 

a 10-metre spatial resolution, six of 20 metres and three of 60 metres. A Sentinel-2 MSIL2A 

(Multi-Spectral Imager Level 2A) image acquired on 02 August 2021 was downloaded from the 

Copernicus open access hub and used for this purpose; the assumption was that the vegetation 

cover had not changed significantly within the 33-day interval. An image for the same date as that 

for the in-situ data and even those closer than the one deployed could not be used as a result of the 

dense cloud cover. 

2.2. Data processing 

Generally, the methodology is shown in Figure 2.3, where the Sentinel-1 image was subset to 

reduce its size for faster processing. The image subset was preprocessed through steps described 

by Filipponi, (2019). These include the following: the application of an orbit file, thermal noise 

removal, border noise removal, calibration, speckle filtering, geometric correction and conversion 

to decibels. 

As with the Sentinel-1 image, the Sentinel-2 image was initially a subset. The image subset was 

then resampled to resize the pixels of all the image bands to a 10-metre resolution. The resampled 

product was masked using a shapefile of the study area to generate the area of interest. The masked 

product was reprojected to match the same coordinate system as the Sentinel-1 image. From the 

reprojected product, the different vegetation descriptors were processed; they were CWC, LAI, 
𝑓௩௘௚ and 𝑚௩௘௚. The resultant bands were collocated to the Sentinel-1 backscatter (dB) image. 

Using the bare soil backscatter and the measured soil moisture, bare soil parameters C and D were 

obtained by means of linear regression.  They were resampled to resize the pixels of all the image 

bands to a 10-metre resolution. The resampled product was masked by using a shapefile of the 

study area to generate the area of interest. The masked product was reprojected to match the same 

coordinate system as the Sentinel-1 image. From the reprojected product, the different vegetation 



South African Journal of Geomatics, Vol. 13. No. 1, January 2024 

28 
 

descriptors, namely,  CWC, LAI, 𝑓௩௘௚ and 𝑚௩௘௚., were processed. The resultant bands were 

collocated to the Sentinel-1 backscatter (dB) image. Using the bare soil backscatter and the 

measured soil moisture, bare soil parameters C and D were obtained through linear regression. 

Based on a study carried out by Bindlish and Barros (2001) that obtained vegetation constants A 

and B over different underlying surfaces, values of 0.0018 and 0.138 which correspond to the crop 

area were used for the two constants, respectively. The radar incidence angle over the study site 

was in the region of  380. With all the necessary parameters, equations 6 and 9 were regarded as 

inputs in the band maths tool in SNAP and the soil moisture products were generated. These were 

used to generate the distribution of the estimated soil moisture in the study area (Refer to figure 

4.2).  Statistical metrics used in the analysis included the Pearson rank coefficient (r) and the Root 

Mean Square Error (RMSE) Where r indicates the strength of the linear relationship between the 

two variables from a range of -1 to 1. The closer the r value approaches േ1, irrespective of the 

direction, the stronger the current relationship, thus conveying a greater linear relationship between 

the two variables. On the other hand, RMSE is a metric that serves to summarize the errors in the 

prediction of a given variable into a single value. It is obtained from the formula  

                                                             𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
൫∑ 𝑒௜

ଶ௡
௜ୀଵ ൯                                                                 (10) 

where: i represents an index, n is the number of observations and 𝑒௜ is the error in the 𝑖௧௛ 

observation.  

 

Figure 2.2: The distribution of in-situ data points in the study area 

Kiruuli Village 
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Figure 2.3: Methodology 

 

3. Model descriptions 

    The Water Cloud Model, designed by Attema and Ulaby (1978), is effective in estimating 

soil moisture over vegetated areas. This is due to its ability to account for the contribution of 

vegetation to the total SAR backscatter in terms of the following relationship: 

𝜎௣௣° ൌ 𝜎௩௘௚° ൅ 𝜎௩௘௚ା௦௢௜௟
° ൅ 𝐿ଶ𝜎௦௢௜௟

°    (1) 

where 𝜎௣௣° ൌ 𝜎௩௘௚° ൅ 𝜎௩௘௚ା௦௢௜௟
° ൅ 𝐿ଶ𝜎௦௢௜௟

°
 is the co-polarized total backscatter coefficient, 𝜎௣௣° ൌ

𝜎௩௘௚° ൅ 𝜎௩௘௚ା௦௢௜௟
° ൅ 𝐿ଶ𝜎௦௢௜௟

°  is the backscatter contribution of the vegetation cover, 𝜎௣௣° ൌ 𝜎௩௘௚° ൅

𝜎௩௘௚ା௦௢௜௟
° ൅ 𝐿ଶ𝜎௦௢௜௟

°  is the multiple scattering involving vegetation elements and the soil surface, 

𝜎௣௣° ൌ 𝜎௩௘௚° ൅ 𝜎௩௘௚ା௦௢௜௟
° ൅ 𝐿ଶ𝜎௦௢௜௟

°  is the backscatter contribution of the soil surface, and 𝐿ଶ is the 

two-way vegetation attenuation.  
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The second term is considered insignificant in co-polarized radiation and often neglected 

(Kumar et al., 2012; Baghdadi et al., 2017; Ayehu et al., 2020). Hence, 

𝜎௣௣° ൌ 𝜎௩௘௚° ൅ 𝐿ଶ𝜎௦௢௜௟
°        (2) 

with 

𝜎௩௘௚° ൌ 𝐴𝑉ଵ𝑐𝑜𝑠𝜃ሺ1 െ 𝐿ଶሻ                        (3) 

         𝐿ଶ ൌ 𝑒𝑥𝑝ሺെ2𝐵𝑉ଶ𝑠𝑒𝑐𝜃ሻ              (4) 

      𝜎௦௢௜௟
° ൌ 𝐶 ൅ 𝐷𝑀௩                (5) 

where 𝑉ଵ and 𝑉ଶ are vegetation descriptors. This research used Leaf Area Index (LAI) as 𝑉ଵ  

and Canopy Water Content (CWC) as 𝑉ଶ for the WCM (Kumar et al., 2012). The symbol, 𝜃, is the 

radar incidence angle; A and B are the vegetation parameters, with A representing the albedo of 

the vegetation and B representing the attenuation factor; C and D correspond to the bare soil 

parameters obtained through linear model fitting; and 𝑀௩ represents the volumetric soil moisture. 

Making soil moisture the subject and substituting 𝜎௩௘௚° , 𝐿ଶ and 𝜎௦௢௜௟
°  in equation 2 results in 

                  𝑀௩ ൌ
ଵ

஽
൤
ఙ೛೛° ି ஺௏భ஼௢௦ఏሺଵିୣ୶୮ሺିଶ஻௏మ௦௘௖ఏሻሻ

௘௫௣ሺିଶ஻௏మ௦௘௖ఏሻ
െ 𝐶൨       (6) 

Unlike the WCM, which assumes vegetation as a homogeneous scatterer (Attema and Ulaby, 

1978; Ayehu et al., 2020; Zhang et al., 2021), the MWCM incorporates the vegetation fraction 

parameter to account for the uneven distribution of vegetation. This is more representative of the 

vegetation characteristics of an area, especially a sparsely vegetated area (Zhang et al., 2021). The 

MWCM developed by Zhang et al. (2021) is expressed as follows: 

                   (7) 

where 

      𝑓௩௘௚ ൌ
ே஽௏ூିே஽௏ூೞ೚೔೗

ே஽௏ூೡ೐೒ିே஽௏ூೞ೚೔೗
                       (8) 

Making soil moisture the subject and substituting 𝜎௩௘௚° , 𝐿ଶ and 𝜎௦௢௜௟
°  in equation 7, gives: 

 𝑀௩ ൌ
ଵ

஽
൤
ఙ೛೛° ି ௙ೡ೐೒௠ೡ೐೒஼௢௦ఏ൫ଵିୣ୶୮൫ିଶ஻௠ೡ೐೒௦௘௖ఏ൯൯

൫௙ೡ೐೒௘௫௣൫ିଶ஻௠ೡ೐೒௦௘௖ఏ൯ାଵି௙ೡ೐೒൯
െ 𝐶൨                            (9) 
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4. Results and discussion 

4.1. In-situ data 

Table 4.1 presents the soil moisture content of the various soil samples obtained using the 

thermo-gravimetric method, also known as the oven-drying method.  The volumetric soil moisture 

values ranged from 4.7115 to 11.6559 cm3, showing a low soil moisture content across the area. 

This was an actual depiction of the dry conditions that persisted until October when heavy rains 

were experienced across the study area, and no irrigation activities were observed. 

Table 4.1: In-situ data 

Feature 
ID 

X (m) Y (m) Feature 
Gravimetric soil 
moisture  
(% of weight) 

Oven-dry bulk 
density (g/ 
cm3) 

Volumetric soil 
moisture 
(% vol.) 

1 331508.232 9915175.490 Bare soil 8.8077 1.3234 11.6559 

2 331023.932 9914911.391 Bare soil 8.0927 1.3333 10.7898 

3 330940.020 9913640.039 Bare soil 7.4290 1.3497 10.0270 

4 330411.721 9913780.713 Bare soil 7.4454 1.5085 11.2313 

5 330538.749 9914625.065 Bare soil 7.8988 1.4676 11.5923 

6 330460.452 9915391.502 Bare soil 8.3716 1.3447 11.2569 

7 331538.204 9915088.704 Crops 5.5523 1.4949 8.3000 

8 331216.636 9915120.987 Crops 5.8688 1.3969 8.1982 

9 331037.259 9914682.739 Crops 4.2567 1.2624 5.3737 

10 331090.425 9913854.375 Crops 6.6835 1.2319 8.2337 

11 330998.076 9913763.344 Crops 3.4953 1.3480 4.7115 

12 330541.437 9914578.737 Crops 5.1555 1.3792 7.1103 

13 330511.132 9914663.533 Crops 7.0206 1.1976 8.4080 

14 330432.541 9915004.832 Crops 6.9977 1.1498 8.0461 

15 330409.783 9915149.890 Crops 5.4290 1.2724 6.9080 

16 330307.675 9915581.959 Crops 9.0306 0.9698 8.7579 
 

4.2. Validation of models 

The fitted models were validated by examining the agreement between the estimated 

backscatter and the observed backscatter. Results revealed that the WCM produced an R2 of 
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0.6063, whereas the MWCM produced an R2 value of 0.6115. The model fitting was considered 

good, with an R2 value of 0.5 used as the threshold.   

 

Figure 4.1: Scatter plots showing the relationship between predicted backscatter and observed 
backscatter: left (WCM); right (MWCM). 

From Figure 4.2, it can be seen that the soil moisture content of the WCM  was higher than that 

of the MWCM at similar locations. Further analysis pertaining to Figure 4.3 revealed that this was 

because the soil moisture values for WCM were overestimated and more than those for the 

MWCM. In addition, the two maps generally reflected a lower soil moisture content on the western 

side of the village which could be attributed to the rocky nature of the soils in the hilly portion of 

the village in contrast to the mainly sandy soils in the lowlying areas (central and eastern portions 

of the village).  

Figure 4.3 clearly shows that the models overestimated the volumetric soil moisture content 

with the overestimation in the case of the MWCM being less than that for the WCM. A significant 

error in the estimation of soil moisture was observed for some points (e.g.,  in-situ point 3). In a 

study by El Hajj et al. (2016), overestimation was determined for soil moisture values below 20 

cm3 which declined as the values increased. Underestimations were experienced beyond the 30 

cm3 values,. Figure 4.3 shows a similar trend where overestimation generally declined as the soil 

moisture content increased. 
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Figure 4.2: Maps showing the distribution of estimated soil moisture content  

 

 

Figure 4.3: A plot of volumetric soil moisture content against the in-situ data points 
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Table 4.2: Statistical summary of results 

 

 

 

Figure 4.4: The number of crop soil samples in various vegetation fraction (fveg) ranges 

 

A low RMSE, a high R2 and a high  r-value are indicative of a good model. Values in Table 4.2 

show that the MWCM had a lower RMSE of 3.3346 and a higher r of 0.7858 compared to the 

WCM, with an RMSE of 3.7482 and an r-value  of 0.7806. Based on this, the MWCM performed 

better than the WCM in terms of soil moisture estimation. However, a closer look at the values 

shows a slight difference between the performance of the two models. Further analysis of these 

results was carried out  on the basis of figure 4.4. Figure 4.4 illustrates non-uniformity in the 

vegetation fraction at the different sampling points.  This is so because coffee plants are grown by 

different farmers across the study area; thus, the coffee plants sampled in this research were not 

selected at the same growth stage. From figure 4.4, there were no crop soil samples that fell into 
the region of low vegetation fraction (𝑓௩௘௚<30%), three were in the medium vegetation fraction 

region (30%<𝑓௩௘௚<60%), six fell in the high vegetation fraction region (75%<𝑓௩௘௚<100%) and one 

fell between the medium and high vegetation fraction regions, namely, 𝑓௩௘௚ at (𝑓௩௘௚ ൌ 66%). 

Generally, the data reflected different stages that were relatively high. The difference in 

performance, however, declined as the crop matured. Both models were close in their estimation 
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at the filling stage where there was a high vegetation fraction. With the situations in this study 

being  largely similar , they could be the cause of the marginal difference. Furthermore, the small 

size of the area investigated could be a limiting factor leading to a greater variation in the set of 

results.     

 

5. Conclusions and Recommendations 

5.1. Conclusions 

This study evaluated the performance of the WCM and MWCM in estimating soil moisture 

across  a coffee-growing area. The assessment compared soil moisture estimated by the models 

using Sentinel-1 and Sentinel-2 data with in-situ data. With R2 values of 0.6093 and 0.6175 and r 

values of 0.7806 and 0.7858, respectively, the results obtained showed the potential of both the 

MWCM and WCM to estimate soil moisture in the top five centimetres of the soil when the 

estimated soil moisture was plotted against the in-situ data.  This study identified the MWCM as 

a better model for a coffee study site than the WCM. However, the difference in performance was 

not very significant owing to the relatively high vegetation fraction of the crops at the time of data 

capture.  

5.2. Recommendations 

The C-band (as offered by the Sentinel-1 mission) used in this study faces the challenge of 

penetrating dense vegetation, and this limits the accuracy with which soil moisture can be 

estimated. Hence, further research could be carried out to explore the L-band SAR data in 

estimating soil moisture.  In addition, better accuracy would be achieved by incorporating surface 

roughness parameters which were omitted because the instruments used to measure them were 

unavailable. 

The challenge of using a SAR image and an optical image on different dates to accommodate 

the issue of the cloud cover in the optical image had an impact on the derived WCM/MWCM 

parameters used to describe the vegetation characteristics of the given area. However, this could 

be mitigated by using the Simple Algorithm for Yield estimate (SAFY)model, which simulates the 

vegetation characteristics of a given area on the basis of meteorological data (Duchemin et al., 

2008; Han et al., 2020). The absence of meteorological data hampered the use of the model in this 

research but future research could consider its application for better results when faced with a 

similar challenge. 

 In-situ data is a prerequisite for calibration and for assessing model accuracy. The in-situ data 

used in this research applied to one day only. Furthermore, the unavailability of data at various 
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crop growth stages limited a deeper evaluation of the models at such stages. The Ministry of 

Agriculture should, therefore, consider setting up various stations for soil moisture monitoring at 

the various irrigation schemes. This would make data available for the spatiotemporal evaluation 

of models and any further research on soil moisture. 
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